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A = (A; f1, f2, . . . ) is an algebra

1. A is finite

2. A is idempotent, i.e. fi (x , . . . , x) = x

3. A is Taylor
TFAE
▶ A has a Taylor term operation.
▶ A satisfies a nontrivial identity.
▶ A satisfies a nontrivial h1-identity.
▶ there doesn’t exist essentially unary algebra B ∈ HS(A).
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Siggers term

s(y, x, y, z) = s(x, y, z, x)

Siggers term

s(y, x, y, z) = s(x, y, z, x)

Ol̂sák term

t(x, y, y, y, x, x) = t(y, x, y, x, y, x) = t(y, y, x, x, x, y)

Ol̂sák term

t(x, y, y, y, x, x) = t(y, x, y, x, y, x) = t(y, y, x, x, x, y)

WNU term

w(x, y, . . . , y) = w(y, x, y, . . . , y) = · · · = w(y, y, . . . , y, x)

cyclic term

c(x1, x2, . . . , xn) = c(x2, x3, . . . , xn, x1)

XY-symmetric term

w(x, . . . , x︸ ︷︷ ︸
m

, y, . . . , y) = w( . . . x, . . . , y, . . .︸ ︷︷ ︸
any tuple with m xs

)

two element algebras
symmetric terms

s(x1, . . . , xn) = s(xσ(1), . . . , xσ(n))
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Motivation

Why symmetric?

▶ They are cool!

▶ Symmetric operations characterize the algebra
For an XY-symmetric operation f

*

b → a maj affine a→ b a→ c ← b

f (a, b, b . . . , b, b, b)

a b a b c

f (a, a, b . . . , b, b, b)

a b b b c

f (a, a, a . . . , b, b, b)

a . . . . . . b c

f (a, a, a . . . , a, b, b)

a a a b c

f (a, a, a . . . , a, a, b)

a a b b c

▶ Important for the complexity of CSP and Promise CSP.

Linear programming algorithms solve CSP if there are symmetric
polymorphisms of the constraint language.

More symmetries ⇒ easier algorithm works.
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Why don’t we have symmetric term operations?
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h(x , y , z) =


x + y + z , if x , y , z ∈ {0, 1}
2, if x = y = z = 2

first non-2, otherwise
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1. {0, 1} strongly absorbs {0, 1, 2}.
2. f (x1, . . . , xs , 2, 2, . . . , 2)|{0,1} is an idempotent linear operation

for any f ∈ Clo(A)

A has no symmetric term operations.

f (x1, x2, 2, 2, 2, 2, 2)|{0,1} is linear, binary, and idempotent on Z2.

What to do:

▶ Consider only tuples with odd number of elements from {0, 1}.
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3
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3
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f (0, 0, 0, 0, x1, x2, x3)|{0′,1′,2′} is linear and idempotent on Z′
3.

What to do:

▶ Require symmetricity only on very special tuples.



Why don’t we have symmetric term operations?

Z2 ∪ Z3

A = (Z2 ∪ Z′
3;m),

where m|Z2 , m|Z′
3
are x − y + z , m/Z2|Z′

3
is minority.

A has no symmetric term operations.

f (0, 0, 0, 0, x1, x2, x3)|{0′,1′,2′} is linear and idempotent on Z′
3.

What to do:

▶ Require symmetricity only on very special tuples.



Why don’t we have symmetric term operations?

Z2 ∪ Z3

A = (Z2 ∪ Z′
3;m),

where m|Z2 , m|Z′
3
are x − y + z , m/Z2|Z′

3
is minority.

A has no symmetric term operations.

f (0, 0, 0, 0, x1, x2, x3)|{0′,1′,2′} is linear and idempotent on Z′
3.

What to do:

▶ Require symmetricity only on very special tuples.



Why don’t we have symmetric term operations?

Z2 ∪ Z3

A = (Z2 ∪ Z′
3;m),

where m|Z2 , m|Z′
3
are x − y + z , m/Z2|Z′

3
is minority.

A has no symmetric term operations.

f (0, 0, 0, 0, x1, x2, x3)|{0′,1′,2′} is linear and idempotent on Z′
3.

What to do:

▶ Require symmetricity only on very special tuples.



Why don’t we have symmetric term operations?

Z2 ∪ Z3

A = (Z2 ∪ Z′
3;m),

where m|Z2 , m|Z′
3
are x − y + z , m/Z2|Z′

3
is minority.

A has no symmetric term operations.

f (0, 0, 0, 0, x1, x2, x3)|{0′,1′,2′} is linear and idempotent on Z′
3.

What to do:

▶ Require symmetricity only on very special tuples.



Why don’t we have symmetric term operations?

Disconnectedness!

Two Cycles(
0 1 2 3 4
1 0 3 4 2

)
∈ Inv(A)

{0, 1} and {2, 3, 4} are disconnected.

Absorption to cycle(
0 1 2
1 0 2

)
∈ Inv(A) and {0, 1} strongly absorbs {0, 1, 2}

{0, 1} and {2} are disconnected.

Z2 ∪ Z3

A = (Z2 ∪ Z′
3;m),

where m|Z2 , m|Z′
3
are x − y + z , m/Z2|Z′

3
is minority.

Z2 and Z′
3 are disconnected.



Why don’t we have symmetric term operations?

Disconnectedness!

Two Cycles(
0 1 2 3 4
1 0 3 4 2

)
∈ Inv(A)

{0, 1} and {2, 3, 4} are disconnected.

Absorption to cycle(
0 1 2
1 0 2

)
∈ Inv(A) and {0, 1} strongly absorbs {0, 1, 2}

{0, 1} and {2} are disconnected.

Z2 ∪ Z3

A = (Z2 ∪ Z′
3;m),

where m|Z2 , m|Z′
3
are x − y + z , m/Z2|Z′

3
is minority.

Z2 and Z′
3 are disconnected.



Why don’t we have symmetric term operations?

Disconnectedness!

Two Cycles(
0 1 2 3 4
1 0 3 4 2

)
∈ Inv(A)

{0, 1} and {2, 3, 4} are disconnected.

Absorption to cycle(
0 1 2
1 0 2

)
∈ Inv(A) and {0, 1} strongly absorbs {0, 1, 2}

{0, 1} and {2} are disconnected.

Z2 ∪ Z3

A = (Z2 ∪ Z′
3;m),

where m|Z2 , m|Z′
3
are x − y + z , m/Z2|Z′

3
is minority.

Z2 and Z′
3 are disconnected.



Why don’t we have symmetric term operations?

Disconnectedness!

Two Cycles(
0 1 2 3 4
1 0 3 4 2

)
∈ Inv(A)

{0, 1} and {2, 3, 4} are disconnected.

Absorption to cycle(
0 1 2
1 0 2

)
∈ Inv(A) and {0, 1} strongly absorbs {0, 1, 2}

{0, 1} and {2} are disconnected.

Z2 ∪ Z3

A = (Z2 ∪ Z′
3;m),

where m|Z2 , m|Z′
3
are x − y + z , m/Z2|Z′

3
is minority.

Z2 and Z′
3 are disconnected.



Why don’t we have symmetric term operations?

Disconnectedness!

Two Cycles(
0 1 2 3 4
1 0 3 4 2

)
∈ Inv(A)

{0, 1} and {2, 3, 4} are disconnected.

Absorption to cycle(
0 1 2
1 0 2

)
∈ Inv(A) and {0, 1} strongly absorbs {0, 1, 2}

{0, 1} and {2} are disconnected.

Z2 ∪ Z3

A = (Z2 ∪ Z′
3;m),

where m|Z2 , m|Z′
3
are x − y + z , m/Z2|Z′

3
is minority.

Z2 and Z′
3 are disconnected.



Why don’t we have symmetric term operations?

Disconnectedness!

Two Cycles(
0 1 2 3 4
1 0 3 4 2

)
∈ Inv(A)

{0, 1} and {2, 3, 4} are disconnected.

Absorption to cycle(
0 1 2
1 0 2

)
∈ Inv(A) and {0, 1} strongly absorbs {0, 1, 2}

{0, 1} and {2} are disconnected.

Z2 ∪ Z3

A = (Z2 ∪ Z′
3;m),

where m|Z2 , m|Z′
3
are x − y + z , m/Z2|Z′

3
is minority.

Z2 and Z′
3 are disconnected.



Why don’t we have symmetric term operations?

Disconnectedness!

Two Cycles(
0 1 2 3 4
1 0 3 4 2

)
∈ Inv(A)

{0, 1} and {2, 3, 4} are disconnected.

Absorption to cycle(
0 1 2
1 0 2

)
∈ Inv(A) and {0, 1} strongly absorbs {0, 1, 2}

{0, 1} and {2} are disconnected.

Z2 ∪ Z3

A = (Z2 ∪ Z′
3;m),

where m|Z2 , m|Z′
3
are x − y + z , m/Z2|Z′

3
is minority.

Z2 and Z′
3 are disconnected.



Why don’t we have symmetric term operations?

Disconnectedness!

Two Cycles(
0 1 2 3 4
1 0 3 4 2

)
∈ Inv(A)

{0, 1} and {2, 3, 4} are disconnected.

Absorption to cycle(
0 1 2
1 0 2

)
∈ Inv(A) and {0, 1} strongly absorbs {0, 1, 2}

{0, 1} and {2} are disconnected.

Z2 ∪ Z3

A = (Z2 ∪ Z′
3;m),

where m|Z2 , m|Z′
3
are x − y + z , m/Z2|Z′

3
is minority.

Z2 and Z′
3 are disconnected.



Block Symmetric Operations

w is (m, n, k)-block symmetric if for all permutations σ, δ, ω

w(x1, . . . , xm, y1, . . . , yn, z1, . . . , zk) =

w(xσ(1), . . . , xσ(m),yδ(1), . . . , yδ(n), zω(1), . . . , zω(k))

Definition

k1, k2, . . . , kn ∈ N,
f : Ak1+···+kn → A is (k1, . . . , kn)-block symmetric if
f (x1, . . . , xn) = f (xσ1

1 , . . . , xσn
n ) for any permutations σ1, . . . , σn.

Observation

None of Pol ( 0 1 2 3 4
1 0 3 4 2 ), Pol (

0 1 2
1 0 2 ) + {0, 1} ◁ {0, 1, 2}, Z2 ∪ Z3

have (k1, . . . , kn)-block symmetric term operations for any
k1, . . . , kn ≥ 2.
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Block Symmetric Operations

Observation [Brakensiek, Guruswami, Wrochna, Živný]

TFAE:

1. ∀m A has a (k1, . . . , kn)-block symmetric term operation with
k1, . . . , kn ≥ m

2. A has infinitely many (m + 1,m)-block symmetric term
operations.

(Z; x − y + z) has (m + 1,m)-block symmetric term operation for
every m but does not have symmetric term operations.

Question

Are the following conditions equivalent? (for finite algebras A)

1. A has infinitely many symmetric term operations.

2. A has infinitely many (m + 1,m)-block symmetric term
operations.

3. A has a (m + 1,m)-block symmetric term operation for every
m ∈ N.
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TFAE:

1. ∀m A has a (k1, . . . , kn)-block symmetric term operation with
k1, . . . , kn ≥ m

2. A has infinitely many (m + 1,m)-block symmetric term
operations.

(Z; x − y + z) has (m + 1,m)-block symmetric term operation for
every m but does not have symmetric term operations.

Question

Are the following conditions equivalent? (for finite algebras A)

1. A has infinitely many symmetric term operations.

2. A has infinitely many (m + 1,m)-block symmetric term
operations.

3. A has a (m + 1,m)-block symmetric term operation for every
m ∈ N.



Block Symmetric Operations

Observation [Brakensiek, Guruswami, Wrochna, Živný]
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Weak Block Symmetric Operations

Definition

k1, k2, . . . , kn ∈ N, a1 ∈ Ak1 , . . . , an ∈ Akn

f : Ak1+···+kn → A is (k1, . . . , kn)-block symmetric on (a1, . . . , an)
if f (a1, . . . , an) = f (aσ1

1 , . . . , aσn
n ) for any permutations σ1, . . . , σn.

(a1, . . . , an) is conservative if ∀j ∀c ∈ aj ∃i ai = (c , c, . . . , c).

f : Ak1+···+kn → A is (k1, . . . , kn)-weak block symmetric if it is
block symmetric on any conservative tuple.

An operation is (k1, . . . , kn)-block symmetric if it is
(k1, . . . , kn)-block symmetric on all tuples.

Conservative tuple:
(2, 2, 0︸ ︷︷ ︸, 2, 2, 2︸ ︷︷ ︸

2

, 1, 2, 0︸ ︷︷ ︸, 1, 2, 0︸ ︷︷ ︸, 0, 0, 0︸ ︷︷ ︸
0

, 0, 0, 1︸ ︷︷ ︸, 1, 1, 1︸ ︷︷ ︸
1

, 1, 2, 0︸ ︷︷ ︸, 1, 2, 2︸ ︷︷ ︸)



Weak Block Symmetric Operations

Definition

k1, k2, . . . , kn ∈ N, a1 ∈ Ak1 , . . . , an ∈ Akn

f : Ak1+···+kn → A is (k1, . . . , kn)-block symmetric on (a1, . . . , an)
if f (a1, . . . , an) = f (aσ1

1 , . . . , aσn
n ) for any permutations σ1, . . . , σn.

(a1, . . . , an) is conservative if ∀j ∀c ∈ aj ∃i ai = (c , c, . . . , c).

f : Ak1+···+kn → A is (k1, . . . , kn)-weak block symmetric if it is
block symmetric on any conservative tuple.

An operation is (k1, . . . , kn)-block symmetric if it is
(k1, . . . , kn)-block symmetric on all tuples.

Conservative tuple:
(2, 2, 0︸ ︷︷ ︸, 2, 2, 2︸ ︷︷ ︸

2

, 1, 2, 0︸ ︷︷ ︸, 1, 2, 0︸ ︷︷ ︸, 0, 0, 0︸ ︷︷ ︸
0

, 0, 0, 1︸ ︷︷ ︸, 1, 1, 1︸ ︷︷ ︸
1

, 1, 2, 0︸ ︷︷ ︸, 1, 2, 2︸ ︷︷ ︸)



Weak Block Symmetric Operations

Definition

k1, k2, . . . , kn ∈ N, a1 ∈ Ak1 , . . . , an ∈ Akn

f : Ak1+···+kn → A is (k1, . . . , kn)-block symmetric on (a1, . . . , an)
if f (a1, . . . , an) = f (aσ1

1 , . . . , aσn
n ) for any permutations σ1, . . . , σn.

(a1, . . . , an) is conservative if ∀j ∀c ∈ aj ∃i ai = (c , c, . . . , c).

f : Ak1+···+kn → A is (k1, . . . , kn)-weak block symmetric if it is
block symmetric on any conservative tuple.

An operation is (k1, . . . , kn)-block symmetric if it is
(k1, . . . , kn)-block symmetric on all tuples.

Conservative tuple:
(2, 2, 0︸ ︷︷ ︸, 2, 2, 2︸ ︷︷ ︸

2

, 1, 2, 0︸ ︷︷ ︸, 1, 2, 0︸ ︷︷ ︸, 0, 0, 0︸ ︷︷ ︸
0

, 0, 0, 1︸ ︷︷ ︸, 1, 1, 1︸ ︷︷ ︸
1

, 1, 2, 0︸ ︷︷ ︸, 1, 2, 2︸ ︷︷ ︸)



Weak Block Symmetric Operations

Definition

k1, k2, . . . , kn ∈ N, a1 ∈ Ak1 , . . . , an ∈ Akn

f : Ak1+···+kn → A is (k1, . . . , kn)-block symmetric on (a1, . . . , an)
if f (a1, . . . , an) = f (aσ1

1 , . . . , aσn
n ) for any permutations σ1, . . . , σn.

(a1, . . . , an) is conservative if ∀j ∀c ∈ aj ∃i ai = (c , c, . . . , c).

f : Ak1+···+kn → A is (k1, . . . , kn)-weak block symmetric if it is
block symmetric on any conservative tuple.

An operation is (k1, . . . , kn)-block symmetric if it is
(k1, . . . , kn)-block symmetric on all tuples.

Conservative tuple:
(2, 2, 0︸ ︷︷ ︸, 2, 2, 2︸ ︷︷ ︸

2

, 1, 2, 0︸ ︷︷ ︸, 1, 2, 0︸ ︷︷ ︸, 0, 0, 0︸ ︷︷ ︸
0

, 0, 0, 1︸ ︷︷ ︸, 1, 1, 1︸ ︷︷ ︸
1

, 1, 2, 0︸ ︷︷ ︸, 1, 2, 2︸ ︷︷ ︸)



Weak Block Symmetric Operations

Definition

k1, k2, . . . , kn ∈ N, a1 ∈ Ak1 , . . . , an ∈ Akn

f : Ak1+···+kn → A is (k1, . . . , kn)-block symmetric on (a1, . . . , an)
if f (a1, . . . , an) = f (aσ1

1 , . . . , aσn
n ) for any permutations σ1, . . . , σn.

(a1, . . . , an) is conservative if ∀j ∀c ∈ aj ∃i ai = (c , c, . . . , c).

f : Ak1+···+kn → A is (k1, . . . , kn)-weak block symmetric if it is
block symmetric on any conservative tuple.

An operation is (k1, . . . , kn)-block symmetric if it is
(k1, . . . , kn)-block symmetric on all tuples.

Conservative tuple:
(2, 2, 0︸ ︷︷ ︸, 2, 2, 2︸ ︷︷ ︸

2

, 1, 2, 0︸ ︷︷ ︸, 1, 2, 0︸ ︷︷ ︸, 0, 0, 0︸ ︷︷ ︸
0

, 0, 0, 1︸ ︷︷ ︸, 1, 1, 1︸ ︷︷ ︸
1

, 1, 2, 0︸ ︷︷ ︸, 1, 2, 2︸ ︷︷ ︸)



Weak Block Symmetric Operations

Definition

k1, k2, . . . , kn ∈ N, a1 ∈ Ak1 , . . . , an ∈ Akn

f : Ak1+···+kn → A is (k1, . . . , kn)-block symmetric on (a1, . . . , an)
if f (a1, . . . , an) = f (aσ1

1 , . . . , aσn
n ) for any permutations σ1, . . . , σn.

(a1, . . . , an) is conservative if ∀j ∀c ∈ aj ∃i ai = (c , c, . . . , c).

f : Ak1+···+kn → A is (k1, . . . , kn)-weak block symmetric if it is
block symmetric on any conservative tuple.

An operation is (k1, . . . , kn)-block symmetric if it is
(k1, . . . , kn)-block symmetric on all tuples.

Conservative tuple:
(2, 2, 0︸ ︷︷ ︸, 2, 2, 2︸ ︷︷ ︸

2

, 1, 2, 0︸ ︷︷ ︸, 1, 2, 0︸ ︷︷ ︸, 0, 0, 0︸ ︷︷ ︸
0

, 0, 0, 1︸ ︷︷ ︸, 1, 1, 1︸ ︷︷ ︸
1

, 1, 2, 0︸ ︷︷ ︸, 1, 2, 2︸ ︷︷ ︸)



Weak Block Symmetric Operations

Definition

k1, k2, . . . , kn ∈ N, a1 ∈ Ak1 , . . . , an ∈ Akn

f : Ak1+···+kn → A is (k1, . . . , kn)-block symmetric on (a1, . . . , an)
if f (a1, . . . , an) = f (aσ1

1 , . . . , aσn
n ) for any permutations σ1, . . . , σn.

(a1, . . . , an) is conservative if ∀j ∀c ∈ aj ∃i ai = (c , c, . . . , c).

f : Ak1+···+kn → A is (k1, . . . , kn)-weak block symmetric if it is
block symmetric on any conservative tuple.

An operation is (k1, . . . , kn)-block symmetric if it is
(k1, . . . , kn)-block symmetric on all tuples.

Conservative tuple:
(2, 2, 0︸ ︷︷ ︸, 2, 2, 2︸ ︷︷ ︸

2

, 1, 2, 0︸ ︷︷ ︸, 1, 2, 0︸ ︷︷ ︸, 0, 0, 0︸ ︷︷ ︸
0

, 0, 0, 1︸ ︷︷ ︸, 1, 1, 1︸ ︷︷ ︸
1

, 1, 2, 0︸ ︷︷ ︸, 1, 2, 2︸ ︷︷ ︸)



Weak Block Symmetric Operations

Definition

k1, k2, . . . , kn ∈ N, a1 ∈ Ak1 , . . . , an ∈ Akn

f : Ak1+···+kn → A is (k1, . . . , kn)-block symmetric on (a1, . . . , an)
if f (a1, . . . , an) = f (aσ1

1 , . . . , aσn
n ) for any permutations σ1, . . . , σn.

(a1, . . . , an) is conservative if ∀j ∀c ∈ aj ∃i ai = (c , c, . . . , c).

f : Ak1+···+kn → A is (k1, . . . , kn)-weak block symmetric if it is
block symmetric on any conservative tuple.

An operation is (k1, . . . , kn)-block symmetric if it is
(k1, . . . , kn)-block symmetric on all tuples.

Conservative tuple:
(2, 2, 0︸ ︷︷ ︸, 2, 2, 2︸ ︷︷ ︸

2

, 1, 2, 0︸ ︷︷ ︸, 1, 2, 0︸ ︷︷ ︸, 0, 0, 0︸ ︷︷ ︸
0

, 0, 0, 1︸ ︷︷ ︸, 1, 1, 1︸ ︷︷ ︸
1

, 1, 2, 0︸ ︷︷ ︸, 1, 2, 2︸ ︷︷ ︸)



Weak block symmetric term operations

Two Cycles(
0 1 2 3 4
1 0 3 4 2

)
∈ Inv(A)

Observation

Pol ( 0 1 2 3 4
1 0 3 4 2 ) has (k1, . . . , kn)-WBS operations for all k1, . . . , kn.

w(a1, . . . , an) =


c , if ai = (c , c, . . . , c) and

ai is the first such tuple

aj1 otherwise

w(1, 2, 3︸ ︷︷ ︸, 2, 2, 2︸ ︷︷ ︸, 1, 2, 0︸ ︷︷ ︸, 0, 0, 0︸ ︷︷ ︸, 1, 1, 1︸ ︷︷ ︸, 1, 2, 0︸ ︷︷ ︸, 3, 3, 3︸ ︷︷ ︸, 3, 2, 0︸ ︷︷ ︸) = 2

w(1, 2, 3︸ ︷︷ ︸, 0, 1, 2︸ ︷︷ ︸, 1, 2, 0︸ ︷︷ ︸, 0, 2, 4︸ ︷︷ ︸, 3, 4, 3︸ ︷︷ ︸, 2, 1, 2︸ ︷︷ ︸, 1, 2, 0︸ ︷︷ ︸, 4, 1, 0︸ ︷︷ ︸) = 1
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Weak block symmetric term operations

Absorption to Z2

A = ({0, 1, 2}; h), where

h(x , y , z) =


x + y + z , if x , y , z ∈ {0, 1}
2, if x = y = z = 2

first non-2, otherwise

Observation
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Weak block symmetric term operations

Z2 ∪ Z3

A = (Z2 ∪ Z′
3;m),

where m|Z2 , m|Z′
3
are x − y + z , m/Z2|Z′

3
is minority.

Observation

A has (k1, . . . , kn)-WBS terms for all k1, . . . , kn coprime with 2
and 3.

1. Calculate symmetric operation on the first block modulo
{Z2 | Z′

3}.

2. Choose the first block with elements from the corresponding
Z2 or Z′

3.

3. Calculate symmetric operation for the corresponding block.
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1′
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Some results

Theorem (Bounded width ⇒ WBS)

A has WNU of all arities
⇒ A has (k1, . . . , kn)-WBS for all k1, . . . , kn.

Theorem (small algebras have WBS)

A = B1 × · · · × Bs , where |Bi | ≤ 5 for all i
⇒ A has (p, . . . , p︸ ︷︷ ︸

n

)-WBS for all primes p > 5 and n ∈ N.

Conjecture

Every finite idempotent Taylor algebra A has (p, p, . . . , p)-WBS
term operation for any prime p > |A|.
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Constraint Satisfaction Problem

Γ is a set of relation on A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1 ) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns ),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Theorem (Bulatov, Zhuk, 2017)

CSP(Γ) is solvable in polynomial time if Pol(Γ) has a WNU
operation; CSP(Γ) is NP-complete otherwise.

Is it the end of the story? NO!

▶ both algorithm are not universal (work only for a fixed domain). We
are looking for the universal algorithm!

▶ the complexity of Promise CSP is widely open.
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Linear Programming

▶ Take an instance I with variables x1, . . . , xn, their respective
domains D1, . . . ,Dn, and constraints C1, . . . ,Ct .

▶ Build a new instance with variables:
xai for every i and a ∈ Di ,
Cα
j for every j and a tuple α.

and constraints:∑
α
Cα
j = 1 for every j∑

α : α(k)=a

Cα
j = xai for every Cj = R(. . . , xi︸ ︷︷ ︸

k

, . . . ) and a ∈ Di

Solve in {0, 1}: is equivalent to the original instance (usually NP-hard)

Solve in Q ∩ [0, 1]: Basic Linear Programming (BLP) (tractable)

Solve in Z: Affine Integer Programming (AIP) (tractable)

BLP solves CSP(Γ) ⇔ Pol(Γ) has all symmetric operations
AIP solves CSP(Γ) ⇔ Pol(Γ) has alternating operations

BLP+AIP solves CSP(Γ) ⇔ Pol(Γ) has block symmetric operations with

any minimal block size.
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Algorithm: singleton (BLP + AIP)

repeat
for every xi and a ∈ Di

if ¬(BLP+AIP)(I ∧ xi = a)
Di := Di \ {a}

if Di = ∅
return No

until Nothing Changed.
return Yes

Observation

singleton (BLP + AIP) solves CSP(Γ) whenever for every m ∈ N
Pol(Γ) has a (k1, . . . , kn)-WBS, where k1, . . . , kn ≥ m.

Corollary

Singleton (BLP + AIP) solves all (multi-sorted) tractable CSP for
domain of size at most 5.
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Counter Example provided by Michael Kompatscher

The dihedral group D4:
symmetry group of a square.

representation: D4 = ⟨r , s | r4 = s2 = 1, rs = sr3⟩
identities: x4 ≈ 1, [x , y ]2 ≈ 1, [x , y ]z = z [x , y ].

Observation

Every term operation can be represented in a normal form:
xa11 . . . xamm ·

∧
i ,j
[xi , xj ]

ci,j , where ai ∈ {0, 1, 2, 3} and ci ,j ∈ {0, 1}

Lemma (Kompatscher, 2024)

D4 has no idempotent (k1, . . . , kn)-WBS for any k1, . . . , kn ≥ 3
and n ≥ 4.
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Summary

Conjecture

A = B1 × · · · × Bs , where |Bi | ≤ 7 for all i
⇒ A has (p, . . . , p︸ ︷︷ ︸

n

)-WBS for all primes p > 7 and n ∈ N.

This would imply that all (multi-sorted) CSP for domain of size at
most 7 are solvable by singleton (BLP+AIP).

Theorem

singleton (BLP+AIP) does not solve CSP(Inv(Didemp
4 )).
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