## NPA Hierarchy for Quantum Isomorphism and Homomorphism Indistinguishability

Peter Zeman https://zemanpeter.matfyz.cz

Department of Algebra, MFF UK

Algebra colloquium

Joint work with Prem Nigam Kar, David E. Roberson, and Tim Seppelt NPA Hierarchy for Quantum Isomorphism and Homomorphism Indistinguishability arXiv:2407.10635

**Definition.** A map  $\varphi: V(G) \to V(H)$  is an **isomorphism** if  $\varphi(\mathfrak{u})\varphi(\mathfrak{v}) \in E(H) \Leftrightarrow \mathfrak{u}\mathfrak{v} \in E(G)$ . We write  $G \cong H$ .

**Definition.** A map  $\varphi \colon V(G) \to V(H)$  is an **isomorphism** if  $\varphi(\mathfrak{u})\varphi(\mathfrak{v}) \in E(H) \Leftrightarrow \mathfrak{u}\mathfrak{v} \in E(G)$ . We write  $G \cong H$ .



**Definition.** A map  $\varphi \colon V(G) \to V(H)$  is an **isomorphism** if  $\varphi(\mathfrak{u})\varphi(\mathfrak{v}) \in E(H) \Leftrightarrow \mathfrak{u}\mathfrak{v} \in E(G)$ . We write  $G \cong H$ .



**Definition.** A map  $\varphi \colon V(G) \to V(H)$  is a homomorphism if  $uv \in E(G) \implies \phi(u)\phi(v) \in E(H).$ 

**Definition.** A map  $\varphi \colon V(G) \to V(H)$  is an **isomorphism** if  $\varphi(\mathfrak{u})\varphi(\mathfrak{v}) \in E(H) \Leftrightarrow \mathfrak{u}\mathfrak{v} \in E(G)$ . We write  $G \cong H$ .



**Definition.** A map  $\varphi \colon V(G) \to V(H)$  is a homomorphism if  $uv \in E(G) \implies \varphi(u)\varphi(v) \in E(H).$ 

Example.



**Thm (Lovász).**  $G \cong H \Leftrightarrow \forall F \text{ hom}(F, G) = \text{hom}(F, H)$ , where **hom**(F, G) := # of homomorphisms from F to G.

**Thm (Lovász).**  $G \cong H \Leftrightarrow \forall F \text{ hom}(F, G) = \text{hom}(F, H)$ , where **hom**(F, G) := # of homomorphisms from F to G.

Thm (Lovász).  $G \cong H \Leftrightarrow \forall F \text{ hom}(F, G) = \text{hom}(F, H)$ , where hom(F, G) := # of homomorphisms from F to G.

| The class ${\mathcal F}$ | The relation $G \cong_{\mathcal{F}} H$                                |
|--------------------------|-----------------------------------------------------------------------|
| All graphs               | lsomorphism [Lovász 1967]                                             |
| Cycles                   | Cospectrality                                                         |
| Cycles & paths           | Cospectral & cospectral complements                                   |
| Trees                    | Fractional isomorphism [Dvořák 2010]                                  |
| $Treewidth \leqslant k$  | Indistinguishable by k-WL [Dvořák 2010]                               |
| $Treedepth \leqslant k$  | Ind. by FOL w/ counting of quantifier rank $\leqslant k$ [Grohe 2020] |

**Thm (Lovász).**  $G \cong H \Leftrightarrow \forall F \text{ hom}(F, G) = \text{hom}(F, H)$ , where **hom**(F, G) := # of homomorphisms from F to G.

| The class ${\mathcal F}$ | The relation $G \cong_{\mathcal{F}} H$                                |
|--------------------------|-----------------------------------------------------------------------|
| All graphs               | lsomorphism [Lovász 1967]                                             |
| Cycles                   | Cospectrality                                                         |
| Cycles & paths           | Cospectral & cospectral complements                                   |
| Trees                    | Fractional isomorphism [Dvořák 2010]                                  |
| $Treewidth \leqslant k$  | Indistinguishable by k-WL [Dvořák 2010]                               |
| $Treedepth \leqslant k$  | Ind. by FOL w/ counting of quantifier rank $\leqslant k$ [Grohe 2020] |
| Planar graphs            | Quantum isomorphism [Mančinska, Roberson 2020]                        |

Thm (Lovász).  $G \cong H \Leftrightarrow \forall F \text{ hom}(F, G) = \text{hom}(F, H)$ , where hom(F, G) := # of homomorphisms from F to G.

| The class ${\mathcal F}$   | The relation $G \cong_{\mathcal{F}} H$                                |
|----------------------------|-----------------------------------------------------------------------|
| All graphs                 | lsomorphism [Lovász 1967]                                             |
| Cycles                     | Cospectrality                                                         |
| Cycles & paths             | Cospectral & cospectral complements                                   |
| Trees                      | Fractional isomorphism [Dvořák 2010]                                  |
| $Treewidth \leqslant k$    | Indistinguishable by k-WL [Dvořák 2010]                               |
| $Treedepth \leqslant k$    | Ind. by FOL w/ counting of quantifier rank $\leqslant k$ [Grohe 2020] |
| Planar graphs              | Quantum isomorphism [Mančinska, Roberson 2020]                        |
| $\mathcal{P}_{\mathbf{k}}$ | $k^{th}$ level of NPA is feasible for (G, H)-iso. game                |

**Thm (Lovász).**  $G \cong H \Leftrightarrow \forall F \text{ hom}(F, G) = \text{hom}(F, H)$ , where **hom**(F, G) := # of homomorphisms from F to G.

**Def.**  $G \cong_{\mathcal{F}} H$  denotes  $\forall F \in \mathcal{F}$  hom(F, G) = hom(F, H).

| The class ${\mathcal F}$   | The relation $G \cong_{\mathcal{F}} H$                                     |
|----------------------------|----------------------------------------------------------------------------|
| All graphs                 | lsomorphism [Lovász 1967]                                                  |
| Cycles                     | Cospectrality                                                              |
| Cycles & paths             | Cospectral & cospectral complements                                        |
| Trees                      | Fractional isomorphism [Dvořák 2010]                                       |
| $Treewidth \leqslant k$    | Indistinguishable by k-WL [Dvořák 2010]                                    |
| $Treedepth \leqslant k$    | Ind. by FOL w/ counting of quantifier rank $\leqslant \kappa$ [Grohe 2020] |
| Planar graphs              | Quantum isomorphism [Mančinska, Roberson 2020]                             |
| $\mathcal{P}_{\mathbf{k}}$ | $k^{th}$ level of NPA is feasible for (G, H)-iso. game                     |

**Benefits.** (1) randomized poly-time algorithm for  $k^{th}$  level (2) more elementary proof avoiding quantum groups.

### Main theorem

The  $k^{\mbox{th}}$  level of the NPA hierarchy for the  $(G,H)\mbox{-isomorphism}$  game is feasible

#### $\uparrow$

There exists a level-k quantum isomorphism map from G to H

#### $\uparrow$

G and H are homomorphism indistinguishable over  $\mathfrak{P}_k$ 

A two-player cooperative game, where Alice and Bob try to win against a referee.

A two-player cooperative game, where Alice and Bob try to win against a referee.

Finite sets of questions X, Y and answers A, B, and a winning predicate V:  $X \times Y \times A \times B \rightarrow \{0, 1\}$ .



# А



A two-player cooperative game, where Alice and Bob try to win against a referee.

Finite sets of questions X, Y and answers A, B, and a winning predicate V:  $X \times Y \times A \times B \rightarrow \{0, 1\}$ .



Referee sends x ∈ X and y ∈ Y according to π.

Players play only one round.

A two-player cooperative game, where Alice and Bob try to win against a referee.

Finite sets of questions X, Y and answers A, B, and a winning predicate V:  $X \times Y \times A \times B \rightarrow \{0, 1\}$ .



- Referee sends x ∈ X and y ∈ Y according to π.
- Players respond with  $a \in A$  and  $b \in B$ .

Players play **only one round**. Players can agree on a **strategy** beforehand, but they **cannot communicate** after the game starts.

A two-player cooperative game, where Alice and Bob try to win against a referee.

Finite sets of questions X, Y and answers A, B, and a winning predicate V:  $X \times Y \times A \times B \rightarrow \{0, 1\}$ .



- Referee sends x ∈ X and y ∈ Y according to π.
- Players respond with  $a \in A$  and  $b \in B$ .
- Players win if V(a, b|x, y) = 1.

Players play **only one round**. Players can agree on a **strategy** beforehand, but they **cannot communicate** after the game starts.

Example: Clauser, Horne, Shimony, Holt (CHSH) game

• 
$$X = Y = A = Y = \{0, 1\},$$

•  $\pi$  is uniform,

• 
$$V(a, b|x, y) = \begin{cases} 1 & \text{if } a \oplus b = x \land y, \\ 0 & \text{if } a \oplus b \neq x \land y. \end{cases}$$

Deterministic. A pair of functions  $f: X \to A$  and  $g: Y \to B$ .

Deterministic. A pair of functions  $f: X \to A$  and  $g: Y \to B$ . The classical value of a game G is

$$\omega(\mathcal{G}) = \max_{f,g} \sum_{x,y} \pi(x,y) V(f(x),g(y)|x,y).$$

Deterministic. A pair of functions  $f: X \to A$  and  $g: Y \to B$ . The classical value of a game  $\mathcal{G}$  is

$$\omega(\mathcal{G}) = \max_{f,g} \sum_{x,y} \pi(x,y) V(f(x),g(y)|x,y).$$

Quantum. Players share a state  $|\Psi\rangle \in \mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}$ .

• A POVM  $\mathcal{E}_x = \{ E_{xa} \in \mathbb{C}^{d_A \times d_A} : a \in A \}$ , for each  $x \in X$ .

• A POVM 
$$\mathcal{F}_{y} = \{F_{xb} \in \mathbb{C}^{d_B \times d_B} : b \in B\}$$
, for each  $y \in Y$ .

**Positive operator valued measure**,  $\sum_{a \in A} E_{xa} = I$ ,  $E_{xa} \succeq 0$ .

Deterministic. A pair of functions  $f: X \to A$  and  $g: Y \to B$ . The classical value of a game  $\mathcal{G}$  is

$$\omega(\mathcal{G}) = \max_{f,g} \sum_{x,y} \pi(x,y) V(f(x),g(y)|x,y).$$

Quantum. Players share a state  $|\Psi\rangle \in \mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}$ .

• A POVM  $\mathcal{E}_x = \{ E_{xa} \in \mathbb{C}^{d_A \times d_A} : a \in A \}$ , for each  $x \in X$ .

• A POVM 
$$\mathcal{F}_{y} = \{F_{xb} \in \mathbb{C}^{d_B \times d_B} : b \in B\}$$
, for each  $y \in Y$ .

**Positive operator valued measure**,  $\sum_{\alpha \in A} E_{x\alpha} = I$ ,  $E_{x\alpha} \succeq 0$ . Alice and Bob answer  $\alpha$ , b given x, y with probability

$$p(a, b|x, y) = \langle \Psi | \left( E_{xa} \otimes F_{yb} \right) | \Psi \rangle.$$

Deterministic. A pair of functions  $f: X \to A$  and  $g: Y \to B$ . The classical value of a game  $\mathcal{G}$  is

$$\omega(\mathcal{G}) = \max_{f,g} \sum_{x,y} \pi(x,y) V(f(x),g(y)|x,y).$$

Quantum. Players share a state  $|\Psi\rangle \in \mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}$ .

- A POVM  $\mathcal{E}_{x} = \{ E_{xa} \in \mathbb{C}^{d_{A} \times d_{A}} : a \in A \}$ , for each  $x \in X$ .
- A POVM  $\mathcal{F}_y = \{F_{xb} \in \mathbb{C}^{d_B \times d_B} : b \in B\}$ , for each  $y \in Y$ .

**Positive operator valued measure**,  $\sum_{a \in A} E_{xa} = I$ ,  $E_{xa} \succeq 0$ . Alice and Bob answer a, b given x, y with probability

$$p(a, b|x, y) = \langle \Psi | (E_{xa} \otimes F_{yb}) | \Psi \rangle.$$

The quantum value  $\omega^*(\mathfrak{G})$  of a game  $\mathfrak{G}$  is the supermum of

$$\sum_{x,y} \pi(x,y) \sum_{a,b} V(a,b|x,y) p(a,b|x,y).$$

Example: Clauser, Horne, Shimony, Holt (CHSH) game

• 
$$X = Y = A = Y = \{0, 1\},$$

•  $\pi$  is uniform,

• 
$$V(a, b|x, y) = \begin{cases} 1 & \text{if } a \oplus b = x \land y, \\ 0 & \text{if } a \oplus b \neq x \land y. \end{cases}$$

Thm.  $\omega(CHSH) = 3/4 < \cos^2(\pi/8) = \omega^*(CHSH).$ 

**Intuition:** Alice and Bob want to convince a referee that  $G \cong H$ .

**Intuition:** Alice and Bob want to convince a referee that  $G \cong H$ . **Assume:** |V(G)| = |V(H)|

**Intuition:** Alice and Bob want to convince a referee that  $G \cong H$ . **Assume:** |V(G)| = |V(H)|



• Referee sends  $g, g' \in V(G)$ .

**Intuition:** Alice and Bob want to convince a referee that  $G \cong H$ . **Assume:** |V(G)| = |V(H)|



- Referee sends  $g, g' \in V(G)$ .
- Players respond with  $h, h' \in V(H)$ .

**Intuition:** Alice and Bob want to convince a referee that  $G \cong H$ . **Assume:** |V(G)| = |V(H)|



- Referee sends  $g, g' \in V(G)$ .
- Players respond with  $h, h' \in V(H)$ .

To win players must respond with h, h' such that  $\label{eq:rel} \mathsf{rel}(h,h') = \mathsf{rel}(g,g')$ 

where rel denotes how two vertices are "related".

**Intuition:** Alice and Bob want to convince a referee that  $G \cong H$ . **Assume:** |V(G)| = |V(H)|



- Referee sends  $g, g' \in V(G)$ .
- Players respond with  $h, h' \in V(H)$ .

To win players must respond with h, h' such that  $\label{eq:rel} \mathsf{rel}(h,h') = \mathsf{rel}(g,g')$ 

where rel denotes how two vertices are "related".

**Proposition.**  $G \cong H \Leftrightarrow$  Classical players can win the game.

 $G \cong_{qc} H :=$ Quantum players can win the (G, H)-isomorphism game.



 $G \cong_{qc} H :=$ Quantum players can win the (G, H)-isomorphism game.

#### **Quantum strategies**

• Alice and Bob share a quantum state  $|\psi\rangle\in {\mathcal H}$ 



 $G \cong_{qc} H :=$ Quantum players can win the (G, H)-isomorphism game.



- Alice and Bob share a quantum state  $|\psi
  angle\in {\mathcal H}$
- Upon receiving g, Alice performs a POVM  $\mathcal{E}_g = \{ E_{gh} \in \mathcal{B}(\mathcal{H}) : h \in V(H) \} \text{ and obtains}$ outcome  $h \in V(H)$

 $G \cong_{qc} H :=$ Quantum players can win the (G, H)-isomorphism game.



- Alice and Bob share a quantum state  $|\psi\rangle\in {\mathcal H}$
- Upon receiving g, Alice performs a POVM  $\mathcal{E}_g = \{ E_{gh} \in \mathcal{B}(\mathcal{H}) : h \in V(H) \}$  and obtains outcome  $h \in V(H)$
- Bob measures with  $\mathcal{F}_{g'}$

 $G \cong_{qc} H :=$ Quantum players can win the (G, H)-isomorphism game.



- Alice and Bob share a quantum state  $|\psi\rangle\in \mathcal{H}$
- Upon receiving g, Alice performs a POVM  $\mathcal{E}_g = \{ E_{gh} \in \mathcal{B}(\mathcal{H}) : h \in V(H) \} \text{ and obtains}$ outcome  $h \in V(H)$
- Bob measures with  $\mathcal{F}_{g'}$
- All  $E_{gh}$  and  $F_{g'h'}$  commute

 $G \cong_{qc} H :=$ Quantum players can win the (G, H)-isomorphism game.

#### **Quantum strategies**



- Alice and Bob share a quantum state  $|\psi\rangle\in {\mathcal H}$
- Upon receiving g, Alice performs a POVM  $\mathcal{E}_g = \{ E_{gh} \in \mathcal{B}(\mathcal{H}) : h \in V(H) \} \text{ and obtains}$ outcome  $h \in V(H)$
- Bob measures with  $\mathcal{F}_{g'}$
- All  $E_{gh}$  and  $F_{g'h'}$  commute

The probability that players respond with h, h' on questions g, g' is

$$p(h, h'|g, g') = \langle \psi | E_{gh} F_{g'h'} | \psi \rangle$$
Example:  $G \not\cong H$  but  $G \cong_{qc} H$ 



Construction based on reduction from linear system games.

Example:  $G \not\cong H$  but  $G \cong_{qc} H$ 



Construction based on reduction from linear system games.

## Quantum permutation matrix

A matrix  $P = (p_{ij})$  is quantum permutation matrix if  $p_{ij}$  are elements of an C<sup>\*</sup>-algebra s.t.

• 
$$p_{ij}^2 = p_{ij} = p_{ij}^*$$
 for all i, j,

• 
$$\sum_{k} p_{ik} = 1 = \sum_{l} p_{lj}$$
 for all  $i, j$ .

### Quantum permutation matrix

A matrix  $P = (p_{ij})$  is quantum permutation matrix if  $p_{ij}$  are elements of an C<sup>\*</sup>-algebra s.t.

• 
$$p_{ij}^2 = p_{ij} = p_{ij}^*$$
 for all i, j,

• 
$$\sum_{k} p_{ik} = 1 = \sum_{l} p_{lj}$$
 for all  $i, j$ .

Thm (Lupini, Mančinska, Roberson).  $G \cong_{qc} H \Leftrightarrow A_G P = PA_H$ , for some quantum permutation matrix P.

### Quantum permutation matrix

A matrix  $P = (p_{ij})$  is quantum permutation matrix if  $p_{ij}$  are elements of an C<sup>\*</sup>-algebra s.t.

• 
$$p_{ij}^2 = p_{ij} = p_{ij}^*$$
 for all i, j,

• 
$$\sum_{k} p_{ik} = 1 = \sum_{l} p_{lj}$$
 for all  $i, j$ .

Thm (Lupini, Mančinska, Roberson).  $G \cong_{qc} H \Leftrightarrow A_G P = PA_H$ , for some quantum permutation matrix P.

This is similar to

$$\begin{split} G &\cong H \Leftrightarrow A_G P = PA_H \quad \mbox{(isomorphism)}, \\ G &\cong_{\mathcal{T}} H \Leftrightarrow A_G D = DA_H \quad \mbox{(fractional isomorphism)}. \end{split}$$

# Bilabelled graphs

### **Definition.**

A (k, k)-bilabelled graph is a triple  $\mathbf{F} = (F, \mathbf{u}, \mathbf{v})$  where

• F is a graph;

• 
$$\mathbf{u} = (u_1, \ldots, u_k), \ \mathbf{v} = (v_1, \ldots, v_k) \in V(F)^k.$$

# Bilabelled graphs

### Definition.

A (k, k)-bilabelled graph is a triple  $\mathbf{F} = (F, \mathbf{u}, \mathbf{v})$  where

• F is a graph;

• 
$$\mathbf{u} = (u_1, \ldots, u_k), \ \mathbf{v} = (v_1, \ldots, v_k) \in V(F)^k.$$

## **Example.** $\mathbf{F} = (K_4, (1, 2), (2, 2)).$

## How to draw bilabelled graphs

## How to draw bilabelled graphs



## How to draw bilabelled graphs



A bilabelled graph is **planar** if it can be drawn with no crossings.

Let G be a graph and  $\mathbf{F} = (F, \mathbf{u}, \mathbf{v})$  a (k, k)-bilabelled graph.

Let G be a graph and  $\mathbf{F} = (F, \mathbf{u}, \mathbf{v})$  a (k, k)-bilabelled graph.

 $\begin{array}{l} \label{eq:point} \mbox{Definition. (G-homomorphism matrix of F)} \\ \mbox{The } (g_1 \dots g_k, g_1' \dots g_k') \mbox{-entry of the homomorphism matrix } F_G \\ \mbox{is} \\ & \left| \{ \mbox{homs } \phi: F \rightarrow G \mid \phi(\mathfrak{u}_i) = g_i, \ \phi(\nu_j) = g_j' \ \forall i, j \} \right|. \end{array}$ 

Let G be a graph and  $\mathbf{F} = (F, \mathbf{u}, \mathbf{v})$  a (k, k)-bilabelled graph.

 $\begin{array}{l} \label{eq:point} \mbox{Definition. (G-homomorphism matrix of F)} \\ \mbox{The } (g_1 \ldots g_k, g_1' \ldots g_k') \mbox{-entry of the homomorphism matrix } F_G \\ \mbox{is} \\ & \left| \{ \mbox{homs } \phi: F \rightarrow G \mid \phi(\mathfrak{u}_i) = g_i, \ \phi(\nu_j) = g_j' \ \forall i, j \} \right|. \end{array}$ 

**Remark.** hom(F, G) = sum of the entries of  $F_G$ .

Let G be a graph and  $\mathbf{F} = (F, \mathbf{u}, \mathbf{v})$  a (k, k)-bilabelled graph.

 $\begin{array}{l} \label{eq:point} \mbox{Definition. (G-homomorphism matrix of F)} \\ \mbox{The } (g_1 \ldots g_k, g_1' \ldots g_k')\mbox{-entry of the homomorphism matrix } F_G \\ \mbox{is} \\ & \left| \{ \mbox{homs } \phi: F \rightarrow G \mid \phi(\mathfrak{u}_i) = g_i, \ \phi(\nu_j) = g_j' \ \forall i, j \} \right|. \end{array}$ 

**Remark.** hom(F, G) = sum of the entries of  $F_G$ .

**Example.** 
$$\mathbf{A} = (K_2, (1), (2))$$

Let G be a graph and  $\mathbf{F} = (F, \mathbf{u}, \mathbf{v})$  a (k, k)-bilabelled graph.

 $\begin{array}{l} \label{eq:point} \mbox{Definition. (G-homomorphism matrix of F)} \\ \mbox{The } (g_1 \ldots g_k, g_1' \ldots g_k')\mbox{-entry of the homomorphism matrix } F_G \\ \mbox{is} \\ & \left| \{ \mbox{homs } \phi: F \rightarrow G \mid \phi(\mathfrak{u}_i) = g_i, \ \phi(\nu_j) = g_j' \ \forall i, j \} \right|. \end{array}$ 

**Remark.** hom(F, G) = sum of the entries of  $F_G$ .

Example.  $\mathbf{A} = (K_2, (1), (2))$   $(\mathbf{A}_G)_{g,g'} =$ 

Let G be a graph and  $\mathbf{F} = (F, \mathbf{u}, \mathbf{v})$  a (k, k)-bilabelled graph.

 $\begin{array}{l} \label{eq:point} \mbox{Definition. (G-homomorphism matrix of F)} \\ \mbox{The } (g_1 \ldots g_k, g_1' \ldots g_k') \mbox{-entry of the homomorphism matrix } F_G \\ \mbox{is} \\ & \left| \{ \mbox{homs } \phi: F \rightarrow G \mid \phi(\mathfrak{u}_i) = g_i, \ \phi(\nu_j) = g_j' \ \forall i, j \} \right|. \end{array}$ 

**Remark.** hom(F, G) = sum of the entries of  $F_G$ .

Example. 
$$\mathbf{A} = (K_2, (1), (2))$$
  
 $(\mathbf{A}_G)_{g,g'} = \begin{cases} 1 & \text{if } gg' \in E(G), \\ 0 & \text{otherwise.} \end{cases}$ 

Let G be a graph and  $\mathbf{F} = (F, \mathbf{u}, \mathbf{v})$  a (k, k)-bilabelled graph.

 $\begin{array}{l} \mbox{Definition. (G-homomorphism matrix of F)} \\ \mbox{The } (g_1 \ldots g_k, g_1' \ldots g_k') \mbox{-entry of the homomorphism matrix } F_G \\ \mbox{is} \\ & \left| \{ \mbox{homs } \phi: F \rightarrow G \mid \phi(\mathfrak{u}_i) = g_i, \ \phi(\nu_j) = g_j' \ \forall i, j \} \right|. \end{array}$ 

**Remark.** hom(F, G) = sum of the entries of  $F_G$ .

Example. 
$$\mathbf{A} = (K_2, (1), (2))$$
  
 $(\mathbf{A}_G)_{g,g'} = \begin{cases} 1 & \text{if } gg' \in E(G), \\ 0 & \text{otherwise.} \end{cases}$ 

So  $A_G$  is the **adjacency matrix** of G.

# Operations on bilabelled graphs: Series composition

Operations on bilabelled graphs: Series composition

Theorem. For a graph G and bilabelled graphs F, F',

$$\mathsf{F}_{\mathsf{G}}\mathsf{F}_{\mathsf{G}}^{\boldsymbol{\prime}}=\left(\mathsf{F}\circ\mathsf{F}^{\boldsymbol{\prime}}
ight)_{\mathsf{G}}$$
 ,

where  $\mathbf{F} \circ \mathbf{F'}$  is defined as



Operations on bilabelled graphs: Series composition

Theorem. For a graph G and bilabelled graphs F, F',

$$\mathsf{F}_{\mathsf{G}}\mathsf{F}'_{\mathsf{G}} = ig(\mathsf{F}\circ\mathsf{F'}ig)_{\mathsf{G}}$$
 ,

where  $\mathbf{F} \circ \mathbf{F'}$  is defined as





# Operations on bilabelled graphs: Parallel composition

## Operations on bilabelled graphs: Parallel composition

**Theorem.** For a graph G and bilabelled graphs F, F',

$$\mathsf{F}_{\mathsf{G}}\odot\mathsf{F}_{\mathsf{G}}'=\left(\mathsf{F}\odot\mathsf{F}'
ight)_{\mathsf{G}}$$
 ,

where  $F_G \odot F'_G$  is the entrywise product, and  $F \odot F'$  is defined as



## Operations on bilabelled graphs: Parallel composition

**Theorem.** For a graph G and bilabelled graphs F, F',

$$\mathsf{F}_{\mathsf{G}}\odot\mathsf{F}_{\mathsf{G}}'=\left(\mathsf{F}\odot\mathsf{F}'
ight)_{\mathsf{G}}$$
 ,

where  $F_G \odot F'_G$  is the entrywise product, and  $F \odot F'$  is defined as



Other operations: transposition and cyclic permutations.

## **Definition.** For $k \in \mathbb{N}$ , define **1** $\Omega_k^P$ to be the set of all minors of $C_k$ ;

### **Definition.** For $k \in \mathbb{N}$ , define

- **1**  $\mathbf{Q}_k^P$  to be the set of all minors of  $\mathbf{C}_k$ ;
- **2**  $\Omega_k^S$  to be the set of all minors of  $M_k$ ;

**Definition.** For  $k \in \mathbb{N}$ , define

- **1**  $\mathbf{Q}_{k}^{P}$  to be the set of all minors of  $\mathbf{C}_{k}$ ;
- **2**  $\Omega_k^S$  to be the set of all minors of  $M_k$ ;

 $\textbf{3} \ \textbf{Q}_k = \textbf{Q}_k^P \cup \textbf{Q}_k^S.$ 

**Definition.** For  $k \in \mathbb{N}$ , define **1**  $\Omega_k^P$  to be the set of all minors of  $C_k$ ; **2**  $\Omega_k^S$  to be the set of all minors of  $M_k$ ; **3**  $\Omega_k = \Omega_k^P \cup \Omega_k^S$ .

**Definition.** For  $k \in \mathbb{N}$ , define **1**  $\Omega_k^P$  to be the set of all minors of  $C_k$ ; **2**  $\Omega_k^S$  to be the set of all minors of  $M_k$ ; **3**  $\Omega_k = \Omega_k^P \cup \Omega_k^S$ .

Then  $\boldsymbol{\mathcal{P}}_k$  is the class of  $(k,k)\text{-bilabelled graphs generated by the elements of <math display="inline">\boldsymbol{\Omega}_k$  under

series composition,

**Definition.** For  $k \in \mathbb{N}$ , define **1**  $\Omega_k^P$  to be the set of all minors of  $C_k$ ; **2**  $\Omega_k^S$  to be the set of all minors of  $M_k$ ; **3**  $\Omega_k = \Omega_k^P \cup \Omega_k^S$ .

- series composition,
- parallel composition with the elements of  $\mathbf{Q}_k^{\mathsf{P}}$ ,

Definition. For k ∈ N, define
1 Ω<sub>k</sub><sup>P</sup> to be the set of all minors of C<sub>k</sub>;
2 Ω<sub>k</sub><sup>S</sup> to be the set of all minors of M<sub>k</sub>;
3 Ω<sub>k</sub> = Ω<sub>k</sub><sup>P</sup> ∪ Ω<sub>k</sub><sup>S</sup>.

- series composition,
- parallel composition with the elements of  $\mathbf{\Omega}_k^{\mathsf{P}}$ ,
- transpose,

Definition. For k ∈ N, define
1 Ω<sub>k</sub><sup>P</sup> to be the set of all minors of C<sub>k</sub>;
2 Ω<sub>k</sub><sup>S</sup> to be the set of all minors of M<sub>k</sub>;
3 Ω<sub>k</sub> = Ω<sub>k</sub><sup>P</sup> ∪ Ω<sub>k</sub><sup>S</sup>.

- series composition,
- parallel composition with the elements of  $\mathbf{\Omega}_k^{\mathsf{P}}$ ,
- transpose,
- and cyclic permutations.

**Definition.** For  $k \in \mathbb{N}$ , define **1**  $\Omega_k^P$  to be the set of all minors of  $C_k$ ; **2**  $\Omega_k^S$  to be the set of all minors of  $M_k$ ; **3**  $\Omega_k = \Omega_k^P \cup \Omega_k^S$ .

Then  $\boldsymbol{\mathcal{P}}_k$  is the class of  $(k,k)\text{-bilabelled graphs generated by the elements of <math display="inline">\boldsymbol{\Omega}_k$  under

- series composition,
- parallel composition with the elements of  $\mathbf{\Omega}_k^{\mathsf{P}}$ ,
- transpose,
- and cyclic permutations.

**Definition.**  $\mathfrak{P}_k = \{F : \exists (F, u, v) \in \mathfrak{P}_k\}$ 

What have we done and what is next?

What have we done and what is next?

We have:

# What have we done and what is next?

### We have:
#### We have:

#### We have:

**Theorem.**  $G \cong_{\mathcal{P}_k} H \Leftrightarrow$  there is an isomorphism  $\widehat{\mathfrak{Q}}_G^k \to \widehat{\mathfrak{Q}}_G^k$ .

#### We have:

**Theorem.**  $G \cong_{\mathcal{P}_k} H \Leftrightarrow$  there is an isomorphism  $\widehat{\mathfrak{Q}}_G^k \to \widehat{\mathfrak{Q}}_G^k$ . Next:

#### We have:

**Theorem.**  $G \cong_{\mathcal{P}_k} H \Leftrightarrow$  there is an isomorphism  $\widehat{\mathfrak{Q}}_G^k \to \widehat{\mathfrak{Q}}_G^k$ . Next:

• We apply NPA hierarchy to (G, H)-isomorphism game and get a relaxation of quantum isomorphism for each  $k \in \mathbb{N}$ .

#### We have:

**Theorem.**  $G \cong_{\mathcal{P}_k} H \Leftrightarrow$  there is an isomorphism  $\widehat{\mathfrak{Q}}_G^k \to \widehat{\mathfrak{Q}}_G^k$ .

Next:

- We apply NPA hierarchy to (G, H)-isomorphism game and get a relaxation of quantum isomorphism for each  $k \in \mathbb{N}$ .
- For each  $k \in \mathbb{N}$ , the feasibility of the  $k^{th}$  level gives an isomorphism  $\widehat{\mathbb{Q}}_{G}^{k} \to \widehat{\mathbb{Q}}_{G}^{k}$ .

#### We have:

**Theorem.**  $G \cong_{\mathcal{P}_k} H \Leftrightarrow$  there is an isomorphism  $\widehat{\mathfrak{Q}}_G^k \to \widehat{\mathfrak{Q}}_G^k$ .

Next:

- We apply NPA hierarchy to (G, H)-isomorphism game and get a relaxation of quantum isomorphism for each  $k \in \mathbb{N}$ .
- For each  $k \in \mathbb{N}$ , the feasibility of the  $k^{th}$  level gives an isomorphism  $\widehat{\mathbb{Q}}_{G}^{k} \to \widehat{\mathbb{Q}}_{G}^{k}$ .
- The other direction works too.

Let  $k \in \mathbb{N}$ . For all  $\ell \leqslant k$ , define

$$|\psi_{g_1h_1\dots g_\ell h_\ell}\rangle \coloneqq \mathsf{E}_{g_1h_1}\mathsf{E}_{g_2h_2}\dots \mathsf{E}_{g_\ell h_\ell}|\psi\rangle$$

Let  $k \in \mathbb{N}$ . For all  $\ell \leqslant k$ , define

$$\left|\psi_{g_{1}h_{1}\dots g_{\ell}h_{\ell}}\right\rangle := E_{g_{1}h_{1}}E_{g_{2}h_{2}}\dots E_{g_{\ell}h_{\ell}}\left|\psi\right\rangle$$

and let  $\ensuremath{\mathcal{R}}$  be the Gram matrix of these vectors.

Let  $k\in\mathbb{N}.$  For all  $\ell\leqslant k,$  define

$$\left|\psi_{g_{1}h_{1}\dots g_{\ell}h_{\ell}}\right\rangle := E_{g_{1}h_{1}}E_{g_{2}h_{2}}\dots E_{g_{\ell}h_{\ell}}\left|\psi\right\rangle$$

and let  $\ensuremath{\mathcal{R}}$  be the Gram matrix of these vectors.

**Observation:**  $\mathcal{R}$  will be be **psd** and its entries will satisfy some linear constraints.

Let  $k\in\mathbb{N}.$  For all  $\ell\leqslant k,$  define

$$\left|\psi_{g_{1}h_{1}\dots g_{\ell}h_{\ell}}\right\rangle := E_{g_{1}h_{1}}E_{g_{2}h_{2}}\dots E_{g_{\ell}h_{\ell}}\left|\psi\right\rangle$$

and let  $\ensuremath{\mathcal{R}}$  be the Gram matrix of these vectors.

**Observation:**  $\mathcal{R}$  will be be **psd** and its entries will satisfy some linear constraints.

This gives rise to a semidefinite program  $\rightarrow$  NPA hierarchy.

NPA hierarchy for the isomorphism game

Let  $\Sigma = V(G) \times V(H)$ .

A matrix  $\mathfrak{R} \in \mathbb{M}_{\Sigma^{\leq k}}(\mathbb{C})$  is a certificate for the  $k^{\text{th}}$  level of the NPA hierarchy for the (G, H)-isomorphism game if

1 
$$\mathcal{R} \succeq 0$$
,

**2** 
$$\mathcal{R}_{\varepsilon,\varepsilon} = 1$$
,

**3**  $\Re_{s,t}$  depends only on the equivalence class of  $s^R t$ ,

$$4 \sum_{\mathbf{h}'} \mathcal{R}_{s(g,\mathbf{h}')s',\mathbf{t}} = \sum_{g'} \mathcal{R}_{s(g',\mathbf{h})s',\mathbf{t}} = \mathcal{R}_{ss',\mathbf{t}},$$

**5** for s,  $t \in \Sigma^{\leq k}$ , if gh, g'h' occur consecutively in s<sup>R</sup>t and rel(g, g')  $\neq$  rel(h, h'), then  $\Re_{s,t} = 0$ .

NPA hierarchy for the isomorphism game

Let  $\Sigma = V(G) \times V(H)$ .

A matrix  $\mathfrak{R} \in \mathbb{M}_{\Sigma^{\leq k}}(\mathbb{C})$  is a certificate for the  $k^{\text{th}}$  level of the NPA hierarchy for the (G, H)-isomorphism game if

1 
$$\mathcal{R} \succeq 0$$
,

**2** 
$$\Re_{\varepsilon,\varepsilon} = 1$$
,

**3**  $\mathcal{R}_{s,t}$  depends only on the equivalence class of  $s^R t$ ,

$$4 \sum_{\mathbf{h}'} \mathcal{R}_{s(g,\mathbf{h}')s',\mathbf{t}} = \sum_{g'} \mathcal{R}_{s(g',\mathbf{h})s',\mathbf{t}} = \mathcal{R}_{ss',\mathbf{t}},$$

**5** for  $s, t \in \Sigma^{\leq k}$ , if gh, g'h' occur consecutively in  $s^{R}t$  and  $rel(g, g') \neq rel(h, h')$ , then  $\Re_{s,t} = 0$ .

**Thm.** (G, H)-isomorphism game has a perfect quantum strategy iff there is a certificate for the  $k^{th}$  level of the NPA hierarchy,  $k \in \mathbb{N}$ .

A linear map  $\Phi \colon \mathbb{M}_m(\mathbb{C}) \to \mathbb{M}_n(\mathbb{C})$  is **positive** if  $\Phi(X)$  is positive for all positive X.

A linear map  $\Phi \colon \mathbb{M}_m(\mathbb{C}) \to \mathbb{M}_n(\mathbb{C})$  is **positive** if  $\Phi(X)$  is positive for all positive X.

A linear map  $\Phi \colon \mathbb{M}_m(\mathbb{C}) \to \mathbb{M}_n(\mathbb{C})$  is completely positive if  $\mathbb{I}_r \otimes \Phi$  is positive for all  $r \in \mathbb{N}$ .

A linear map  $\Phi: \mathbb{M}_m(\mathbb{C}) \to \mathbb{M}_n(\mathbb{C})$  is **positive** if  $\Phi(X)$  is positive for all positive X.

A linear map  $\Phi \colon \mathbb{M}_m(\mathbb{C}) \to \mathbb{M}_n(\mathbb{C})$  is completely positive if  $\mathbb{I}_r \otimes \Phi$  is positive for all  $r \in \mathbb{N}$ .

The Choi matrix of a linear map  $\Phi \colon \mathbb{M}_m(\mathbb{C}) \to \mathbb{M}_n(\mathbb{C})$  is

$$C_{\Phi} = \sum_{i,j=1}^{m} E_{ij} \otimes \Phi(E_{ij}) \in \mathbb{M}_{mn}(\mathbb{C}),$$

where  $E_{ij}$  denotes the matrix that is 1 at the (i, j)-th entry and 0 otherwise.

A linear map  $\Phi: \mathbb{M}_m(\mathbb{C}) \to \mathbb{M}_n(\mathbb{C})$  is **positive** if  $\Phi(X)$  is positive for all positive X.

A linear map  $\Phi \colon \mathbb{M}_m(\mathbb{C}) \to \mathbb{M}_n(\mathbb{C})$  is completely positive if  $\mathbb{I}_r \otimes \Phi$  is positive for all  $r \in \mathbb{N}$ .

The Choi matrix of a linear map  $\Phi \colon \mathbb{M}_m(\mathbb{C}) \to \mathbb{M}_n(\mathbb{C})$  is

$$C_{\Phi} = \sum_{i,j=1}^{m} E_{ij} \otimes \Phi(E_{ij}) \in \mathbb{M}_{mn}(\mathbb{C}),$$

where  $E_{ij}$  denotes the matrix that is 1 at the (i, j)-th entry and 0 otherwise.

Thm (Choi, 1975).  $\Phi$  is completely positive  $\Leftrightarrow C_{\Phi}$  is positive.

We use a principal submatrix of a certificate  $\mathcal{R}$  for the k<sup>th</sup> level of the NPA hierarchy as the Choi matrix of a linear map and show that this is level-k quantum isomorphism.

We use a principal submatrix of a certificate  $\mathcal{R}$  for the k<sup>th</sup> level of the NPA hierarchy as the Choi matrix of a linear map and show that this is level-k quantum isomorphism.

Taking the Choi matrix of a level-k quantum isomorphism we can reconstruct a certificate for the k<sup>th</sup> level of the NPA hierarchy.

We use a principal submatrix of a certificate  $\mathcal{R}$  for the k<sup>th</sup> level of the NPA hierarchy as the Choi matrix of a linear map and show that this is level-k quantum isomorphism.

Taking the Choi matrix of a level-k quantum isomorphism we can reconstruct a certificate for the k<sup>th</sup> level of the NPA hierarchy.

**1** Let  $\mathcal{R}$  be a solution for the  $k^{\text{th}}$  level of NPA.

We use a principal submatrix of a certificate  $\mathcal{R}$  for the k<sup>th</sup> level of the NPA hierarchy as the Choi matrix of a linear map and show that this is level-k quantum isomorphism.

- Taking the Choi matrix of a level-k quantum isomorphism we can reconstruct a certificate for the k<sup>th</sup> level of the NPA hierarchy.
  - **1** Let  $\mathcal{R}$  be a solution for the  $k^{\text{th}}$  level of NPA.
  - 2 Take C to be the principal submatrix of  $\mathcal{R}$  indexed by  $\Sigma^k = (V(G) \times V(H))^k$ .

We use a principal submatrix of a certificate  $\mathcal{R}$  for the k<sup>th</sup> level of the NPA hierarchy as the Choi matrix of a linear map and show that this is level-k quantum isomorphism.

- Taking the Choi matrix of a level-k quantum isomorphism we can reconstruct a certificate for the k<sup>th</sup> level of the NPA hierarchy.
  - **1** Let  $\mathcal{R}$  be a solution for the k<sup>th</sup> level of NPA.
  - 2 Take C to be the principal submatrix of  $\mathcal{R}$  indexed by  $\Sigma^k = (V(G) \times V(H))^k$ .
  - **3** Define  $\Phi : \mathbb{M}_{V(G)^k}(\mathbb{C}) \to \mathbb{M}_{V(H)^k}(\mathbb{C})$  to be the linear map with Choi matrix  $\mathcal{C}$ , i.e.,

$$\Phi(X)_{\mathbf{h},\mathbf{h'}} = \sum_{\mathbf{g},\mathbf{g'}\in V(G)^k} \mathcal{C}_{g_1h_1\dots g_kh_k,g_1'h_1'\dots g_k'h_k'} X_{\mathbf{g},\mathbf{g'}}$$

We use a principal submatrix of a certificate  $\mathcal{R}$  for the k<sup>th</sup> level of the NPA hierarchy as the Choi matrix of a linear map and show that this is level-k quantum isomorphism.

- Taking the Choi matrix of a level-k quantum isomorphism we can reconstruct a certificate for the k<sup>th</sup> level of the NPA hierarchy.
  - **1** Let  $\mathcal{R}$  be a solution for the k<sup>th</sup> level of NPA.
  - 2 Take C to be the principal submatrix of  $\mathcal{R}$  indexed by  $\Sigma^k = (V(G) \times V(H))^k$ .
  - **3** Define  $\Phi : \mathbb{M}_{V(G)^k}(\mathbb{C}) \to \mathbb{M}_{V(H)^k}(\mathbb{C})$  to be the linear map with Choi matrix  $\mathcal{C}$ , i.e.,

$$\Phi(\mathbf{X})_{\mathbf{h},\mathbf{h'}} = \sum_{\mathbf{g},\mathbf{g'}\in \mathbf{V}(\mathbf{G})^k} \mathcal{C}_{g_1h_1\dots g_kh_k,g_1'h_1'\dots g_k'h_k'} \mathbf{X}_{\mathbf{g},\mathbf{g'}}$$

**4** The constraints on  $\mathcal R$  translate into constraints on the map  $\Phi$ .

**Definition.** A linear map  $\Phi: \mathbb{M}_{V(G)^k}(\mathbb{C}) \to \mathbb{M}_{V(H)^k}(\mathbb{C})$  is a level-k quantum isomorphism map if

Definition. A linear map  $\Phi: \mathbb{M}_{V(G)^k}(\mathbb{C}) \to \mathbb{M}_{V(H)^k}(\mathbb{C})$  is a level-k quantum isomorphism map if

**1**  $\Phi$  is completely positive;

Definition. A linear map  $\Phi: \mathbb{M}_{V(G)^k}(\mathbb{C}) \to \mathbb{M}_{V(H)^k}(\mathbb{C})$  is a level-k quantum isomorphism map if

- **1**  $\Phi$  is completely positive;
- **2**  $\Phi(I) = I = \Phi^*(I);$

**Definition.** A linear map  $\Phi : \mathbb{M}_{V(G)^k}(\mathbb{C}) \to \mathbb{M}_{V(H)^k}(\mathbb{C})$  is a level-k quantum isomorphism map if

**1**  $\Phi$  is completely positive;

**2**  $\Phi(I) = I = \Phi^*(I)$ ; (thus  $\Phi$  is unital and trace-preserving)

**Definition.** A linear map  $\Phi: \mathbb{M}_{V(G)^k}(\mathbb{C}) \to \mathbb{M}_{V(H)^k}(\mathbb{C})$  is a level-k quantum isomorphism map if

**1**  $\Phi$  is completely positive;

**2** 
$$\Phi(I) = I = \Phi^*(I)$$
; (thus  $\Phi$  is **unital** and **trace-preserving**)

**3**  $\Phi(J) = J = \Phi^*(J);$ 

**Definition.** A linear map  $\Phi : \mathbb{M}_{V(G)^k}(\mathbb{C}) \to \mathbb{M}_{V(H)^k}(\mathbb{C})$  is a level-k quantum isomorphism map if

**1**  $\Phi$  is completely positive;

**2**  $\Phi(I) = I = \Phi^*(I)$ ; (thus  $\Phi$  is unital and trace-preserving)

**3**  $\Phi(J) = J = \Phi^*(J)$ ; (thus  $\Phi$  is sum-preserving)

**Definition.** A linear map  $\Phi : \mathbb{M}_{V(G)^k}(\mathbb{C}) \to \mathbb{M}_{V(H)^k}(\mathbb{C})$  is a level-k quantum isomorphism map if

**1**  $\Phi$  is completely positive;

**2**  $\Phi(I) = I = \Phi^*(I)$ ; (thus  $\Phi$  is unital and trace-preserving)

**3**  $\Phi(J) = J = \Phi^*(J)$ ; (thus  $\Phi$  is sum-preserving)

 $\Phi(\mathbf{F}_{\mathbf{G}}) = \mathbf{F}_{\mathbf{H}} \text{ for all } \mathbf{F} \in \mathbf{Q}_{\mathbf{k}};$ 

**Definition.** A linear map  $\Phi : \mathbb{M}_{V(G)^k}(\mathbb{C}) \to \mathbb{M}_{V(H)^k}(\mathbb{C})$  is a level-k quantum isomorphism map if

**1**  $\Phi$  is completely positive;

**2**  $\Phi(I) = I = \Phi^*(I)$ ; (thus  $\Phi$  is unital and trace-preserving)

**3**  $\Phi(J) = J = \Phi^*(J)$ ; (thus  $\Phi$  is sum-preserving)

 $\Phi(\mathbf{F}_{\mathbf{G}}) = \mathbf{F}_{\mathbf{H}} \text{ for all } \mathbf{F} \in \mathbf{Q}_{\mathbf{k}};$ 

**5**  $\Phi(F_G \odot X) = F_H \odot \Phi(X)$  for all  $F \in \Omega_k^P$ ,  $X \in M_{V(G)^k}(\mathbb{C})$ ;

**Definition.** A linear map  $\Phi : \mathbb{M}_{V(G)^k}(\mathbb{C}) \to \mathbb{M}_{V(H)^k}(\mathbb{C})$  is a level-k quantum isomorphism map if

- **1**  $\Phi$  is completely positive;
- **2**  $\Phi(I) = I = \Phi^*(I)$ ; (thus  $\Phi$  is unital and trace-preserving)
- **3**  $\Phi(J) = J = \Phi^*(J)$ ; (thus  $\Phi$  is sum-preserving)

$$\Phi(\mathbf{F}_{\mathsf{G}}) = \mathbf{F}_{\mathsf{H}} \text{ for all } \mathbf{F} \in \mathbf{Q}_{\mathsf{k}};$$

- **5**  $\Phi(F_G \odot X) = F_H \odot \Phi(X)$  for all  $F \in \Omega_k^P$ ,  $X \in M_{V(G)^k}(\mathbb{C})$ ;
- **6**  $\Phi(X^{\sigma}) = \Phi(X)^{\sigma}$  for all "cyclic permutations"  $\sigma$ .

**Definition.** A linear map  $\Phi : \mathbb{M}_{V(G)^k}(\mathbb{C}) \to \mathbb{M}_{V(H)^k}(\mathbb{C})$  is a level-k quantum isomorphism map if

**1**  $\Phi$  is completely positive;

**2**  $\Phi(I) = I = \Phi^*(I)$ ; (thus  $\Phi$  is unital and trace-preserving)

**3**  $\Phi(J) = J = \Phi^*(J)$ ; (thus  $\Phi$  is sum-preserving)

$$\Phi(\mathbf{F}_{\mathsf{G}}) = \mathbf{F}_{\mathsf{H}} \text{ for all } \mathbf{F} \in \mathbf{Q}_{\mathsf{k}};$$

- **5**  $\Phi(F_G \odot X) = F_H \odot \Phi(X)$  for all  $F \in \mathbf{Q}_k^P$ ,  $X \in M_{V(G)^k}(\mathbb{C})$ ;
- **6**  $\Phi(X^{\sigma}) = \Phi(X)^{\sigma}$  for all "cyclic permutations"  $\sigma$ .

**Lemma.** Such a map will also satisfy  $\Phi(\mathbf{F}_G) = \mathbf{F}_H$  for all  $\mathbf{F} \in \mathbf{\mathcal{P}}_k$ .

**Definition.** A linear map  $\Phi : \mathbb{M}_{V(G)^k}(\mathbb{C}) \to \mathbb{M}_{V(H)^k}(\mathbb{C})$  is a level-k quantum isomorphism map if

**1**  $\Phi$  is completely positive;

**2**  $\Phi(I) = I = \Phi^*(I)$ ; (thus  $\Phi$  is unital and trace-preserving)

**3**  $\Phi(J) = J = \Phi^*(J)$ ; (thus  $\Phi$  is sum-preserving)

$$\Phi(\mathbf{F}_{\mathsf{G}}) = \mathbf{F}_{\mathsf{H}} \text{ for all } \mathbf{F} \in \mathbf{Q}_{\mathsf{k}};$$

- **5**  $\Phi(F_G \odot X) = F_H \odot \Phi(X)$  for all  $F \in \Omega_k^P$ ,  $X \in M_{V(G)^k}(\mathbb{C})$ ;
- **6**  $\Phi(X^{\sigma}) = \Phi(X)^{\sigma}$  for all "cyclic permutations"  $\sigma$ .

**Lemma.** Such a map will also satisfy  $\Phi(F_G) = F_H$  for all  $F \in \mathcal{P}_k$ .

**Corollary.** The existence of such a map implies  $G \cong_{\mathcal{P}_k} H$ .

**Definition.** A linear map  $\Phi : \mathbb{M}_{V(G)^k}(\mathbb{C}) \to \mathbb{M}_{V(H)^k}(\mathbb{C})$  is a level-k quantum isomorphism map if

**1**  $\Phi$  is completely positive;

**2**  $\Phi(I) = I = \Phi^*(I)$ ; (thus  $\Phi$  is unital and trace-preserving)

**3**  $\Phi(J) = J = \Phi^*(J)$ ; (thus  $\Phi$  is sum-preserving)

$$\Phi(\mathbf{F}_{\mathsf{G}}) = \mathbf{F}_{\mathsf{H}} \text{ for all } \mathbf{F} \in \mathbf{Q}_{\mathsf{k}};$$

- **5**  $\Phi(F_G \odot X) = F_H \odot \Phi(X)$  for all  $F \in \mathbf{Q}_k^P$ ,  $X \in M_{V(G)^k}(\mathbb{C})$ ;
- **6**  $\Phi(X^{\sigma}) = \Phi(X)^{\sigma}$  for all "cyclic permutations"  $\sigma$ .

**Lemma.** Such a map will also satisfy  $\Phi(\mathbf{F}_G) = \mathbf{F}_H$  for all  $\mathbf{F} \in \mathbf{\mathcal{P}}_k$ .

**Corollary.** The existence of such a map implies  $G \cong_{\mathcal{P}_k} H$ .

Converse requires some previous results and a bit of combinatorics.

## Recap

The  $k^{\text{th}}$  level of the NPA hierarchy for the (G, H)-isomorphism game is feasible

#### $\uparrow$

There exists a level-k quantum isomorphism map from G to H

#### $\uparrow$

G and H are homomorphism indistinguishable over  $\mathcal{P}_k$ 

Corollary

### **Corollary.** $G \cong_{qc} H$ if and only if $G \cong_{\mathcal{P}} H$ , where $\mathcal{P} = \cup_{k=1}^{\infty} \mathcal{P}_k$ .
## Corollary

### **Corollary.** $G \cong_{qc} H$ if and only if $G \cong_{\mathcal{P}} H$ , where $\mathcal{P} = \bigcup_{k=1}^{\infty} \mathcal{P}_k$ .

All that is left is to show that  $\mathcal{P}$  is the class of all planar graphs.

## Corollary

**Corollary.**  $G \cong_{qc} H$  if and only if  $G \cong_{\mathcal{P}} H$ , where  $\mathcal{P} = \bigcup_{k=1}^{\infty} \mathcal{P}_k$ .

All that is left is to show that  $\mathcal{P}$  is the class of all planar graphs.

**Proof that**  $\mathcal{P} \subseteq$  **planar graphs:** All generators of  $\mathcal{P}_k$  are planar, all operations preserve planarity.

**Lemma.** Each  $\mathcal{P}_k$  is minor-closed, and thus so is each  $\mathcal{P}_k$  and  $\mathcal{P}$ .

**Lemma.** Each  $\mathcal{P}_k$  is minor-closed, and thus so is each  $\mathcal{P}_k$  and  $\mathcal{P}$ .

**Lemma.** The class  $\mathcal{P}_k$  contains the  $k \times k$  grid.

**Lemma.** Each  $\mathcal{P}_k$  is minor-closed, and thus so is each  $\mathcal{P}_k$  and  $\mathcal{P}$ .

**Lemma.** The class  $\mathcal{P}_k$  contains the  $k \times k$  grid.

#### **Proof.**



**Lemma.** Each  $\mathcal{P}_k$  is minor-closed, and thus so is each  $\mathcal{P}_k$  and  $\mathcal{P}$ .

**Lemma.** The class  $\mathcal{P}_k$  contains the  $k \times k$  grid.

**Proof.** 



**Well-known:** Every planar graph is the minor of some  $k \times k$  grid.

## Some remarks/questions

•  $\mathcal{P}_k$  has treewidth bounded by 3k - 1. This implies there is a randomized poly time algorithm for determining if  $G \cong_{\mathcal{P}_k} H$ , and thus whether the  $k^{th}$  level of the NPA hierarchy for the (G, H)-isomorphism game is feasible.

## Some remarks/questions

- $\mathcal{P}_k$  has treewidth bounded by 3k 1. This implies there is a randomized poly time algorithm for determining if  $G \cong_{\mathcal{P}_k} H$ , and thus whether the  $k^{\text{th}}$  level of the NPA hierarchy for the (G, H)-isomorphism game is feasible.
- There are graphs G and H of size ≤ 72k<sup>2</sup> that are not quantum isomorphic, but the k<sup>th</sup> level of the NPA hierarchy is feasible for the (G, H)-isomorphism game.

## Some remarks/questions

- $\mathcal{P}_k$  has treewidth bounded by 3k 1. This implies there is a randomized poly time algorithm for determining if  $G \cong_{\mathcal{P}_k} H$ , and thus whether the  $k^{\text{th}}$  level of the NPA hierarchy for the (G, H)-isomorphism game is feasible.
- There are graphs G and H of size ≤ 72k<sup>2</sup> that are not quantum isomorphic, but the k<sup>th</sup> level of the NPA hierarchy is feasible for the (G, H)-isomorphism game.
- Can we obtain a better description of the classes  $\mathcal{P}_k$ ?

# Thank you!

## The hierarchy of Navascués, Pironio, and Acín (NPA)

CHSH game,  $X = Y = A = B = \{0, 1\}$ . Deterministic strategies M:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & \\ & & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & 1 & \\ & & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & \\ & & & 1 \end{pmatrix} \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 &$$

CHSH game,  $X = Y = A = B = \{0, 1\}$ . Deterministic strategies M:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & 1 & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1$$

Representing the CHSH game as a matrix K yields

CHSH game,  $X = Y = A = B = \{0, 1\}$ . Deterministic strategies M:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ & & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & 1 & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ & & \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ \end{pmatrix}$$

Representing the CHSH game as a matrix K yields

The classical value is  $\sup_{\mathcal{M}} \langle K, \mathcal{M} \rangle = \sup_{\mathcal{M}} Tr[K^*\mathcal{M}] = 3/4.$ 

## Nonlocal games

**Def.** A nonlocal game is a 6-tuple  $(X, Y, A, B, \pi, V)$ , where

- 1 X, Y, A, and B are finite and nonempty sets,
- **2**  $\pi \in P(X \times Y)$  is a probability vector, and

**3** V:  $A \times B \times X \times Y \rightarrow \{0, 1\}$  is a predicate.

The sets X, Y are questions and A, B are answers. The predicate V(a, b|x, y) determines whether the players win or lose.

## Nonlocal games

**Def.** A nonlocal game is a 6-tuple  $(X, Y, A, B, \pi, V)$ , where

- 1 X, Y, A, and B are finite and nonempty sets,
- **2**  $\pi \in P(X \times Y)$  is a probability vector, and

**3** V:  $A \times B \times X \times Y \rightarrow \{0, 1\}$  is a predicate.

The sets X, Y are questions and A, B are answers. The predicate V(a, b|x, y) determines whether the players win or lose.

We can think of strategies as being represented by operators

$$M\in L(\mathbb{R}^X\otimes\mathbb{R}^Y,\mathbb{R}^A\otimes\mathbb{R}^B).$$

The value M(a, b|x, y) represents the probability that Alice and Bob answer (x, y) with (a, b).

## Nonlocal games

**Def.** A nonlocal game is a 6-tuple  $(X, Y, A, B, \pi, V)$ , where

- 1 X, Y, A, and B are finite and nonempty sets,
- **2**  $\pi \in P(X \times Y)$  is a probability vector, and

**3** V:  $A \times B \times X \times Y \rightarrow \{0, 1\}$  is a predicate.

The sets X, Y are questions and A, B are answers. The predicate V(a, b|x, y) determines whether the players win or lose.

We can think of strategies as being represented by operators

$$M\in L(\mathbb{R}^X\otimes\mathbb{R}^Y,\mathbb{R}^A\otimes\mathbb{R}^B).$$

The value M(a, b|x, y) represents the probability that Alice and Bob answer (x, y) with (a, b).

The probability that M wins a game is

$$\sum_{(x,y)\in X\times Y} \pi(x,y) \sum_{(a,b)\in A\times B} V(a,b|x,y) M(a,b|x,y) = \langle K,M\rangle,$$
  
where  $K(a,b|x,y) = \pi(x,y)V(a,b|x,y).$ 

## Commuting measurement strategies

An operator M represents a **commuting measurement strategy** if there exists a Hilbert space  $\mathcal{H}$ , a unit vector  $u \in \mathcal{H}$ , and projection operators

 $\{P_a^x : x \in X, a \in A\}$  and  $\{Q_b^y : y \in Y, b \in B\}$ 

acting on  $\mathcal H$  such that the following are satisfied:

1) 
$$\sum_{a \in A} P_a^x = 1_{\mathcal{H}}$$
 and  $\sum_{b \in B} Q_b^y = 1_{\mathcal{H}}, x \in X, y \in Y,$   
2)  $[P_a^x, Q_b^y] = 0, x \in X, y \in Y, a \in A, b \in B,$ 

**3** 
$$M(\mathfrak{a}, \mathfrak{b}|\mathfrak{x}, \mathfrak{y}) = \langle \mathfrak{u}, P^{\mathfrak{x}}_{\mathfrak{a}}Q^{\mathfrak{y}}_{\mathfrak{b}}\mathfrak{u} \rangle, \ \mathfrak{x} \in X, \mathfrak{y} \in Y, \mathfrak{a} \in A, \mathfrak{b} \in B.$$

## Commuting measurement strategies

An operator M represents a **commuting measurement strategy** if there exists a Hilbert space  $\mathcal{H}$ , a unit vector  $u \in \mathcal{H}$ , and projection operators

 $\{P_a^x : x \in X, a \in A\}$  and  $\{Q_b^y : y \in Y, b \in B\}$ 

acting on  $\mathcal H$  such that the following are satisfied:

1 
$$\sum_{a \in A} P_a^x = 1_{\mathcal{H}}$$
 and  $\sum_{b \in B} Q_b^y = 1_{\mathcal{H}}, x \in X, y \in Y$ ,  
2  $[P_a^x, Q_b^y] = 0, x \in X, y \in Y, a \in A, b \in B$ ,  
3  $M(a, b|x, y) = \langle u, P_a^x Q_b^y u \rangle, x \in X, y \in Y, a \in A, b \in B$ .

A commuting measurement value of game G is

$$\omega^{\mathbf{c}}(\mathbf{G}) = \sup_{\mathbf{M} \in \mathcal{C}} \langle \mathbf{K}, \mathbf{M} \rangle,$$

where K is defined from G as before and  $\mathcal{C}$  is the class of commuting measurement strategies.

For a commuting measurement strategy M, we would like to capture the numbers  $M(a, b|x, y) = \langle u, P_a^x Q_b^y u \rangle$ .

For a commuting measurement strategy M, we would like to capture the numbers  $M(a, b|x, y) = \langle u, P_a^x Q_b^y u \rangle$ . We can consider the Gram matrix of the vectors:

$$\{u\} \cup \{P_a^x u : x \in X, a \in A\} \cup \{Q_b^y u : y \in Y, b \in B\}.$$

For a commuting measurement strategy M, we would like to capture the numbers  $M(a, b|x, y) = \langle u, P_a^x Q_b^y u \rangle$ . We can consider the Gram matrix of the vectors:

$$\begin{split} \{u\} \cup \{P^x_a u : x \in X, a \in A\} \cup \{Q^y_b u : y \in Y, b \in B\}. \end{split}$$
 Let  $\Sigma^{\leqslant 1} = (X \times A) \sqcup (Y \times B) \cup \{\epsilon\}.$ 

For a commuting measurement strategy M, we would like to capture the numbers  $M(a, b|x, y) = \langle u, P_a^x Q_b^y u \rangle$ . We can consider the Gram matrix of the vectors:

$$\begin{split} \{u\} \cup \{P^x_a u : x \in X, \, a \in A\} \cup \{Q^y_b u : y \in Y, \, b \in B\}. \\ \text{Let } \Sigma^{\leqslant 1} = (X \times A) \sqcup (Y \times B) \cup \{\epsilon\}. \\ \text{Suppose that } R \in L(\mathbb{C}^{\Sigma^{\leqslant 1}}, \mathbb{C}^{\Sigma^{\leqslant 1}}). \end{split}$$

For a commuting measurement strategy M, we would like to capture the numbers  $M(a, b|x, y) = \langle u, P_a^x Q_b^y u \rangle$ . We can consider the Gram matrix of the vectors:

$$\begin{split} \{u\} \cup \{P^x_a u: x \in X, a \in A\} \cup \{Q^y_b u: y \in Y, b \in B\}. \\ \text{Let } \Sigma^{\leqslant 1} = (X \times A) \sqcup (Y \times B) \cup \{\epsilon\}. \\ \text{Suppose that } R \in L(\mathbb{C}^{\Sigma^{\leqslant 1}}, \mathbb{C}^{\Sigma^{\leqslant 1}}). \text{ We observe the following:} \end{split}$$

1  $R(\varepsilon, \varepsilon) = 1$ , (u is unit)

For a commuting measurement strategy M, we would like to capture the numbers  $M(a, b|x, y) = \langle u, P_a^x Q_b^y u \rangle$ . We can consider the Gram matrix of the vectors:

 $\{u\} \cup \{P_a^x u : x \in X, a \in A\} \cup \{Q_b^y u : y \in Y, b \in B\}.$ 

Let  $\Sigma^{\leqslant 1} = (X \times A) \sqcup (Y \times B) \cup \{\epsilon\}.$ Suppose that  $R \in L(\mathbb{C}^{\Sigma^{\leqslant 1}}, \mathbb{C}^{\Sigma^{\leqslant 1}})$ . We observe the following:

1  $R(\varepsilon, \varepsilon) = 1$ , (u is unit)

**2**  $\sum_{a \in A} R((x, a), s) = R(\varepsilon, s)$  and  $\sum_{a \in A} R(s, (x, a)) = R(s, \varepsilon)$ ,  $\sum_{b \in B} R((y, b), s) = R(\varepsilon, s)$  and  $\sum_{b \in B} R(s, (y, b)) = R(s, \varepsilon)$ , (summing over operators in measurements is identity)

For a commuting measurement strategy M, we would like to capture the numbers  $M(a, b|x, y) = \langle u, P_a^x Q_b^y u \rangle$ . We can consider the Gram matrix of the vectors:

$$\{u\} \cup \{P_a^x u : x \in X, a \in A\} \cup \{Q_b^y u : y \in Y, b \in B\}.$$

Let  $\Sigma^{\leqslant 1} = (X \times A) \sqcup (Y \times B) \cup \{\epsilon\}.$ Suppose that  $R \in L(\mathbb{C}^{\Sigma^{\leqslant 1}}, \mathbb{C}^{\Sigma^{\leqslant 1}})$ . We observe the following:

1  $R(\varepsilon, \varepsilon) = 1$ , (u is unit)

 $\begin{array}{l} \textbf{2} \sum_{a \in A} R((x, a), s) = R(\varepsilon, s) \text{ and } \sum_{a \in A} R(s, (x, a)) = R(s, \varepsilon), \\ \sum_{b \in B} R((y, b), s) = R(\varepsilon, s) \text{ and } \sum_{b \in B} R(s, (y, b)) = R(s, \varepsilon), \\ (\text{summing over operators in measurements is identity}) \end{array}$ 

 $\begin{array}{l} \textbf{3} \hspace{0.1cm} \mathsf{R}((x, a), (x, c)) = \textbf{0}, \hspace{0.1cm} x \in X, \hspace{0.1cm} a, c \in A, \hspace{0.1cm} a \neq c, \\ \mathsf{R}((y, b), (y, d)) = \textbf{0}, \hspace{0.1cm} y \in Y, \hspace{0.1cm} b, \hspace{0.1cm} d \in B, \hspace{0.1cm} b \neq d, \\ (\mathsf{P}^x_a \hspace{0.1cm} \text{and} \hspace{0.1cm} \mathsf{P}^x_c, \hspace{0.1cm} \mathsf{Q}^y_b \hspace{0.1cm} \text{and} \hspace{0.1cm} \mathsf{Q}^y_d \hspace{0.1cm} \text{are orthogonal}) \end{array}$ 

For a commuting measurement strategy M, we would like to capture the numbers  $M(a, b|x, y) = \langle u, P_a^x Q_b^y u \rangle$ . We can consider the Gram matrix of the vectors:

 $\{u\} \cup \{P_a^x u : x \in X, a \in A\} \cup \{Q_b^y u : y \in Y, b \in B\}.$ 

Let  $\Sigma^{\leqslant 1} = (X \times A) \sqcup (Y \times B) \cup \{\epsilon\}.$ Suppose that  $R \in L(\mathbb{C}^{\Sigma^{\leqslant 1}}, \mathbb{C}^{\Sigma^{\leqslant 1}})$ . We observe the following:

1  $R(\varepsilon, \varepsilon) = 1$ , (u is unit)

 $\sum_{a \in A} R((x, a), s) = R(\varepsilon, s) \text{ and } \sum_{a \in A} R(s, (x, a)) = R(s, \varepsilon), \\ \sum_{b \in B} R((y, b), s) = R(\varepsilon, s) \text{ and } \sum_{b \in B} R(s, (y, b)) = R(s, \varepsilon), \\ (\text{summing over operators in measurements is identity})$ 

- **3**  $R((x, a), (x, c)) = 0, x \in X, a, c \in A, a \neq c,$  $R((y, b), (y, d)) = 0, y \in Y, b, d \in B, b \neq d,$  $(P_a^x \text{ and } P_c^x, Q_b^y \text{ and } Q_d^y \text{ are orthogonal})$
- 4  $R((z, c), (z, c)) = R(\varepsilon, (z, c)) = R((z, c), \varepsilon), (P^2 = P)$

For a commuting measurement strategy M, we would like to capture the numbers  $M(a, b|x, y) = \langle u, P_a^x Q_b^y u \rangle$ . We can consider the Gram matrix of the vectors:

$$\{u\} \cup \{P_a^x u : x \in X, a \in A\} \cup \{Q_b^y u : y \in Y, b \in B\}.$$

Let  $\Sigma^{\leqslant 1} = (X \times A) \sqcup (Y \times B) \cup \{\epsilon\}.$ Suppose that  $R \in L(\mathbb{C}^{\Sigma^{\leqslant 1}}, \mathbb{C}^{\Sigma^{\leqslant 1}})$ . We observe the following:

- 1  $R(\varepsilon, \varepsilon) = 1$ , (u is unit)
- $\begin{array}{l} \textbf{2} \sum_{a \in A} R((x, a), s) = R(\varepsilon, s) \text{ and } \sum_{a \in A} R(s, (x, a)) = R(s, \varepsilon), \\ \sum_{b \in B} R((y, b), s) = R(\varepsilon, s) \text{ and } \sum_{b \in B} R(s, (y, b)) = R(s, \varepsilon), \\ (\text{summing over operators in measurements is identity}) \end{array}$
- 3  $R((x, a), (x, c)) = 0, x \in X, a, c \in A, a \neq c,$   $R((y, b), (y, d)) = 0, y \in Y, b, d \in B, b \neq d,$  $(P_a^x \text{ and } P_c^x, Q_b^y \text{ and } Q_d^y \text{ are orthogonal})$
- 4  $R((z, c), (z, c)) = R(\varepsilon, (z, c)) = R((z, c), \varepsilon), (P^2 = P)$
- **5** R((x, a), (y, b)) = R((y, b), (x, a)). (commutativity)

Let  $C_1$  be the class containing all strategies M for which there is a positive semidefinite R such that M(a, b|x, y) = R((x, a), (y, b)). We have

$$\omega^{\mathbf{c}}(G) = \sup_{M \in \mathcal{C}} \langle K, M \rangle \leqslant \sup_{M \in \mathcal{C}_{1}} \langle K, M \rangle.$$

Let  $C_1$  be the class containing all strategies M for which there is a positive semidefinite R such that M(a, b|x, y) = R((x, a), (y, b)). We have

$$\omega^{\mathbf{c}}(G) = \sup_{M \in \mathcal{C}} \langle K, M \rangle \leqslant \sup_{M \in \mathcal{C}_1} \langle K, M \rangle.$$

If we define a Hermitian operator  $H\in L(\mathbb{C}^{\Sigma^{\leqslant 1}},\mathbb{C}^{\Sigma^{\leqslant 1}})$  by

$$H((x, a), (y, b)) = H((y, b), (x, a)) = \frac{1}{2}\pi(x, y)V(a, b|x, y),$$

we get

 $\langle K,M\rangle = \langle H,R\rangle \text{,}$ 

Let  $C_1$  be the class containing all strategies M for which there is a positive semidefinite R such that M(a, b|x, y) = R((x, a), (y, b)). We have

$$\omega^{c}(G) = \sup_{M \in \mathcal{C}} \langle K, M \rangle \leqslant \sup_{M \in \mathcal{C}_{1}} \langle K, M \rangle.$$

If we define a Hermitian operator  $H\in L(\mathbb{C}^{\Sigma^{\leqslant 1}},\mathbb{C}^{\Sigma^{\leqslant 1}})$  by

$$H((x, a), (y, b)) = H((y, b), (x, a)) = \frac{1}{2}\pi(x, y)V(a, b|x, y),$$

we get

$$\langle \mathsf{K},\mathsf{M}\rangle = \langle \mathsf{H},\mathsf{R}\rangle,$$

which gives us a semidefinite program, where we optimize  $\langle H, R \rangle$  over positive semidefinite R satisfying (affine) linear constraints given in items 1–5 above.

## k<sup>th</sup> level of the NPA hierarchy (intuition)

In the k<sup>th</sup> level of the NPA hierarchy we consider operators R indexed by  $\Sigma^{\leq k}$  satisfying conditions similar to 1–5.

Then the class  $C_k$  contains all strategies M for which there exists such admissible operator R. We have:

 $\mathfrak{C}_1 \supseteq \mathfrak{C}_2 \supseteq \mathfrak{C}_3 \supseteq \cdots \supseteq \mathfrak{C}.$ 

**Thm.** The following are equivalent:

- *M* is a commuting measurement strategy.
- $M \in \mathfrak{C}_k$  for every k.

Equivalently:

$$\mathfrak{C} = \bigcap_{k=1}^{\infty} \mathfrak{C}_k.$$