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Constraint Satisfaction Problems

Definition (pp-formulas)
A first-order formula ϕ is primitive positive if it does not contain ¬,
∨ or ∀.

Definition (CSP)
Let A be a relational τ -structure. Then CSP(A) is the following
decision problem.

INPUT a primitive positive τ -sentence ϕ

OUTPUT YES if A |= ϕ, NO otherwise

Example
3-COLORING (CSP({r , g , b}, ̸=))
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Numeric CSPs

CSP(A; (Ri )i∈I ) is numeric if
▶ A ∈ {N,Z,Q,R,C, . . . } and
▶ all Ri are fo-definable over (A; +, ·, 0, 1, <).

Example
CSP(R; x2 + y2 ≤ 1, x + 1 = y)
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Tractable and NP-complete CSPs

Example (LP-feasibility)
CSP(R; a1x1 + · · ·+ anxn ≥ b, . . . ) with relations for all n ∈ N and
a1, . . . , an, b ∈ Q is solved in polynomial time by Khachiyan’s
ellipsoid algorithm.

Example (ILP-feasibility)
CSP(Z; a1x1 + · · ·+ anxn ≥ b, . . . ) with relations for all n ∈ N and
a1, . . . , an, b ∈ Z is NP-complete.
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Open Complexity

Definition (SDP-feasibility)

INPUT symmetric matrizes A1, . . . ,An,B ∈ Qm×m

OUTPUT YES if there exists x ∈ Rn s.t.
x1A1 + · · ·+ xnAn − B ⪰ 0, NO otherwise

Can be formulated as a CSP.

Theorem ([Ram97])
SDP-feasibility ∈ NP ∩ coNP or SDP-feasibility /∈ NP ∪ coNP.
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Semilinear Constraints

Definition
R ⊆ Rn is semilinear if it is defined by a finite Boolean combination
of linear inequalities with integer coefficients.

Theorem ([JT16])
CSP(R; +,R1, . . . ,Rn) where R1, . . . ,Rn are semilinear is in P or
NP-complete.
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P-NP-Dichotomy

Theorem ([Lad75])
If P ̸= NP then there is some problem in NP which is neither in P
nor NP-complete.

Theorem ([Bul17]; [Zhu20])
If A is finite, then CSP(A) is in P or NP-complete.



P-NP-Dichotomy

Theorem ([Lad75])
If P ̸= NP then there is some problem in NP which is neither in P
nor NP-complete.

Theorem ([Bul17]; [Zhu20])
If A is finite, then CSP(A) is in P or NP-complete.



Dichotomies for FO-Reducts

Definition
A relational structure (A;R1, . . . ,Rn) is a (finite signature)
first-order reduct of A if each Ri is first-order definable in A.

Theorem ([BK10], [BMM18], [Bod+18])
Every first-order reduct of

1. (Q;<),
2. (Z;<),
3. (Z; +, 1) containing +

has a CSP which is in P or is NP-complete.
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Arbitrarily Complex CSPs

Theorem ([Mat93])
S ⊆ Z is recursively enumerable iff it is pp-definable in (Z; ·,+, 1).

Corollary
CSP(Z; ·,+, 1) is undecidable.

Theorem ([BM17])
Every recursively enumerable problem is polynomial-time Turing
equivalent to the CSP of a first-order reduct of (Z; ·,+, 1).
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Complicated Subproblems

Definition (Sum-of-Square-Roots)

INPUT a list of natural numbers a1, . . . , an, b

OUTPUT YES if b ≤ √
a1 + · · ·+√

an, NO otherwise

In PSPACE but membership in PH ⊇ NP unknown.

SDP-feasibility

CSP(R,+, 1, x2 ≤ y)

CSP(R,+, 1, x2 + y2 ≤ 1)
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Failure of the Algebraic Approach

f : An → A is a polymorphism of (A, (Ri )i∈I ) means

f ( a1
1, . . . , an1 ) = b1

f ( a1
2, . . . , an2 ) = b2

...
...

...

f ( a1
m, . . . , anm ) = bm

∈ Ri ∈ Ri

For finite structures the collection of all polymorphisms determines
the CSP’s complexity.



Failure of the Algebraic Approach

f : An → A is a polymorphism of (A, (Ri )i∈I ) means

f ( a1
1, . . . , an1 ) = b1

f ( a1
2, . . . , an2 ) = b2

...
...

...

f ( a1
m, . . . , anm ) = bm

∈ Ri ∈ Ri ∈ Ri

For finite structures the collection of all polymorphisms determines
the CSP’s complexity.



Failure of the Algebraic Approach

f : An → A is a polymorphism of (A, (Ri )i∈I ) means

f ( a1
1, . . . , an1 ) = b1

f ( a1
2, . . . , an2 ) = b2

...
...

...

f ( a1
m, . . . , anm ) = bm

∈ Ri ∈ Ri ∈ Ri

For finite structures the collection of all polymorphisms determines
the CSP’s complexity.



Failure of the Algebraic Approach

Theorem ([JC95])
If A is finite and has binary max as a polymorphism, then
CSP(A) ∈ P.

This does not hold for infinite CSPs.

Example
(Z; 1,−1, 2x = y , x ≤ y + z) has max as a polymorphism but its
CSP is NP-complete.
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What can we do? Sampling

Definition
A has a sampling procedure if for every pp-sentence ϕ we can
construct in polynomial time a finite substructure Aϕ ⊆ A such that

A |= ϕ ⇐⇒ Aϕ |= ϕ.

Example
(Z, succ, 0) |= ϕ ⇐⇒ ({−n, . . . , n}, succ, 0) |= ϕ where n is the
number of variables in ϕ.

Observation
If A has a sampling procedure and max as a polymorphism, then
CSP(A) ∈ P.
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What can we do? Saturation

Theorem ([BMM18])
Let B be a first-order reduct of a countable, saturated structure A.
If R ⊆ An is first-order definable in A and consists of k orbits of
n-tuples in B, then

R pp-definable in B
⇐⇒ R preserved by all k-ary polymorphisms of B.

Main ingredient in classification of fo-reducts of (Z, <).
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Open Questions

1. Can we pp-define x6 ≤ y over R using linear relations and
x2 ≤ y?

2. Is CSP(R; x + 1 = y , x2 ≤ y) in P?

3. CSP(Q; x + 1 = y , x2 ≤ y) = CSP(R; x + 1 = y , x2 ≤ y)?

4. Classify the CSPs of first-order reducts of
4.1 (Z; succ, 0),
4.2 (Q; +),
4.3 (Z; +, <).
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