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Background

Constraint Satisfaction Problems
B:= a relational structure with signature τ .

Definition (CSP(B))
CSP(B) is the following computational problem:
• INPUT: a primitive positive τ -sentence

ϕ(x1, . . . , xn) := ∃x1 . . . ∃xn(R1(. . . ) ∧ · · · ∧Rm(. . . ))

• OUTPUT: does B ⊨ ϕ?

We focus on B
• finite; OR
• countably infinite and ω-categorical:1

Aut(B) ↷ Bn has finitely many orbits for each n ∈ N.

1Examples: (N,=), (Q, <), the (countable) Rado graph, . . .
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Background

Constraint Satisfaction Problems

Definition (CSP(B))
CSP(B) is the following computational problem:
• INPUT: a primitive positive τ -sentence

ϕ(x1, . . . , xn) := ∃x1 . . . ∃xn(R1(. . . ) ∧ · · · ∧Rm(. . . ))

• OUTPUT: does B ⊨ ϕ?

Examples

• k-colourability of graphs;

• 3SAT;

B is finite

• solving linear equations over a finite field;

• digraph acyclicity;

• graph colourability omitting monochromatic triangles.

}
B is
ω-categorical
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Background

The algebraic approach to CSPs

Algebraic approach to CSPs:

Higher arity symmetries of B (polymorphisms)1 capture the
computational complexity of CSP(B).

Polymorphisms=higher arity homomorphisms.

Pol(B):= polymorphism clone of B, the set of polymorphisms of B.

1f : Bn → B is a polymorphism if it preserves all relations of B:a1
1

...
a1
k

 , . . . ,

an
1

...
an
k

 ∈ RB ⇒

f(a1
1, . . . , a

n
1 )

...
f(a1

k, . . . , a
n
k )

 ∈ RB.
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Background

The algebraic approach to CSPs

Algebraic approach to CSPs:

Higher arity symmetries of B (polymorphisms) capture the
computational complexity of CSP(B).

Highly successful in the finite setting:

Theorem (Bulatov 2017; Zhuk 2017)

Let B be finite. Then:
• EITHER B has a Siggers polymorphism.1

In this case, CSP(B) is in P;
• OR B “pp-constructs” EVERYTHING (i.e., all finite structures)

In this case, CSP(B) is NP-complete.
1A polymorphism s : B6 → B such that

∀x, y, z s(x, y, x, z, y, z) = s(y, x, z, x, z, y).
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Background

The algebraic approach to CSPs

Algebraic approach to CSPs:

Higher arity symmetries of B (polymorphisms) capture the
computational complexity of CSP(B).

Often successful for B ω-categorical: complexity dichotomies for
CSPs of structures first-order definable in:
• (Q, <) (Bodirsky and Kára 2010);
• homogeneous graphs (Bodirsky, Martin, Pinsker, and Pongrácz 2019);
• countable unary structures (Bodirsky and Mottet 2018);

...
Bodirsky-Pinsker conjecture: CSPs of a large class of ω-categorical
structures1 satisfy a complexity dichotomy analogous to the
finite-domain one.

1First-order reducts of finitely bounded homogeneous structures.
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Background

Understanding low arity polymorphisms

Question

What is the minimal amount of structure in Pol(B) when CSP(B) is
not NP-hard (due to pp-constructing EVERYTHING)?

• Sufficient to consider case of a core;
• We can assume Pol(B) is essential: it has an essential

polymorphism (depending on more than one variable):
if Pol(B) is NOT essential, then B pp-interprets EVERYTHING;

• Bottom-up approach to CSPs: several complexity
classifications identify the behaviours of low arity essential
polymorphisms.
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Understanding low arity polymorphisms

Question

What is the minimal amount of structure in Pol(B) when CSP(B) is
not NP-hard (due to pp-constructing EVERYTHING)?

• Sufficient to consider case of a core: every endomorphism agrees
on each finite A ⊆ B with some automorphism;

• We can assume Pol(B) is essential: it has an essential
polymorphism (depending on more than one variable):
if Pol(B) is NOT essential, then B pp-interprets EVERYTHING;
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Finding binary symmetries

Binary essential polymorphisms
Complexity classifications of ω-categorical CSPs often show that
under tame assumptions B has a binary essential polymorphism!

(Bodirsky and Kára 2008):

(Bodirsky and Kára 2010)

(Bodirsky and Pinsker 2014):

(Bodirsky 2021; Mottet and Pinsker 2024):

(Mottet, Nagy, and Pinsker 2024)

Also done in:
• Bodirsky, Jonsson,

and Van Pham
2017;

• Bodirsky and
Mottet 2018;

• Kompatscher and
Van Pham 2018;

• Bodirsky, Martin,
Pinsker, and
Pongrácz 2019;

• Bodirsky and
Greiner 2020.
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Finding binary symmetries

Binary essential polymorphisms
Complexity classifications of ω-categorical CSPs often show that
under tame assumptions B has a binary essential polymorphism!
(Bodirsky and Kára 2008):

(Bodirsky and Kára 2010)

(Bodirsky and Pinsker 2014):

(Bodirsky 2021; Mottet and Pinsker 2024):

(Mottet, Nagy, and Pinsker 2024)

Also done in:
• Bodirsky, Jonsson,

and Van Pham
2017;

• Bodirsky and
Mottet 2018;

• Kompatscher and
Van Pham 2018;

• Bodirsky, Martin,
Pinsker, and
Pongrácz 2019;

• Bodirsky and
Greiner 2020.

ISSUE: These techniques are ad-hoc!
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Finding binary symmetries

Answering a question of Bodirsky

Question (Bodirsky 2021)

Does every ω-categorical core with an essential polymorphism also
have a binary essential polymorphism?
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Finding binary symmetries

Answering a question of Bodirsky

Question (Bodirsky 2021)

Does every ω-categorical core with an essential polymorphism also
have a binary essential polymorphism?

Answer (Marimon and Pinsker 2025a): No.
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Finding binary symmetries

Answering a question of Bodirsky

Question (Bodirsky 2021)

Does every ω-categorical core with an essential polymorphism also
have a binary essential polymorphism?

“Moral” answer (for the purposes of CSPs):Yes!

Theorem (Marimon and Pinsker 2025a)

Let B be a core which is
• EITHER ω-categorical;
• OR finite where Aut(B) is not a Boolean group acting freely.2

Suppose that B does not pp-interpret EVERYTHING.
Then, Pol(B) contains a binary essential polymorphism.

2Boolean group: every non-identity element has order 2.
Aut(B) acts freely: any automorphism fixing a point is the identity.
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Finding binary symmetries

Answering a question of Bodirsky

Question (Bodirsky 2021)

Does every ω-categorical core with an essential polymorphism also
have a binary essential polymorphism?

“Moral” answer (for the purposes of CSPs):Yes!

Theorem (Marimon and Pinsker 2025a)

Let B be a core which is
• EITHER ω-categorical;
• OR finite where Aut(B) is not a Boolean group acting freely.

Suppose that B does not pp-interpret EVERYTHING.
Then, Pol(B) contains a binary essential polymorphism.

This is optimal.
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Classifying “minimal” operations

Rosenberg’s Theorem
Our strategy: generalise a classic theorem of Rosenberg.

Theorem (Rosenberg 1986)

Let B be a finite core and Aut(B) = {1}. Suppose Pol(B) is essential.
Then, Pol(B) contains one of the following:

1 a binary essential operation;
2 a ternary majority operation;
3 a minority of the form x+ y + z in some Boolean group (B,+);
4 a k-ary essential semiprojection for some k ≥ 3.
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Classifying “minimal” operations

Rosenberg’s Theorem
Our strategy: generalise a classic theorem of Rosenberg.

Theorem (Rosenberg 1986)

Let B be a finite core and Aut(B) = {1}. Suppose Pol(B) is essential.
Then, Pol(B) contains one of the following:

1 a binary essential operation;
2 a ternary majority operation;
3 a minority of the form x+ y + z in some Boolean group (B,+);
4 a k-ary essential semiprojection for some k ≥ 3.

Ternary majority: an operation m : B3 → B such that

∀x, y m(x, x, y) = m(x, y, x) = m(y, x, x) = m(x, x, x) = x;
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Classifying “minimal” operations

Rosenberg’s Theorem
Our strategy: generalise a classic theorem of Rosenberg.

Theorem (Rosenberg 1986)

Let B be a finite core and Aut(B) = {1}. Suppose Pol(B) is essential.
Then, Pol(B) contains one of the following:

1 a binary essential operation;
2 a ternary majority operation;
3 a minority of the form x+ y + z in some Boolean group (B,+);
4 a k-ary essential semiprojection for some k ≥ 3.

Ternary minority: an operation m : B3 → B such that

∀x, y m(x, x, y) = m(x, y, x) = m(y, x, x) = m(y, y, y) = y;
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Classifying “minimal” operations

Rosenberg’s Theorem
Our strategy: generalise a classic theorem of Rosenberg.

Theorem (Rosenberg 1986)

Let B be a finite core and Aut(B) = {1}. Suppose Pol(B) is essential.
Then, Pol(B) contains one of the following:

1 a binary essential operation;
2 a ternary majority operation;
3 a minority of the form x+ y + z in some Boolean group (B,+);
4 a k-ary essential semiprojection for some k ≥ 3.

Semiprojection: f : Bk → B such that there is an i ∈ {1, . . . , k}
such that whenever (a1, . . . , ak) is a non-injective tuple from B,

f(a1, . . . , ak) = ai.
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Classifying “minimal” operations

Rosenberg’s Theorem
Our strategy: generalise a classic theorem of Rosenberg.

Theorem (Rosenberg 1986)

Let B be a finite core and Aut(B) = {1}. Suppose Pol(B) is essential.
Then, Pol(B) contains one of the following:

1 a binary essential operation;
2 a ternary majority operation;
3 a minority of the form x+ y + z in some Boolean group (B,+);
4 a k-ary essential semiprojection for some k ≥ 3.

Rosenberg’s Theorem classifies “minimal” operations in Pol(B).
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Classifying “minimal” operations

Rosenberg’s theorem for non-rigid structures

Theorem (Marimon and Pinsker 2025a)

Let B be a (possibly infinite) core.
Suppose Aut(B) is not a Boolean group acting freely.
Suppose Pol(B) is essential. Then, it contains one of the following:

1 a binary essential operation;

2 an essential k-ary orbit-semiprojection for 3 ≤ k ≤ s, where
s:= number of Aut(B)-orbits.
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Classifying “minimal” operations

Rosenberg’s theorem for non-rigid structures

Theorem (Marimon and Pinsker 2025a)

Let B be a (possibly infinite) core.
Suppose Aut(B) is not a Boolean group acting freely.
Suppose Pol(B) is essential. Then, it contains one of the following:

1 a binary essential operation;

2 an essential k-ary orbit-semiprojection for 3 ≤ k ≤ s, where
s:= number of Aut(B)-orbits.

Orbit-semiprojection: f : Bk → B such that there is an
i ∈ {1, . . . , k} and some α ∈ End(B) such that whenever
(a1, . . . , ak) contains at least two elements in the same orbit,

f(a1, . . . , ak) = αai.
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Classifying “minimal” operations

Rosenberg’s theorem for non-rigid structures

Theorem (Marimon and Pinsker 2025a)

Let B be a (possibly infinite) core.
Suppose Aut(B) is not a Boolean group acting freely.
Suppose Pol(B) is essential. Then, it contains one of the following:

1 a binary essential operation;

2 an essential k-ary orbit-semiprojection for 3 ≤ k ≤ s, where
s:= number of Aut(B)-orbits.

For B ω-categorical:
• Aut(B) ↷ B is not free, so theorem always applies;
• We strictly improve a previous result of Bodirsky and Chen 2007,

which included a “majority” case, and a much weaker 2 .
More on this
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Classifying “minimal” operations

Rosenberg’s theorem for non-rigid structures

Theorem (Marimon and Pinsker 2025a)

Let B be a (possibly infinite) core.
Suppose Aut(B) is not a Boolean group acting freely.
Suppose Pol(B) is essential. Then, it contains one of the following:

1 a binary essential operation;

2 an essential k-ary orbit-semiprojection for 3 ≤ k ≤ s, where
s:= number of Aut(B)-orbits.

When Aut(B) is the free action of a (non-trivial) Boolean group,
if s = 2n for some n ∈ N or is infinite, Pol(B) may also contain:

3 q = αm, where
• α ∈ Aut(B);
• m is a minority of the form x+ y + z in a Boolean group;
• for all α, β, γ ∈ Aut(B), ∀x, y, z m(αx, βy, γz) = αβγm(x, y, z).
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Classifying “minimal” operations

Thank you!

A brief recap:
• We study polymorphisms of cores when Aut(B) ̸= {1};
• When CSP(B) is not NP-hard we can in general find binary

essential polymorphisms;
• We classify polymorphisms that have to appear if Pol(B) is

essential and Aut(B) ̸= {1};
• Surprisingly, we get fewer cases than if Aut(B) = {1}.

QR code to preprint:
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Extras

Bodirsky and Chen’s Theorem

Theorem (Bodirsky and Chen 2007)

Let B be an ω-categorical core. Suppose Pol(B) is essential.
Then, Pol(B) contains one of the following:

1 a binary essential operation;
2 a ternary quasi-majority operation;
3 an essential k-ary semiprojection for 3 ≤ k ≤ 2r − s, where

• s is the number of Aut(B)-orbits on B;
• r is the number of Aut(B)-orbits on B2.

Back to main presentation
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Extras

Bodirsky and Chen’s Theorem

Theorem (Bodirsky and Chen 2007)

Let B be an ω-categorical core. Suppose Pol(B) is essential.
Then, Pol(B) contains one of the following:

1 a binary essential operation;
2 a ternary quasi-majority operation;
3 an essential k-ary semiprojection for 3 ≤ k ≤ 2r − s, where

• s is the number of Aut(B)-orbits on B;
• r is the number of Aut(B)-orbits on B2.

Ternary quasi-majority: an operation m : B3 → B such that

∀x, y m(x, x, y) = m(x, y, x) = m(y, x, x) = m(x, x, x)��XX= x;

Back to main presentation
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Extras

Bodirsky and Chen’s Theorem

Theorem (Bodirsky and Chen 2007)

Let B be an ω-categorical core. Suppose Pol(B) is essential.
Then, Pol(B) contains one of the following:

1 a binary essential operation;
2 a ternary quasi-majority operation;
3 an essential k-ary quasi-semiprojection for 3 ≤ k ≤ 2r− s, where

• s is the number of Aut(B)-orbits on B;
• r is the number of Aut(B)-orbits on B2.

Quasi-semiprojection: f : Bk → B such that there is an
i ∈ {1, . . . , k} and g ∈ End(B) such that whenever (a1, . . . , ak) is a
non-injective tuple,

f(a1, . . . , ak) = ai.

Back to main presentation
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Extras

Bodirsky and Chen’s Theorem
Our improvements in the ω-categorical context:

Theorem (Marimon and Pinsker 2025a)

Let B be an ω-categorical core. Suppose Pol(B) is essential.
Then, Pol(B) contains one of the following:

1 a binary essential operation;
2 a ternary quasi-majority operation;
3 an essential k-ary orbit-semiprojection for 3 ≤ k ≤ s

Back to main presentation
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Extras

pp-interpretations and pp-constructions

A pp-formula is a first-order formula consisting only of existential
quantifiers, conjunctions, and atomic formulas.

Definition (pp-interpretation, pp-construction)

B pp-interprets A if there is partial surjective h : Bd → A such that
for every R ⊆ An that is a relation of A (or A, or equality on A),
h−1(R) is defined by a pp-formula in Bnd.

B pp-constructs A if it is homomorphically equivalent to a structure
that pp-interprets A.
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