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Dichotomies

k-CoL: On input graph G decide if
there is a k-vertex colouring without

monochromatic edges 1-CoL
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Dichotomies
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Dichotomies

D-CoL: On input digraph
(structure) G decide if there is a
homomorphism f: G — D Cr-Cor
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NP-richness

Forbidden vertex-coloured pattern problems
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NP-richness

ORD(F): On input graph G decide
if there is a linear ordering < such
that (G, <) is F-free
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NP-richness

<
CSPs of reducts
of finitely bounded structures

What makes a fragment £ of ESO have the full-computational power of NP?
Is the tractability problem for £ decidable?

Is there a “natural” fragment of ESO that is not NP-rich but has no dichotomy?
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Graph modification problems

Edge-modification

For a fixed graph class C and an input graph G determine the minimum
number of edge modifications to G so that it belongs to C.

> Edge-deletion problems (Yanakkakis 1981).
> Hardness of Edge-Modification problems (Alon, Stav 2009).

» Dichotomy Results on the Hardness of H-free Edge Modification Problems
(Aravind, Sandeep, Sivadasan 2017).

> Hardness of approximation for H-free edge modification problems (Bliznets,
Cygan, Komosa, Pilipczuk 2018)



Graph modification problems

Resilience problems
For a fixed query u, determine the resilience of x in an input database D.

» The Complexity of Resilience and Responsibility for Self-Join-Free Conjunctive
Queries (Freire, Gatterbauer, Immerman, Meliou 2015)

> New Results for the Complexity of Resilience for Binary with Self-Joins (Freire,
Gatterbauer, Immerman, Meliou 2020).

» A Unified Approach for Resilience and Causal Responsibility with Integer Linear
Programming (ILP) and LP Relaxations. (Makhija, Gatterbauer 2023).

» The Complexity of Resilience Problems via Valued Constraint Satisfaction
(Bodirsky, Semaniginova, Lutz 2024).



Graph modification problems

Vertex-deletion

For a fixed graph class C and an input graph G determine the minimum k so
that G — U belongs to C for some |U| < k.

> Node-Deletion NP-Complete Problems (Krishnamoorthy, Deo 1979)

» The node-deletion problem for hereditary properties is NP-complete (Lewis,
Yanakkakis 1980).

> Finding odd-cycle transversals (Reed, Smith, Vetta 2004)

»> On the Descriptive Complexity of Vertex Deletion Problems (Bannach,
Chudigiewitsch, Tantau 2024)



Graph modification problems

Modification to first-order logic

Edge-modification: Given a graph G and a positive integer k test whether it is
possible to modify at most k edges so that it satisfies ¢.

Edge-completion: Given a graph G and a positive integer k test whether it is possible
to add at most k edges from G so that it satisfies ¢.

Edge-deletion: Given a graph G and a positive integer k test whether it is possible to
remove at most k edges from G so that it satisfies ¢.

Vertex-deletion: Given a graph G and a positive integer k test whether it is possible
to remove at most k vertices from G so that it satisfies ¢.

On the parameterized complexity of graph modification to first-order logic properties (Fomin, Golovach, Thilikos

2020)
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Graph modification problems

Modification to first-order logic (without parameter k)

Edge-completion: Given a graph G test whether we can add edges to G so that it
satisfies ¢.

Vertex-deletion: Given a graph G test whether we can remove vertices of G so that it
satisfies ¢.
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Hereditary first-order logic

A structure A hereditarily satisfies ¢ if every substructure B of A satisfies ¢.

HER(¢): On input A decide if every substructure B of A satisfies ¢

Ex. 1 ¢ := exists a vertex of degree at most 1



Hereditary first-order logic

A structure A hereditarily satisfies ¢ if every substructure A’ of A satisfies ¢.

HER(¢): On input A decide if every substructure B of A satisfies ¢

Ex. 2 ¢ := exists a simplicial vertex



Hereditary first-order logic

A structure A hereditarily satisfies ¢ if every substructure A’ of A satisfies ¢.

Ex. 3 ¢ := exists a source
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Hereditary first-order logic

A structure A hereditarily satisfies ¢ if every substructure A’ of A satisfies ¢.

Qst. Is every problem in HerFO solvable in polynomial-time?

Thm. The tractability problem for HerFO is undecidable.



Hereditary first-order logic

“Qst.” What is the computational power of HerFO?
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Extensional ESO

F-free edge-completion: Given a graph G test whether it is possible to add
edges to G so that it becomes F-free.

Ex 1. Acyclic digraphs: extend the edge relation to a (strict) linear order.

O

O O O O=>0—=>0



Extensional ESO

Edge-completion to ¢: Given a graph G test whether it is possible to add
edges so that it satisfies ¢.

Ex 2. (Pach, 1971) A graph G has circular chromatic number < 3 iff G can be
extended to a maximal triangle-free graphs that avoids:
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Petersen minus vertex

Santiago G.P. Her-FO and extensional ESO
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Extensional ESO is the fragment of ESO

JE. [Vx,y E'(x,y) = E(x,y)] A (V,E)is F-free

Ex 1 F-free edge completion problems (e.g., acyclic digraphs)
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Extensional ESO is the fragment of ESO

JE. [Vx,yE'(x,y) = E(x,y)} A @

Ex 1 F-free edge completion problems (e.g., acyclic digraphs)

Ex 2. Edge-completion to ¢



Extensional ESO

Extensional ESO is the fragment of ESO

IR, B, G. /\ Vx. C'(x) = C(x)| A(R,B,G) is a proper 3-colouring
Ce{R,B,G}

Ex 1 F-free edge completion problems (e.g., acyclic digraphs)

Ex 2. Edge-completion to ¢

Ex 4. Pre-coloured 3-CoL (more generally, pre-coloured H-CoL)
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Extensional ESO
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Extensional ESO
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Extensional ESO

finitely bounded structures
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Thank you for your attention!
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