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Kőnig’s tree lemma

Lemma (Kőnig, 1927)

Any finitely branching, infinite tree contains an infinite path.

{infinite paths} = {(vn ∈ Vn | en(vn+1) = vn} = limn∈N Vn

Lemma (Kőnig, 1927), rephrased

Any functor F : (N,≤)op → Set where where Fn is finite and non-empty
for all n ∈ N, has non-empty limit.
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Example: 3-colouring

Example:

A graph G is 3-colourable if all its finite subgraphs are 3-colourable.

Proof.

If G countable:
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Improvements?

Lemma (Kőnig, 1927), rephrased

For any functor F : (N,≤)op → Set we have

Fn ̸= ∅ finite ∀n ∈ N =⇒ limF ̸= ∅

Replace (N,≤) with an arbitrary category C:

Definition

Call C Kőnig if for every functor F : Cop → Set we have

FC ̸= ∅ finite ∀C ∈ C =⇒ limF ̸= ∅
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Obstacles for being Kőnig

Forks

Parallel arrows
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Obstacles: Forks

Definition

A category is called confluent if every two objects with a common lower
bound also have a common upper bound.

Remark

If C consists of finite structures and embeddings, then JEP =⇒ confluence.
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Posets

Lemma

A poset is Kőnig if and only if it is confluent.

Example

A graph G is 3-colourable if all its finite subgraphs are 3-colourable.

Proof.
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Parallel arrows

Potential fix

Require that for any two arrows f , g there is h ”coequalizing” them.

Lemma

this + confluent =⇒ Kőnig

Remark

If C consists of finite structures and embeddings, there are no ”coequalizers”
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Ramsey

Remark

If C consists of finite structures and embeddings, there are no ”coequalizers”

Definition

A category C is called Ramsey if for all A,B ∈ C and k ∈ N, there is C ∈ C
such that for all χ : Hom(A,C ) → [k] there is h : B → C such that

Hom(A,B)
h∗−→ Hom(A,C )

χ−→ [k]

is constant.

Morally

For any property of arrows, there is h such that h ◦ f and h ◦ g are the
same, w.r.t that property.
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Theorem

For a small, locally finite category C, TFAE:
1 C is confluent and Ramsey

2 C is Kőnig, i.e. for all functors F : Cop → Set we have

FC ̸= ∅ finite ∀C ∈ C =⇒ limF ̸= ∅

How to apply

1 Local to global: ”something exists everywhere locally =⇒ it exists
globally”

∀C ∈ C : FC ̸= ∅ =⇒ limF ̸= ∅
2 Global to local: ”globally nothing bad happens =⇒ somewhere locally

nothing bad happens”

limF = ∅ =⇒ ∃C ∈ C : FC = ∅
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Proving Ramseyness - global to local

Theorem

If C is locally finite, then Kőnig =⇒ Ramsey

Proof.

Fix A,B ∈ C and k ∈ N.

F : Cop → Set

C 7→ {bad colourings of Hom(A,C )} =

= {χ : Hom(A,C ) → [k] | ∀h : B → C , χ ◦ h∗ not constant}

Show that limF = {global bad colourings} = ∅.

Max Hadek (Charles University) A compactness lemma for Ramsey categories CAS, 25 Febuary 2025 11 / 13



Proving Ramseyness - continued

Proof - continued.

(χC : Hom(A,C ) → [k])C∈C ∈ lim with compatibility:

=⇒ every global colouring is constant
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Application: Canonization

Definition

Let A and B be (Fräıssé) classes of finite relational structures. An
(injective) canonical funtion Φ : A → B is a functor that preserves domains,
i.e. ∀X ∈ A

|X| = |Φ(X)|

Theorem (Bodirsky, Pinsker, Tsankov 2011)

Let A,B be Fräıssé limits of A,B respectively and f : A → B an (injective)
function. If A Ramsey then there is a canonical function Φ : A → B such
that for every X ∈ A there is an embedding ι : X → A such that

Φ(X) = B[f ◦ ι]

Proof.

Let F : Aop → Set, X 7→ {B[f ◦ ι] | ι : X → A}. Take Φ ∈ limF .
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