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Hardness Theorems

Theorem

The problem 3-SAT is NP-hard.

Theorem

Graph 3-coloring is NP hard.

Figure: A graph colored in .
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Graph H-Coloring

Problem (Graph H-Coloring)

input an (undirected) graph G

output yes if there is a map from the vertices of G to the vertices of H
mapping edges to edges.

output no else

Figure: A graph colored in .
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Graph H-Coloring

Problem (Graph H-Coloring)

input an (undirected) graph G

output yes if there is a map from the vertices of G to the vertices of H
mapping edges to edges.

output no else

Examples: graph 3-coloring, graph 2-coloring, graph 7/2-coloring, . . .

Theorem (Hell, Nešeťril 1990)

If H is bipartite or has a loop, then H-coloring is in P.
Else, the H-coloring problem is NP-complete.

We give a new, short, topological proof.
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Graph H-Coloring

Problem (Graph H-Coloring)

input an (undirected) graph G

output yes if there is a map from the vertices of G to the vertices of H
mapping edges to edges.

output no else

Examples: graph 3-coloring, graph 2-coloring, graph 7/2-coloring, . . .

Theorem (Hell, Nešeťril 1990)
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Simplicial Complex

Definition

An abstract simplicial complex is a set C of vertices together with a set
F ⊆ ℘(C) called faces such that

∀c ∈ C ∶ {c} ∈ F

∀A ∈ F ,A′ ⊆ A ∶ A′ ∈ F

holds.

Examples

C attendees of this conference,
F groups that joint the same session at some time

Geometrical

Figure: A contractible and a non-contractible simplicial complex.
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Simplicial Complex Coloring

Problem (Coloring problem of a simplicial complex (C ,F ))
input a set of variables V ,

for some variables v a vertex cv in C
some subsets of V called connected variables

output yes if there is a map f from V to C such that

f (v) = cv for respective variables and
connected variables are mapped to faces

output no else

Examples: Distributing tasks to people such that connected tasks are
processed by connected people.

Theorem (new)

If (C ,F ) is not contractible, then the (C ,F )-coloring problem is NP-hard.
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When and Why do Efficient Algorithms Exists for
Constraint Satisfaction?

A polymorphism of A is a homomorphism An → A.
A polymorphism f is Taylor, it it is prevented from being a projection by
specific identities.

Theorem (Bulatov, Jeavons, Krokhin 2005)(Bulatov 2017; Zhuk
2017)

The constraint satisfaction problem associated to a structure A is
NP-hard, if A has no Taylor polymorphism.

Else, it is in P.
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Taylor Polymorphism

A polymorphism f is Taylor, if it satisfies identities of the form

∃s1∀x , y ∶ s1(x , y) = f (x , ●, . . . , ●) = f (y , ●, . . . , ●)

∃s2∀x , y ∶ s2(x , y) = f (●, x , . . . , ●) = f (●, y , . . . , ●)

⋮

∃sn∀x , y ∶ sn(x , y) = f (●, ●, . . . , x) = f (●, ●, . . . , y)

Examples:

f (x , y) = f (y , x)

f (x , x , x) = f (x , x , y) = f (x , y , x) = f (y , x , x) = x
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Left to Show

What is left to show the Topological Hell–Nešeťril dichotomy?

Show that non-bipartite Taylor graphs have a loop. (Bulatov 2005)

Show that Taylor simplicial complexes are contractible.

Figure: A Taylor simplicial complex.

How? Topology . . .

Theorem (Corollary of Lefschetz fixed-point theorem)

Every automorphism of a finite contractible simplicial complex has a fixed
face.
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The Box Complex

Definition

The box complex of a graph is the set of complete bipartite subgraphs.

It is a finite poset with inclusion.

It is a simplicial complex where a face is a totally ordered subset.

Example

1

2

3

4

1—23

1—3

1—34

1—4
1—24

1—2

1—234

23—1

3—1

34—1

4—1
24—1

2—1

234—1

ϕ
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The Box Complex. Examples

1

2

3

4

1—23

1—3

1—34

1—4
1—24

1—2

1—234

23—1

3—1

34—1

4—1
24—1

2—1

234—1

ϕ

A

B

C

A—B

A—BC

A—C

AB—C

B—C

B—AC

B—A

BC—A

C—A

C—AB

C—B

AC—B

ϕ
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The Box Complex. Properties

1—23

1—3

1—34

1—4
1—24

1—2

1—234

23—1

3—1

34—1

4—1
24—1

2—1

234—1

ϕ

A—B

A—BC

A—C

AB—C

B—C

B—AC

B—A

BC—A

C—A

C—AB

C—B

AC—B

ϕ

It is a poset and topological space.

It has a automorphism ϕ.

It is connected (if the graph is connected, non-bipartite).

It has a sub-Taylor polymorphism (if the graph has a Taylor
polymorphism). That is no projection.
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Sub-Taylor Polymorphism

A monotone map f is sub-Taylor, if it satisfies identities of the form

∃s1∀x , y ∶ f (x , ●, . . . , ●) ≥ s1(x , y) ≤ f (y , ●, . . . , ●)

∃s2∀x , y ∶ f (●, x , . . . , ●) ≥ s2(x , y) ≤ f (●, y , . . . , ●)

⋮

∃sn∀x , y ∶ f (●, ●, . . . , x) ≥ sn(x , y) ≤ f (●, ●, . . . , y) and

∀x ∶ f (x , x , . . . , x) ≥ x
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Polymorphisms of Posets

Theorem (Larose, Zadori 2005)

The complex associated to a connected ramified poset with a
polymorphism, which is not a projection, is contractible.

Proof ≈ 2 pages in the proceedings

including a mistake found by Roman
Gundarin. Correct proof can be found in

Larose, Zadori: Finite posets and topological spaces in locally finite varieties (2005)

Larose: Taylor operations on finite reflexive structures (2006)

The ArXiv-version of this paper.
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Recap

graph box poset box complex

So ϕ has a fixed point.

So the graph has a loop.
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Main Results

A (connected) non-bipartite Taylor graph has a loop.

Theorem (Hell, Nešeťril 1990)

If graph H is bipartite or has a loop, then H-coloring is in P.
Else, the H-coloring problem is NP-complete.

Every simplicial complex with a (simplicial idempotent) Taylor
polymorphism is contractible.

Theorem (new)

If simplicial complex (C ,F ) is not contractible, then the (C ,F )-coloring
problem is NP-complete.
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