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CSPs = Homomorphism Problems

Polymorphisms
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▶ If A satisfies Π, then CSP(T ) is solved by algorithm M

▶ If A satisfies Σ, then T pp-constructs K3
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Graph Sandwich Problems
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Graph Sandwich Problems
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Graph Sandwich Problems

What has been done?
Introduced by Golumbic, Kaplan and Shamir (1995). Since then:

▶ Chordal

▶ Comparability

▶ Circle

▶ Path graphs

▶ Directed path
graphs

▶ Split

▶ Permutation

▶ Trivially perfect

▶ Cographs

▶ Circular-arc

▶ Interval graphs

▶ Proper circular-arc

▶ Unit circular-arc

▶ Proper interval

▶ Threshold

▶ (k, l)-graphs

▶ Clique-helly

▶ Hereditary
clique-helly

▶ Strongly chordal

▶ Bipartite chain

▶ Odd-hole-free

▶ Even-hole-free

▶ 3PC(·, ·)-free
▶ Cn-free

▶ Complete
multipartite

▶ Pn-free

Alvarado, Cameron, Chaniotis, Chudnovsky, Dantas, Dourado, Faria, de Figueiredo, Golumbic, Kaplan, Klein,
Maffray, Petito, Rautenbach, Shamir, da Silva, Spirkl, Sritharan, Teixeira, Vušković (and possibly others)
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Graph Sandwich Problems
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Graph Sandwich Problems

What is open?
Many things, but... “the complexity of the Perfect-Graph-Sandwich-Problem remains
one of the most prominent open questions in this area” Cameron, Chianotis, de
Figueiredo, Spirkl (2025).
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The approach

Template: Split graphs
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The approach
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The approach
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The approach

When is the SP for C a CSP?
▶ C is a hereditary class,

▶ C has the joint embedding property, and

▶ C is preserved under split blow-ups.
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The approach

For instance. . .

▶ Chordal

▶ Comparability

▶ Circle

▶ Path graphs

▶ Directed path
graphs

▶ Split

▶ Permutation

▶ Trivially perfect

▶ Cographs

▶ Circular-arc

▶ Interval graphs

▶ Proper circular-arc

▶ Unit circular-arc

▶ Proper interval

▶ Threshold

▶ (k, l)-graphs

▶ Clique-helly

▶ Hereditary
clique-helly

▶ Strongly chordal

▶ Bipartite chain

▶ Odd-hole-free

▶ Even-hole-free

▶ 3PC(·, ·)-free
▶ Cn-free

▶ Complete
multipartite

▶ Pn-free

. . . and of course, for perfect graphs
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The approach

Moreover . . .
▶ Complete multipartite graphs. Algorithm from Dantas, Figueiredo, da Silva,

and Teixeira is a Datalog program.

▶ Split graphs. Algorithm from Golumbic, Kaplan, and Shamir is a reduction to
the finite.

▶ Threshold graphs. Tractability also explained by the algebraic approach to
CSPs.

▶ Comparability graphs. Hardness follows from the classifications of CSPs of
reducts of the random poset (Kompatscher and van Pham, 2018).

▶ Generalized split graphs. The P vs. NP-complete classification of the sandwich
problem for (p, q)-split graphs (Dantas, Figueiredo, da Silva, and Teixeira)
recovered in terms of pp-constructions.

▶ Permutation graphs. Hardness proof of Golumbic, Kaplan and Shamir is a
pp-construction of (Q,Betw).
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The approach

Something new?

▶ For {P4,K4}-free graphs is NP-complete

▶ For Kk -free perfect graphs is NP-complete for k ≥ 4

▶ For line graphs of bipartite multigraphs is NP-complete

▶ For line graphs of multigraphs is NP-complete

▶ There is a hereditary class C such that SP(C) is coNP-intermediate
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The approach

Something open?

▶ Is there an ω-categorical perfect graph?

▶ The Gyárfás–Sumner Sandwich Problem Conjecture: The T ∪ {Kk} is NP-hard

for every set of non-star trees T and k ≥ 4.
▶ Why : Gyárfás–Sumner + Brakensiek–Gurusuwami Conjectures imply it.
▶ Known cases: True for {Pn,Kk}-free graphs with n, k ≥ 4.

▶ Is there a hereditary class C such that SP(C) is NP-intermediate?
▶ . . . and such that SP(C) is a CSP?
▶ . . . and such that C = F-free graphs for finite F?
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Thank you for your attention!
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Views and opinions expressed are however those of the authors only and do not
necessarily reflect those of the European Union or the European Research Council

Executive Agency. Neither the European Union nor the granting authority can be held
responsible for them.
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