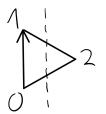
A non-finitely related minimal Taylor algebra

Max Hadek

Charles University Prague

AAA106, 8 Feb 2025



Max Hadek (Charles University Prague) A non-finitely related minimal Taylor algebra

AAA106, 8 Feb 2025

1/13

Definition: minimal Taylor

Definition

A finite idempotent algebra \mathbb{A} is called *Taylor*, if

- $\bullet~\mathbb{A}$ satisfies a non-trivial Maltsev condition
- (Maroti, McKenzie) $\operatorname{Clo}(\mathbb{A})$ contains a weak-NU operation

$$w(y, x, \ldots, x) \approx w(x, y, x, \ldots, x) \approx \cdots \approx w(x, \ldots, x, y)$$

• (Barto, Kozik) $\operatorname{Clo}(\mathbb{A})$ contains cyclic operations for all primes $p > |\mathbb{A}|$

$$c_p(x_1, x_2, \ldots, x_p) \approx c_p(x_p, x_1, \ldots, x_{p-1})$$

• $HS(P)(\mathbb{A})$ does not contain a naked set

Definition

A Taylor algebra \mathbb{A} is called *minimal*, if any other algebra \mathbb{B} with $\operatorname{Clo}(\mathbb{B}) \subsetneq \operatorname{Clo}(\mathbb{A})$ is not Taylor.

Max Hadek (Charles University Prague) A non-finitely related minimal Taylor algebra

Definition: finitely related

Definition

An algebra \mathbb{A} is called *finitely related* if there is a finite set of relations $\{R_1, \ldots, R_n\}$ on the domain of \mathbb{A} , such that

 $f \in \operatorname{Clo}(\mathbb{A}) \iff f$ preserves all R_i

Definition: finitely related

Definition

An algebra \mathbb{A} is called *finitely related* if there is a finite set of relations $\{R_1, \ldots, R_n\}$ on the domain of \mathbb{A} , such that

 $f \in \operatorname{Clo}(\mathbb{A}) \iff f$ preserves all R_i

Conjecture (Brady)

Every minimal Taylor algebra is finitely related.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Definition: finitely related

Definition

An algebra \mathbb{A} is called *finitely related* if there is a finite set of relations $\{R_1, \ldots, R_n\}$ on the domain of \mathbb{A} , such that

 $f \in \operatorname{Clo}(\mathbb{A}) \iff f$ preserves all R_i

Conjecture (Brady)

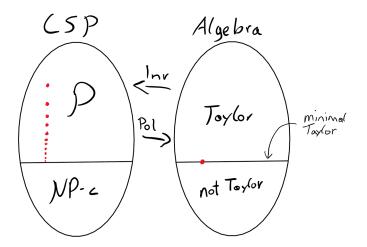
Every minimal Taylor algebra is finitely related.

Theorem (H.)

There is a minimal Taylor algebra that is not finitely related.

ヘロト 人間ト ヘヨト ヘヨト

Connection to constraint satisfaction problems



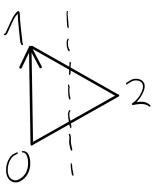
・ 同 ト ・ ヨ ト ・ ヨ ト

3

The algebra

- $\mathbb{A} = (\{0, 1, 2\}, m) \quad m \text{ ternary}$
 - $m|_{\{0,2\}} = m|_{\{1,2\}} = maj$
 - $m|_{\{0,1\}}(x,y,z) = x \lor y \lor z$
 - $m(0,1,2) = \cdots$

$$\cdots = m(2,1,0) = 1$$



(4) (日本)

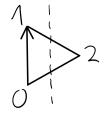
5/13

Theorem (H.)

The algebra $\mathbb A$ is minimal Taylor, but not finitely related.

Understanding the algebra

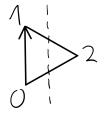
- *m* is idempotent
- m is symmetric \implies \mathbb{A} Taylor
- $\theta = (0, 1 \mid 2)$ is congruence
- $m/\theta = maj$
- \implies We understand $Clo(\mathbb{A})$ modulo θ !



< ∃⇒

Understanding the algebra

- *m* is idempotent
- m is symmetric \implies \mathbb{A} Taylor
- $\theta = (0, 1 \mid 2)$ is congruence
- $m/\theta = maj$
- \implies We understand $Clo(\mathbb{A})$ modulo $\theta!$



Proposition

Let $f \in Clo(\mathbb{A})$, then • (monotone) f(2, ..., 2, 2, 0, ..., 0) = 0 implies f(2, ..., 2, 0, 0, ..., 0) = 0• (self dual) f(2, ..., 2, 0, ..., 0) = 0 if and only if f(0, ..., 0, 2, ..., 2) = 2

3

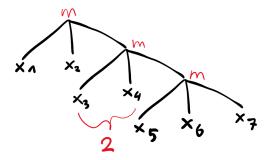
・ロト ・四ト ・ヨト ・ヨト

Inside the congruence

Proposition

Let $f \in \operatorname{Clo}(\mathbb{A})$ with $f(2, \ldots, 2, 0/1, \ldots, 0/1) = 0/1$. Then

$$f(2,\ldots,2,y_1,\ldots,y_k)|_{\{0,1\}^k} = \bigvee$$
 some y_i



< ∃ >

< 47 ▶

э

Deciding finite relatedness: does theory help?

Theorem (Aichinger, Mayr, McKenzie)

If an algebra has a cube term, then it is finitely related.

$$t(x,?,...,?) = y, ..., t(?,...,?,x) = y$$

Deciding finite relatedness: does theory help?

Theorem (Aichinger, Mayr, McKenzie)

If an algebra has a cube term, then it is finitely related.

$$t(x,?,...,?) = y, ..., t(?,...,?,x) = y$$

Theorem (Barto, Bulin) If $\exists B : B \triangleleft_I \mathbb{A}$ but $B \not\triangleleft \mathbb{A}$, then \mathbb{A} is not finitely related.

Deciding finite relatedness: does theory help?

Theorem (Aichinger, Mayr, McKenzie)

If an algebra has a cube term, then it is finitely related.

$$t(x,?,...,?) = y, ..., t(?,...,?,x) = y$$

Theorem (Barto, Bulin) If $\exists B : B \triangleleft_J \mathbb{A}$ but $B \not \triangleleft \mathbb{A}$, then \mathbb{A} is not finitely related.

Both theorems do not apply to \mathbb{A} !

How to prove non-finitely related?

Observation

A is not finitely related iff $\forall n \exists f_n$ of arity > n such that $f_n \notin Clo(\mathbb{A})$ but all *n*-ary minors of f_n are in $Clo(\mathbb{A})$.

How to prove non-finitely related?

Observation

A is not finitely related iff $\forall n \exists f_n$ of arity > n such that $f_n \notin Clo(\mathbb{A})$ but all *n*-ary minors of f_n are in $Clo(\mathbb{A})$.

Proof.

Show (\Leftarrow): Let $\{R_1, R_2, ...\}$ be a relational basis. Find $f_n \notin Clo(\mathbb{A})$ where f_n does not preserve some R_i , but all its *n*-ary minors do.

$$f_n(\underbrace{\bar{x}_1, \bar{x}_2, \bar{x}_3, \dots, \bar{x}_{ar}}_{i}) \notin R_i$$

 $\in R_i$, more than *n* many

Then $|R_i| > n$, hence $|\{R_1, R_2, ...\}| = \infty$.

Observation

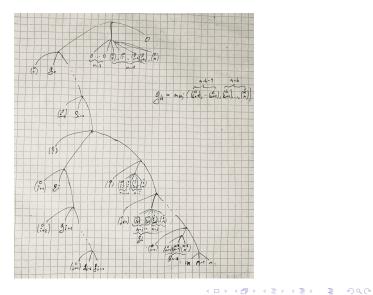
An algebra \mathbb{A} is not finitely related iff $\forall n \exists f_n$ of arity > n such that all *n*-ary minors of f_n are in $\operatorname{Clo}(\mathbb{A})$, but $f_n \notin \operatorname{Clo}(\mathbb{A})$.

Strategy

- Find relations R_n of arity n
- Construct f_n for every n of arity $\approx n^2$
- Show f_n does not preserve R_n , i.e $f_n \notin Clo(\mathbb{A})$
- Show that *n*-ary minors of f_n are in $Clo(\mathbb{A})$

10/13

A big tree



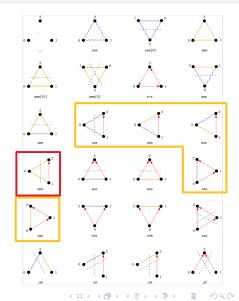
Max Hadek (Charles University Prague) A non-finitely related minimal Taylor algebra

AAA106, 8 Feb 2025

11/13

Minimal Taylor algebras on 3 elements

- (Brady) there are 24
- (Barto, Brady, Jankovec, Vucaj, Zhuk) 18 are "well behaved": "nice" finite relational description
- (H.) one is evil
- 5 are unstudied
- Picture by (Vucaj)



Funded by the European Union (ERC, POCOCOP, 101071674). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.