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joint work with Manuel Bodirsky and Édouard Bonnet
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Constraint satisfaction variants

B – fixed relational structure
Input: list of constraints

Output:

CSP: Decide whether there is a solution that satisfies all constraints.

MinCSP: Find the minimal number of constraints to violate so that
the remaining constraints are satisfiable simultaneously.

VCSP: Find the minimal cost with which the constraints can be
satisfied (each constraint comes with a cost depending on the chosen
values).

Observation: VCSP generalizes CSP and MinCSP.
Proof: Model the tuples in relations with cost 0 and outside with cost 1
(for MinCSP) or ∞ (for CSP).
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Valued Constraint Satisfaction Problem

A valued structure Γ consists of:

(countable) domain C

(finite, relational) signature τ

for each R ∈ τ of arity k, a function RΓ: C k → Q ∪ {∞}

Definition (VCSP(Γ))

Input: u ∈ Q, an expression
ϕ(x1, . . . , xn) =

∑
i

ψi ,

where each ψi is an atomic τ -formula
Output: Is

inf
t∈Cn

ϕ(t) ≤ u in Γ?

Notation: For S ⊆ C k and a, b ∈ Q ∪ {∞}, Sb
a denotes the valued

relation such that Sb
a (t) = a if t ∈ S and Sb

a (t) = b otherwise.
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Optimization problems

least correlation clustering

Input: constraints of the form x = y and x ̸= y , threshold u

Output: Can we assign values to the variables violating at most u
constraints?

least cor. clustering with crisp equalities

Input: constraints of the form x = y and x ̸= y , threshold u

Output: Can we assign values to the variables violating at most u
inequalities and no equalities?

minimum feedback arc set

Input: a directed multigraph G , threshold u

Output: Can we remove at most u edges from G destroying all
directed cycles?

P = class of efficiently solvable problems
NP = class of problems with efficiently verifiable solution
NP-complete problems = hardest problems in NP
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Optimization problems

least correlation clustering = VCSP(Q; (=)10, (̸=)10)
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Optimization problems

least correlation clustering NP-complete

Input: constraints of the form x = y and x ̸= y , threshold u

Output: Can we assign values to the variables violating at most u
constraints?

least cor. clustering with crisp equalities P

Input: constraints of the form x = y and x ̸= y , threshold u

Output: Can we assign values to the variables violating at most u
inequalities and no equalities?

minimum feedback arc set NP-complete

Input: a directed multigraph G , threshold u

Output: Can we remove at most u edges from G destroying all
directed cycles?

P = class of efficiently solvable problems
NP = class of problems with efficiently verifiable solution
NP-complete problems = hardest problems in NP
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Complexity of VCSPs

Theorem (Kozik, Ochremiak ’15; Kolmogorov, Roĺınek, Krokhin ’15;
Bulatov ’17; Zhuk ’17)

Let Γ be a valued structure with a finite domain. Then VCSP(Γ) is in P or
NP-complete.

Goal: Study complexity of ‘tame enough’ infinite-domain VCSPs.

Γ – valued structure on a countable domain C over a signature τ

automorphism of Γ – permutation α of C such that for R ∈ τ of arity
k and every t ∈ C k , R(α(t)) = R(t)

Γ is called

an equality structure if Aut(Γ) = Sym(Q) (e.g., (Q; (=)10, (̸=)10)) ;

a temporal structure if Aut(Q;<) ⊆ Aut(Γ) (e.g., (Q; (<)10))
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Pp-constructability

K3 is the valued structure on {0, 1, 2} with single binary relation E defined:

E (x , y) =

{
0 if x ̸= y

∞ if x = y
0 1

2

Observation: VCSP(K3) is the 3-colorability problem; this problem is
known to be NP-complete.

pp-construction – a notion of ‘translating’ relations of one valued structure
into relations of another
↪→ special case on the same domains is expressibility

(generalizes primitive positive definability to the valued setting)

Proposition (Bodirsky, S., Lutz ’24)

If Aut(Q;<) ⊆ Aut(Γ) and Γ pp-constructs K3, then VCSP(Γ) is
NP-complete.
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Žaneta Semanǐsinová (TU Dresden) Temporal VCSPs AAA107, 21 Jun 2025 6 / 12



Fractional polymorphisms

C – relational τ -structure
Γ – valued τ -structure

Definition

A map f : Cn → C is called

a polymorphism of C if for every k-ary R ∈ τ and t1, . . . , tn ∈ C k

R(t1) ∧ · · · ∧ R(tn) ⇒ R(f (t1, . . . , tn));

a fractional polymorphism if for every k-ary R ∈ τ and
t1, . . . , tn ∈ C k

1

n
(R(t1) + · · ·+ R(tn)) ≥ R(f (t1, . . . , tn)).

Pol(C) – set of all polymorphisms of C
fPol(Γ) – set of all fractional polymorphisms of Γ
↪→ contains more than covered in the definition above
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Žaneta Semanǐsinová (TU Dresden) Temporal VCSPs AAA107, 21 Jun 2025 7 / 12



Fractional polymorphisms

C – relational τ -structure
Γ – valued τ -structure

Definition

A map f : Cn → C is called

a polymorphism of C if for every k-ary R ∈ τ and t1, . . . , tn ∈ C k

R(t1) ∧ · · · ∧ R(tn) ⇒ R(f (t1, . . . , tn));

a fractional polymorphism if for every k-ary R ∈ τ and
t1, . . . , tn ∈ C k

1

n
(R(t1) + · · ·+ R(tn)) ≥ R(f (t1, . . . , tn)).

Pol(C) – set of all polymorphisms of C
fPol(Γ) – set of all fractional polymorphisms of Γ
↪→ contains more than covered in the definition above
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Classification of equality VCSPs

Known for CSPs:

Theorem (Bodirsky, Kára ’08)

If A is an equality relational structure, then exactly one of the following
holds:

Pol(A) contains a unary constant operation or a binary injection and
CSP(A) is in P.

A pp-constructs K3 and CSP(A) is NP-complete.

Theorem (Bodirsky, Bonnet, S. ’24)

If Γ is an equality valued structure, then exactly one of the following holds:

fPol(Γ) contains a unary constant operation or a binary injection and
VCSP(Γ) is in P.

Γ pp-constructs K3 and VCSP(Γ) is NP-complete.
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Classification of temporal CSPs

Theorem (Bodirsky, Kára ’10)

Let A be a temporal relational structure. Then exactly one of the
following holds:

At least one of the operations const, min, mx, mi, ll, or one of their
duals lies in Pol(A) and CSP(A) is P.

A pp-constructs K3 and CSP(A) is NP-complete.

↪→ const is the unary constant 0 operation
↪→ the remaining polymorphisms are tailored to the structure (Q;<)

lex : Q2 → Q is an operation satisfying

lex(a, b) < lex(c , d) iff a < c or (a = c) ∧ b < d

Remark:

ll ∈ Pol(A) ⇒ lex ∈ Pol(A)

lex ∈ Pol(A) does not imply tractability of CSP(A)!

Žaneta Semanǐsinová (TU Dresden) Temporal VCSPs AAA107, 21 Jun 2025 9 / 12



Classification of temporal CSPs

Theorem (Bodirsky, Kára ’10)
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Temporal valued structures

crisp relation – attains only values 0 and ∞
essentially crisp valued structure – every relation attains ≤ 1 finite value

Theorem (Bodirsky, Bonnet, S. ’24)

Let Γ be a temporal valued structure. Then at least one of the following:

Γ pp-constructs K3 and VCSP(Γ) is NP-complete.

Γ is essentially crisp, fPol(Γ) contains min, mx, mi, ll, or one of their
duals, and VCSP(Γ) is in P.

const ∈ fPol(Γ) and VCSP(Γ) is in P.

lex ∈ fPol(Γ), all crisp relations expressible in Γ are preserved by min,
mx, mi, ll, or one of their duals, and VCSP(Γ) is in P.

Corollary (of the proof): Given a temporal valued structure Γ, it is
decidable whether VCSP(Γ) is in P or NP-complete.
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Open questions

Is the union of the conditions for tractability in the temporal VCSP
classification disjoint from the hardness condition (regardless of
P ̸= NP)?

Classify the complexity of VCSPs of valued structures Γ such that
Aut(Γ) contains the automorphism group of the countable random
graph. Is VCSP(Γ) in P whenever Γ does not pp-construct K3?

Žaneta Semanǐsinová (TU Dresden) Temporal VCSPs AAA107, 21 Jun 2025 11 / 12



Open questions

Is the union of the conditions for tractability in the temporal VCSP
classification disjoint from the hardness condition (regardless of
P ̸= NP)?

Classify the complexity of VCSPs of valued structures Γ such that
Aut(Γ) contains the automorphism group of the countable random
graph. Is VCSP(Γ) in P whenever Γ does not pp-construct K3?
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