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Kőnig vs Ramsey

Dénes Kőnig

1884 - 1944

Budapest,
Hungary

Student
of Minkowski

Theorem (Kőnig, 1927)

Any finitely branching, infinite tree
contains an infinite path.

.

Frank P. Ramsey

1903 - 1930

Cambridge,
UK

Friend of
Wittgenstein

Theorem (Ramsey, 1928)

Something about graph colourings
/ strict linear orders.
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Kőnigs Lemma

Lemma (Kőnig, 1927)

Any finitely branching, infinite tree contains an infinite path.

{infinite paths} = {(vn ∈ Vn | en(vn+1) = vn} = limn∈N Vn

Lemma (Kőnig, 1927), rephrased

Any functor F : (N,≤)op → Set where where Fn is finite and non-empty
for all n ∈ N, has non-empty limit.
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Example: 3-colouring

Example:

A graph G is 3-colourable if all its finite subgraphs are 3-colourable.

Proof.

If G countable:
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Improvements?

Lemma (Kőnig, 1927), rephrased

For any functor F : (N,≤)op → Set we have

Fn ̸= ∅ finite ∀n ∈ N =⇒ limF ̸= ∅

Definition

Call C Kőnig if for every functor F : Cop → Set we have

FC ̸= ∅ finite ∀C ∈ C =⇒ limF ̸= ∅
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Obstacles for being Kőnig

Forks

Parallel arrows
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Obstacles: Forks

Definition

A category is called confluent if every two objects with a common lower
bound also have a common upper bound.
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Parallel arrows

Potential fix

Require that for any two arrows f , g there is h ”coequalizing” them.

Proposition

this + confluent =⇒ Kőnig
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Posets

Example

A graph G is 3-colourable if all its finite subgraphs are 3-colourable.

Proof.
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Ramsey’s Theorem

Theorem (Ramsey 1928)

For any k there exists n such that any edge coloring of the complete n
element graph contains a monochromatic clique of size k .

k = 3, n = 6
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Ramsey’s Theorem

Let C be the category of finite linear orders and embeddings.

Morally

Arrows cannot be ”coequalized”, but for any property of arrows, there is h
such that h ◦ f and h ◦ g are the same, w.r.t that property.
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The Ramsey Property

Definition

A category C is called Ramsey if for all A,B ∈ C, there is C ∈ C such that
for all χ : Hom(A,C ) → {0, 1} there is h : B → C such that

Hom(A,B)
h∗−→ Hom(A,C )

χ−→ {0, 1}

is constant.

Theorem (Ramsey, 1928)

The category of finite linear orders and embeddings is Ramsey.
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Theorem (H.)

For a small, locally finite category C, TFAE:
1 C is confluent and Ramsey

2 C is Kőnig, i.e. for all functors D : Cop → Set we have

DC ̸= ∅ finite ∀C ∈ C =⇒ limD ≠ ∅

=
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