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Finitely Homogeneous Structures

Definition. A relational structure 8 is called

m homogeneous if every isomorphism between finite substructures of B
can be extended to an automorphism of ‘8.

m finitely homogeneous if it is homogeneous in a finite signature.
Examples.

m (<)

m The Rado graph (aka the Random graph)

m The binary branching countable universal homogeneous C-relation
Facts.

m Finitely homogeneous structures are w-categorical.

m Henson’1972: there are 2“ many homogeneous digraphs.

m Cherlin’1998: classification of homogeneous digraphs.

Long-term goal. Classify countable homogeneous structures in a finite
relational signature that are NIP (i.e., have a dependent first-order theory).
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Motivation

Many open questions for finitely homogeneous structures B:

E Thomas’ conjecture (1991): B has only finitely many first-order reducts,
up to interdefinability.

Equivalently: Sym(B) has only finitely many closed subgroups that
contain Aut(8).

B Macpherson’s question 1 (2011): Does B have the small index
property: every subgroup of Aut(B) of index < 2% is open?

H Macpherson’s question 2 (2011): Does Aut(23) have only finitely many
closed normal subgroups?

B Ramsey expansion conjecture: 8 has an expansion by finitely many
relations which is homogeneous and additionally Ramsey
(B.+Pinsker+Tsankov’2011).

H CSP dichotomy conjecture: If CSP(25) := {2 finite | A — B}isin NP,
then CSP(B) is in P or NP-complete.

Strengthening of conjecture of B.+Pinsker'2011.
Conjectured for finite B by Feder+Vardi’'1993.
Verified for finite 98 by Bulatov and by Zhuk in 2017.
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How to classify 1: first-order reducts

Definition. 2( is called first-order reduct of 9% if 2 is a reduct of the expansion
of B by all first-order definable relations.

Example. (Q;{(x,y,2) | x <y < zV z <y < x}) is first-order reduct of (Q; <).

Definition. Two structures are first-order interdefinable if they are first-order
reducts of each other.

Example. (Q;{(x,y,2) | x < yV x < z}) is interdefinable with (Q; <).

Fact. If 2,5 are w-categorical, then:
21 and B are interdefinable if and only if Aut(2() = Aut(®5)
(follows from theorem of Ryll-Nardzewski, Engeler, Svenonius).

Warning. Finite homogeneity not preserved by first-order reducts!
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How to classify 2: first-order interpretations

Definition. A (d-dimensional, first-order) interpretation of [ in B
is a partial surjective map /: A — B such that
the pre-images of definable sets in B are definable in L.

Example. The following structure is first-order definable in (Q; <):
(Q% <y, <2) with <i:= {((a1, @), (b1, b2)) | & < by}

Definition. 2( and B are bi-interpretable if there are interpretations
I: A% — B and J: B% — A such that / o J is definable in B and J o / is
definable in 2L.

Example. The structure (Q;=) is bi-interpretable with

(@%{((a1, @), (b1,b2)) | @ = b1 })
and with ((8);{(A, B):|AnB|=1})
Fact (Ahlbrand-Ziegler'86, Coquand): w-categorical structures
2 and B are bi-interpretable if and only if
Aut(2() and Aut(B) are topologically isomorphic.
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The Stable Case

Stability: Shelah 1969.

Definition. An w-categorical structure 9t is stable if and only if there is no
formula ¢(X, y) and parameters ag, ai,--- € M and by, by, - - - € MY! such
that M = ¢(a;, by) if and only if i < j.

Examples. (N;=).
The countable vector space over a finite field (not finitely homogeneous)

Non-examples.

m(Q5<)
m the Rado graph

Fact. Stability (and w-categoricity) preserved by first-order interpretations.

Examples. (Q% {((a1,az2), (b1, b2)) | @2 = by })
and ((2);{(A,B) :|An Bl = 1}) are stable and w-categorical.
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Lachlan’s Theorem

Theorem (Lachlan’1986) The following are equivalent.
m 5 is stable and a first-order reduct of a finitely homogeneous structure;
m ‘B is stable and interpretable over (Q; <).
‘Lachlan’s class’.
Picture:
First-order reducts of finitely homogeneous structures

B+Bodor+Marimon’25

Structures interpretable over (Q,<)

Stable first-order reducts of finitely homogeneous structures
= stable structures interpretable over (Q,<)

Structures interpretable over (Q,=)

Finite structures
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Contributions, Part 1

B.+Bodor+Marimon’25:

Conjecture: Lachlan’s class equals closure of class of structures
interpretable over (Q; =) under taking model-complete cores.

B Taking model-complete cores preserves most model-theoretic properties
(e.g., stability).

H Show that class of structures interpretable over (Q; =)
is not closed under taking model-complete cores.

A Consequence (was known before, but not explicitly in the literature):
Lachlan’s class is distinct from class of structures interpretable over

(Q=).
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How to classify 3: model-complete cores

An w-categorical structure B is called a
m core if every endomorphism 98B —yo, 95 is an embedding,

m model-complete if every embedding B — 9 preserves all first-order
formulas.

Fact (B.+Junker'09). %5 is a model-complete core

if and only if Aut(25) = End(B).
21 and B are homomorphically equivalent if 2l —poy B and B —pem 2.

Theorem (B. 2005, B.+Hils+Martin’2010). Every w-categorical 25 is
homomorphically equivalent to a model-complete core ¢, which is unique up
to isomorphism, and w-categorical.

Theorem (B.+Bodor+Marimon’26). If B is stable, then so is B.
Similarly, taking model-complete cores preserves NIP, NSOP, simplicity,
superstability, monadic stability, monadic NIP, strong minimality, etc.

Model-Complete Cores Manuel Bodirsky



Examples

m The model-complete core of (Q; <) is a single point.
m The model-complete core of the Random Graph is K,,,.
m The model-complete core of (Q N[0, 1];<) is (Q; <).

m The model-complete core of (Q?; <1, <z) is the countable universal
homogeneous permutation structure (aka generic permutation structure).

m Similarly: Cherlin’s tournament S(2) is a model-complete core of a
structure interpretable over (Q; <).
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The Challenge

Goal: find a structure with is interpretable over (Q; =), but whose
model-complete core is not interpretable over (Q;=).
Typical approach: To prove that a structure 2l is not interpretable over 3:
m |dentify a property P that is preserved by first-order interpretations,
m Show that 8 has property P,
m Show that 2( does not have property P.

Challenge: almost all model-theoretic properties are preserved by taking
model-complete cores!
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The Counterexample

X :={(ab,m):abecQ,mec Zsa+# b}. N
X structure with domain X and relations (ab) (@) (cd)
m R:={((a,b,m),(ab,m+1)|
m £ C X2, the binary relation given by
{((a,b,2m), (a,c,2n)) : n,m € Z4,b # ¢}
U{((a,b,2m),(c,a,2n+1)):n,m € Z4,b # ¢}
u{((b,a,2m-+1),(a,c,2n)) :n,me Z4,b # c}
U{((bya,2m+1),(c,a,2n+1)):n,m € Z4,b # c}.

m the binary relation
N:={((a,b,m),(c,d,n)): n,m € Zq4,{a, b} N{c, d} = 0}
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Verifying the counterexample

E X is interpretable over (Q;=).

A the substructure 9 induced by Y :={(a,b,m):a,be Q,me Z4,a < b}
is homomorphically equivalent to X.

H 9 is interpretable over (Q; <).

A the structure ) is a model-complete core.

B 9 is not interpretable over (Q;=):

m every structure 2[ with a first-order interpretation in (Q; =) is finite or Aut(2()
has a subgroup isomorphic to Sym(Q).
m The subgroup of involutions of Aut()) is abelian.
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Beyond Stability

(Q; <) is not stable, but NIP.

Definition. An w-categorical structure B has the Independence Property (IP)
if there exists a formula ¢(Xx, ) and an infinite S C BXI and bg € BY! for every
finite / C S such that

B = d(a, b)) ifandonlyif ae .

Fact (Shelah): every w-categorical unstable structure B has IP or the SOP:
there exists a formula ¢(x, y) and ao, a1, - - - € BY! such that

(X, b0)® C p(X,b1)® C -

=

Examples:
m (Q; <), S(2), and the generic permutation have NIP and SOP.
m The Rado graph and the Henson digraphs have IP and NSOP.

Model-Complete Cores Manuel Bodirsky 14



Structures Interpretable over (Q; <)

Definition. binary finitely homogeneous structure 23:

all relations of B have arity at most 2.

Example. The countable universal homogeneous binary branching C-relation
m is finitely homogeneous and NIP,
m but is not first-order reduct of binary finitely homogeneous structure.

Fact (B+Bodor+Marimon’25). Every structure with a first-order interpretation
in(@Q;<)is

m the reduct of a binary finitely homogeneous (Ramsey) structure,

m NIP.

Note. All the mentioned conjectures are already open for NIP structures that
are reducts of binary finitely homogeneous structures.
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Binary finitely homogeneous NIP structures

Theorem (B+Bodor+Marimon’25). The class Z of structures with a first-order
interpretation in (Q; <) is not closed under taking model-complete cores:

m the countable universal homogeneous permutation is not in Z
m S(2)is notinZ.

Conjecture (B+Bodor+Marimon’25). Every NIP structure which is a first-order
reduct of a binary finitely homogeneous structure is interdefinable with the
model-complete core of a structure interpretable over (Q; <).
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Fuller Picture

First-order reducts of finitely homogeneous structures

*

NIP first-order reducts of binary finitely homogeneous structures

=? (B+Bodor+Marimon’25)

Interdefinable with model-complete cores of structures interpretable over (Q,<)

# (B+Bodor+Marimon’25)

Structures interpretable over (Q,<)

#*

Stable first-order reducts of finitely homogeneous structures
= stable structures interpretable over (Q,<)

=? (B+Bodor+Marimon’25)

Interdefinable with model-complete cores of structures interpretable over (Q,=)

# (B+Bodor+Marimon’25)

Structures interpretable over (Q,=)

#

Finite structures
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Concluding Remarks

m Two types of results in B+Bodor+Marimon’25:

m Preservation of model-theoretic properties under taking model-complete
cores.

m Techniques to show that certain structures do not have a first-order
interpretation in another structure.

m We believe that model-complete cores are a useful concept in classifications
of finitely homogeneous structures.

m Most definitions and results about model-complete cores do not rely on
w-categoricity.
m Related work:

m positive model theory (see, e.g., Ben-Yaacov'2003,
Dmitrieva+Gallinaro+Kamsma’23)

m trace definability by Walsberg’2025.
Fact. The model-complete core of an w-categorial structure 2
has a trace definition in 21.
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