

Hereditary FO and Extensional ESO

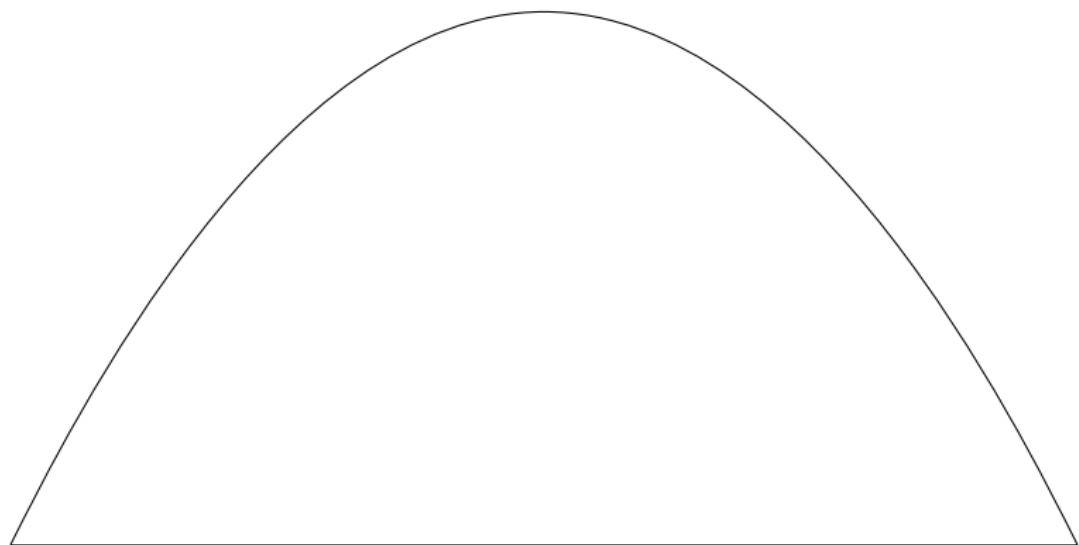
Santiago Guzmán-Pro
joint work with Manuel Bodirsky

Institute of Algebra
TU Dresden

Midsummer Combinatorial Workshop XXX

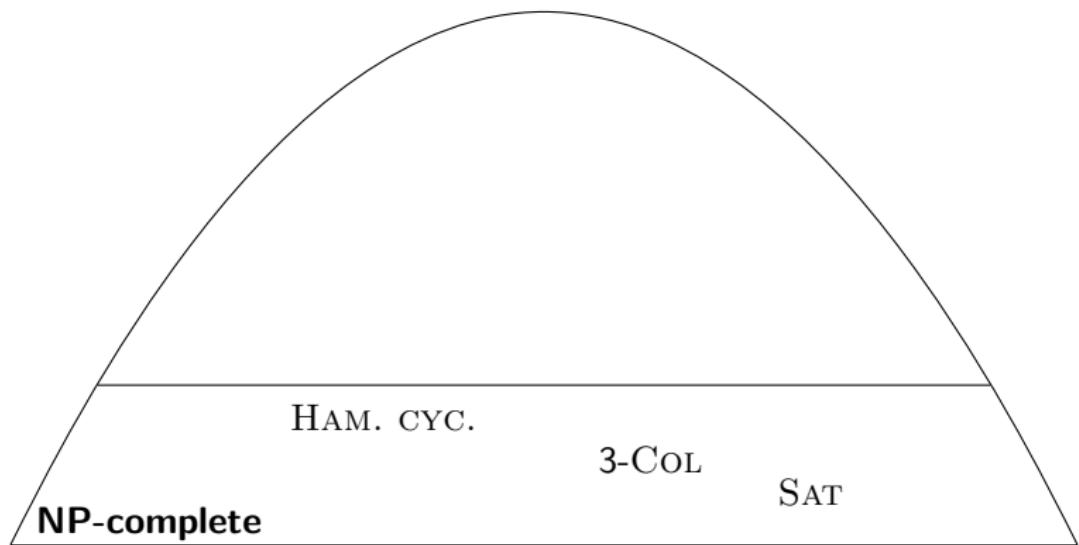
ERC Synergy Grant POCOCOP (GA 101071674)

Decision problems



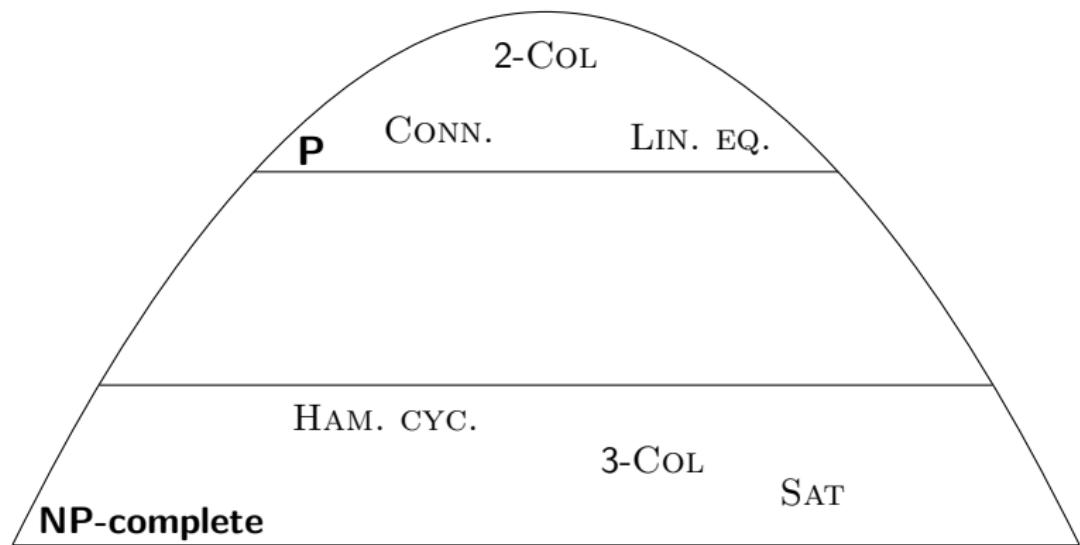
NP = ESO
(Fagin 1973)

Decision problems



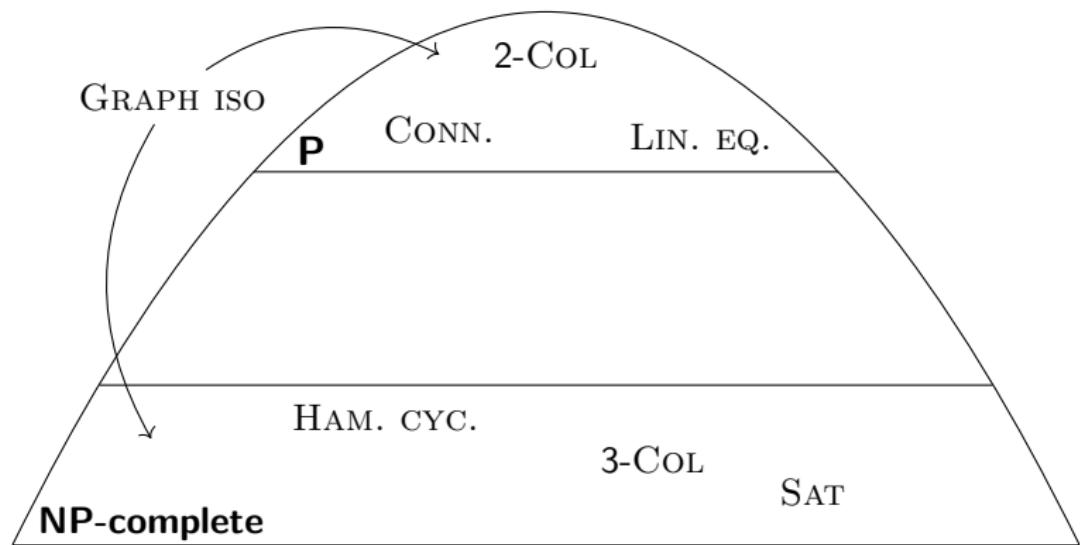
NP = ESO
(Fagin 1973)

Decision problems



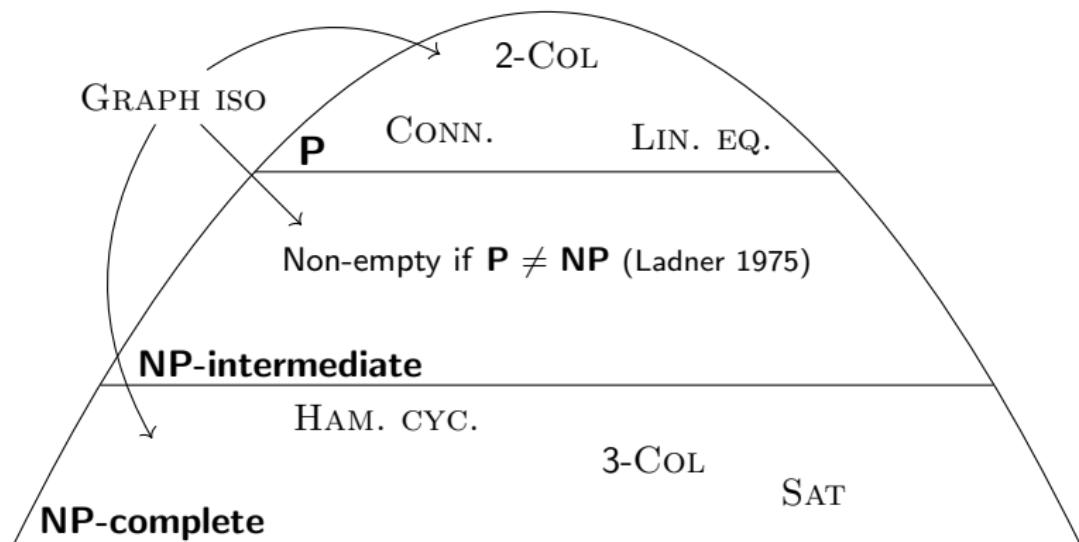
NP = ESO
(Fagin 1973)

Decision problems



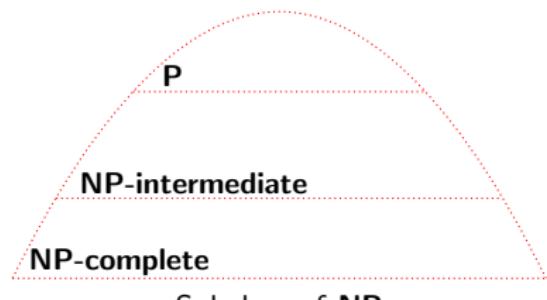
NP = ESO
(Fagin 1973)

Decision problems



NP = ESO
(Fagin 1973)

Decision problems



Subclass of **NP**

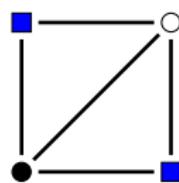
Full computational power of **NP**
(up to P-time eq.)

Subclass of **NP**

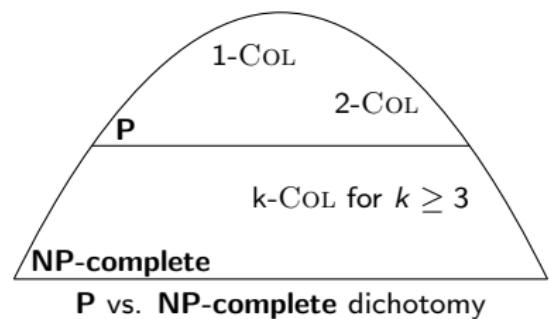
P vs. **NP-complete** dichotomy

Dichotomies

k -COL: On input graph G decide if there is a k -vertex colouring without monochromatic edges

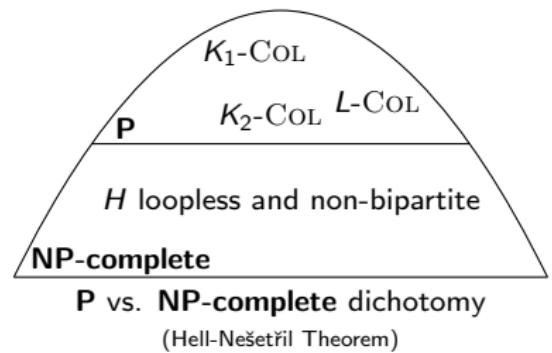


G



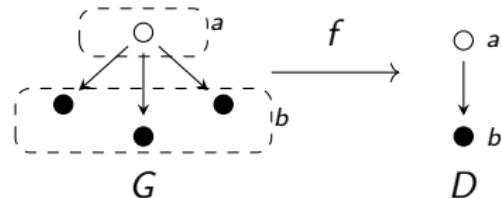
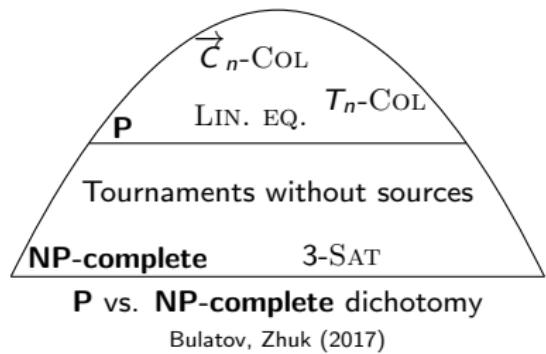
Dichotomies

H -COL: On input graph G decide if there is a homomorphism $f: G \rightarrow H$

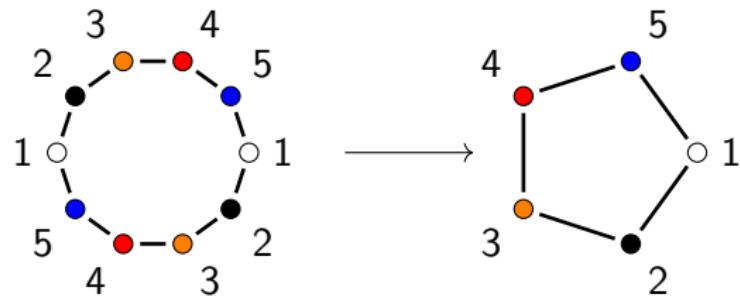


Dichotomies

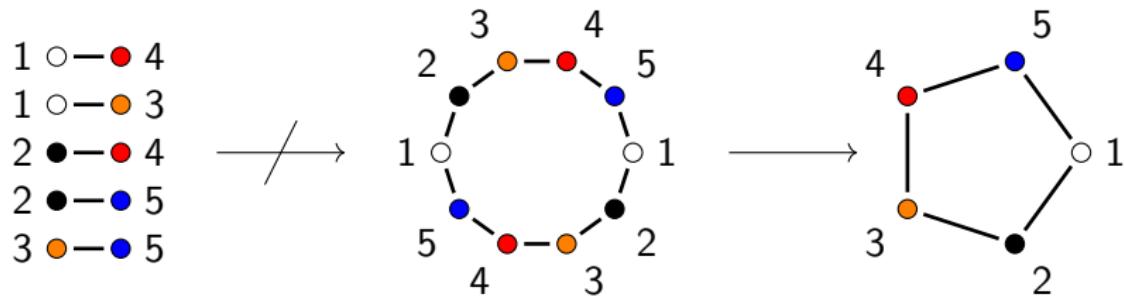
D -COL: On input digraph
(structure) G decide if there is a
homomorphism $f: G \rightarrow D$



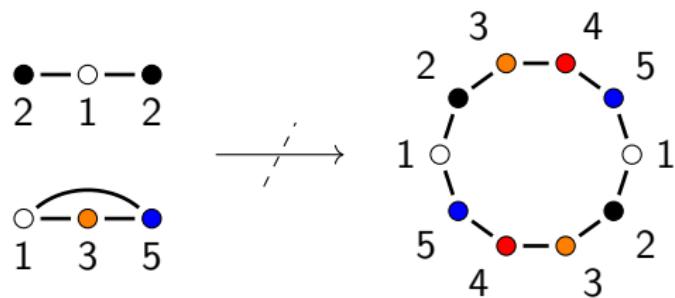
NP-richness



NP-richness

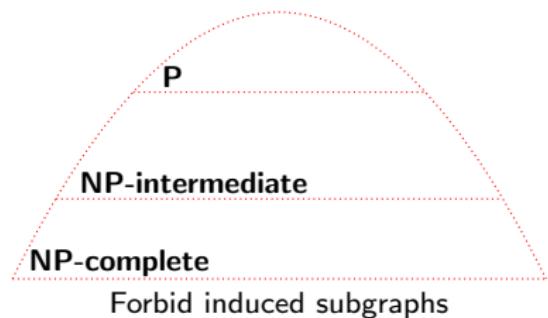


NP-richness



NP-richness

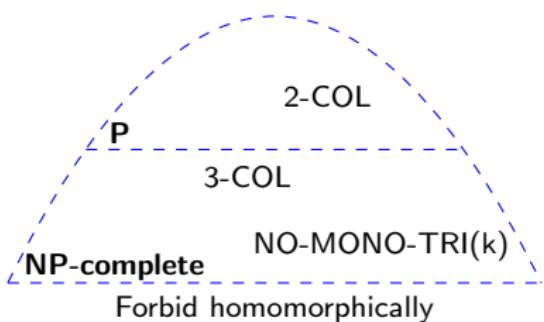
Forbidden vertex-coloured pattern problems



Full computational power of NP

Feder-Vardi (1999)

Kun-Nešetřil (2025)



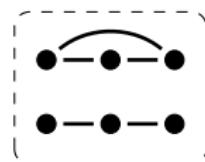
P vs. NP-complete dichotomy

Feder-Vardi (1999) + Bulatuv, Zhuk (2017)

Bodirsky-Madelain-Mottet (2021)

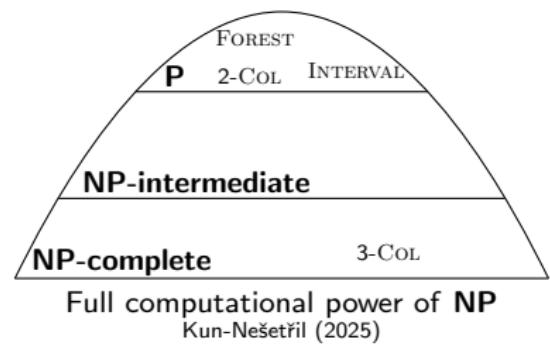
NP-richness

$\text{ORD}(F)$: On input graph G decide if there is a linear ordering $<$ such that $(G, <)$ is F -free



F

G



NP-richness

NP-rich

CSPs of reducts
of finitely bounded structures

monotone SNP

"Feder-Vardi"

SNP

ESO

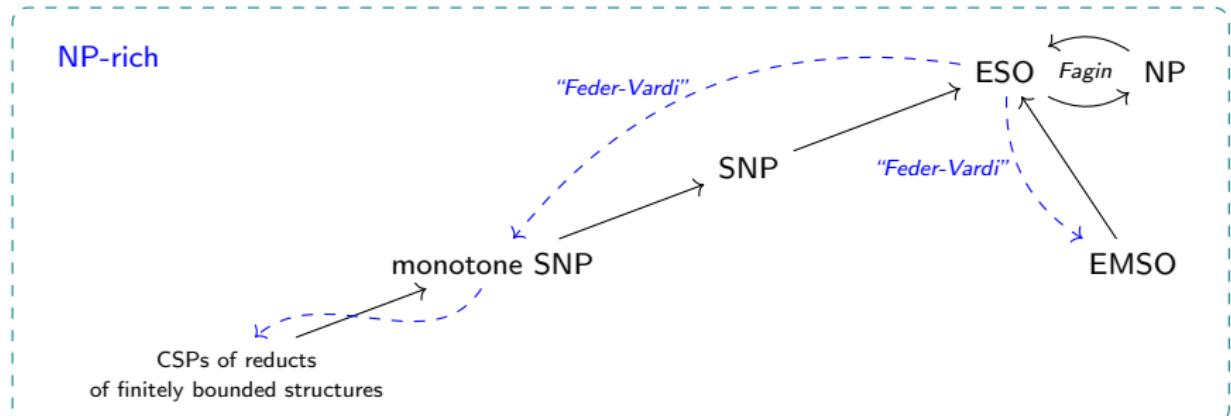
"Feder-Vardi"

NP

EMSO

Fagin

NP-richness



What makes a fragment \mathcal{L} of ESO have the full-computational power of NP?

Is the tractability problem for \mathcal{L} decidable?

Is there a “natural” fragment of ESO that is not NP-rich but has no dichotomy?

Graph modification problems

Graph modification problems

Edge-modification

For a fixed graph class \mathcal{C} and an input graph G determine the minimum number of edge modifications to G so that it belongs to \mathcal{C} .

- ▶ Edge-deletion problems (Yanakkakis 1981).
- ▶ Hardness of Edge-Modification problems (Alon, Stav 2009).
- ▶ Dichotomy Results on the Hardness of H -free Edge Modification Problems (Aravind, Sandeep, Sivadasan 2017).
- ▶ Hardness of approximation for H -free edge modification problems (Bliznets, Cygan, Komosa, Pilipczuk 2018)

Graph modification problems

Resilience problems

For a fixed query μ , determine the resilience of μ in an input database \mathbb{D} .

- ▶ The Complexity of Resilience and Responsibility for Self-Join-Free Conjunctive Queries (Freire, Gatterbauer, Immerman, Meliou 2015)
- ▶ New Results for the Complexity of Resilience for Binary with Self-Joins (Freire, Gatterbauer, Immerman, Meliou 2020).
- ▶ A Unified Approach for Resilience and Causal Responsibility with Integer Linear Programming (ILP) and LP Relaxations. (Makhija, Gatterbauer 2023).
- ▶ The Complexity of Resilience Problems via Valued Constraint Satisfaction (Bodirsky, Semanišinová, Lutz 2024).

Graph modification problems

Vertex-deletion

For a fixed graph class \mathcal{C} and an input graph G determine the minimum k so that $G - U$ belongs to \mathcal{C} for some $|U| \leq k$.

- ▶ Node-Deletion NP-Complete Problems (Krishnamoorthy, Deo 1979)
- ▶ The node-deletion problem for hereditary properties is NP-complete (Lewis, Yanakkakis 1980).
- ▶ Finding odd-cycle transversals (Reed, Smith, Vetta 2004)
- ▶ On the Descriptive Complexity of Vertex Deletion Problems (Bannach, Chudigiewitsch, Tantau 2024)

Graph modification problems

Modification to first-order logic

Edge-modification: Given a graph G and a positive integer k test whether it is possible to modify at most k edges so that it satisfies ϕ .

Edge-completion: Given a graph G and a positive integer k test whether it is possible to add at most k edges from G so that it satisfies ϕ .

Edge-deletion: Given a graph G and a positive integer k test whether it is possible to remove at most k edges from G so that it satisfies ϕ .

Vertex-deletion: Given a graph G and a positive integer k test whether it is possible to remove at most k vertices from G so that it satisfies ϕ .

On the parameterized complexity of graph modification to first-order logic properties (Fomin, Golovach, Thilikos 2020)

Graph modification problems

Modification to first-order logic (without parameter k)

Edge-modification: Given a graph G test whether we can modify the edges of G so that it satisfies ϕ .

Edge-completion: Given a graph G test whether we can add edges to G so that it satisfies ϕ .

Edge-deletion: Given a graph G test whether we can remove edges from G so that it satisfies ϕ .

Vertex-deletion: Given a graph G test whether we can remove vertices of G so that it satisfies ϕ .

Graph modification problems

Modification to first-order logic (without parameter k)

Edge-modification: Given a graph G test whether we can modify the edges of G so that it satisfies ϕ .

Edge-completion: Given a graph G test whether we can add edges to G so that it satisfies ϕ .

Edge-deletion: Given a graph G test whether we can remove edges from G so that it satisfies ϕ .

Vertex-deletion: Given a graph G test whether we can remove vertices of G so that it satisfies ϕ .

Graph modification problems

Modification to first-order logic (without parameter k)

Edge-modification: Given a graph G test whether we can modify the edges of G so that it satisfies ϕ .

Edge-completion: Given a graph G test whether we can add edges to G so that it satisfies ϕ .

Edge-deletion: Given a graph G test whether we can remove edges from G so that it satisfies ϕ .

Vertex-deletion: Given a graph G test whether we can remove vertices of G so that it satisfies ϕ .

Hereditary first-order logic

A structure \mathbb{A} *hereditarily satisfies* ϕ if every substructure \mathbb{B} of \mathbb{A} satisfies ϕ .

Hereditary first-order logic

A structure \mathbb{A} *hereditarily satisfies* ϕ if every substructure \mathbb{B} of \mathbb{A} satisfies ϕ .

HER(ϕ): On input \mathbb{A} decide if every substructure \mathbb{B} of \mathbb{A} satisfies ϕ

Hereditary first-order logic

A structure \mathbb{A} *hereditarily satisfies* ϕ if every substructure \mathbb{B} of \mathbb{A} satisfies ϕ .

HER(ϕ): On input \mathbb{A} decide if every substructure \mathbb{B} of \mathbb{A} satisfies ϕ

Ex. 1 $\phi :=$ exists a vertex of degree at most 1

Ex. 2 $\phi :=$ exists a simplicial vertex

Ex. 3 $\phi :=$ exists a source.

Hereditary first-order logic

A structure \mathbb{A} *hereditarily satisfies* ϕ if every substructure \mathbb{A}' of \mathbb{A} satisfies ϕ .

HER(ϕ): On input \mathbb{A} decide if every substructure \mathbb{B} of \mathbb{A} satisfies ϕ

Ex. 1 $\phi :=$ exists a vertex of degree at most 1

Ex. 2 $\phi :=$ exists a simplicial vertex

Ex. 3 Acyclic digraphs: $\phi :=$ exists a source

Hereditary first-order logic

A structure \mathbb{A} *hereditarily satisfies* ϕ if every substructure \mathbb{A}' of \mathbb{A} satisfies ϕ .

Ex. 1 $\phi :=$ exists a vertex of degree 1

Ex. 2 $\phi :=$ exists a simplicial vertex

Ex. 3 $\phi :=$ exists a source

Hereditary first-order logic

A structure \mathbb{A} *hereditarily satisfies* ϕ if every substructure \mathbb{A}' of \mathbb{A} satisfies ϕ .

Ex. 1 Forests: $\phi :=$ exists a vertex of degree 1.

Ex. 2 Chordal graphs: $\phi :=$ exists a simplicial vertex (Rose, 1970).

Ex. 3 Acyclic digraphs: $\phi :=$ exists a source.

Qst. Is every problem in HerFO solvable in polynomial-time?

Hereditary first-order logic

A structure \mathbb{A} *hereditarily satisfies* ϕ if every substructure \mathbb{A}' of \mathbb{A} satisfies ϕ .

Ex. 1 Forests: $\phi :=$ exists a vertex of degree 1.

Ex. 2 Chordal graphs: $\phi :=$ exists a simplicial vertex (Rose, 1970).

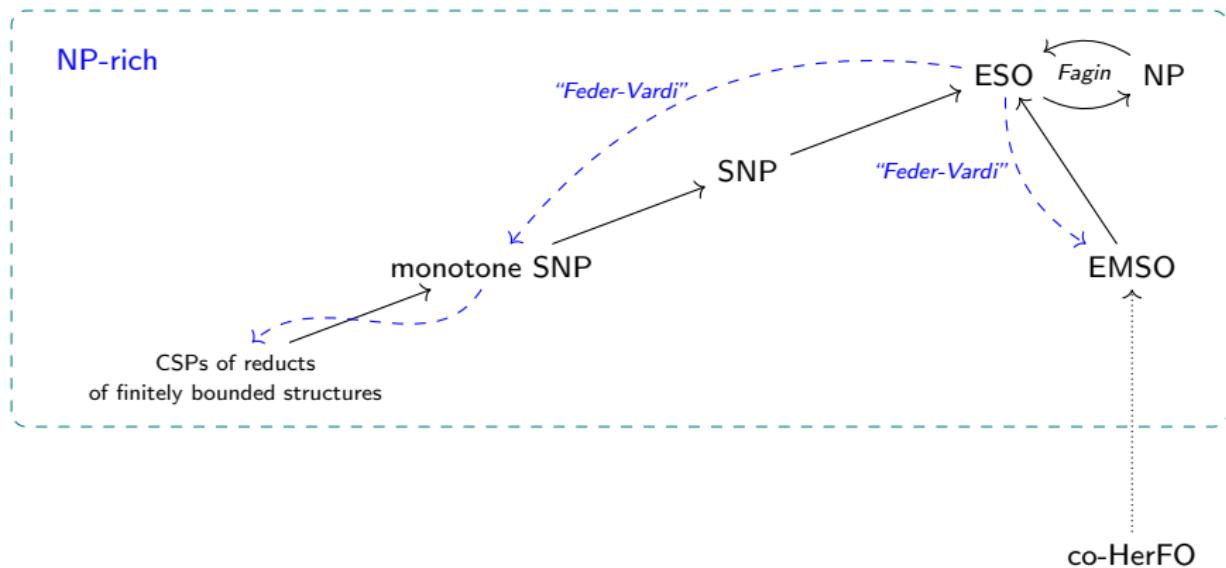
Ex. 3 Acyclic digraphs: $\phi :=$ exists a source.

Qst. Is every problem in HerFO solvable in polynomial-time?

Thm. The tractability problem for HerFO is undecidable.

Hereditary first-order logic

“Qst.” What is the computational power of HerFO?



Extensional ESO

Extensional ESO

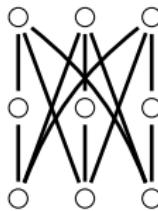
F -free edge-completion: Given a graph G test whether it is possible to add edges to G so that it becomes F -free.

Ex 1. Acyclic digraphs: extend the edge relation to a (strict) linear order.

Extensional ESO

Edge-completion to ϕ : Given a graph G test whether it is possible to add edges so that it satisfies ϕ .

Ex 2. (Pach, 1971) A graph G has circular chromatic number < 3 iff G can be extended to a maximal triangle-free graphs that avoids:



Petersen minus vertex

Extensional ESO

Extensional ESO is the fragment of ESO

$$\exists R_1 \dots, R_k. \left[\bigwedge_{i \in [n]} \forall \bar{x} R'_i(x) \implies R(\bar{x}) \right] \wedge \phi$$

Extensional ESO

Extensional ESO is the fragment of ESO

$$\exists E. [\forall x, y E'(x, y) \implies E(x, y)] \wedge (V, E) \text{ is } F\text{-free}$$

Ex 1 F -free edge completion problems (e.g., acyclic digraphs)

Extensional ESO

Extensional ESO is the fragment of ESO

$$\exists E. [\forall x, y E'(x, y) \implies E(x, y)] \wedge \phi$$

Ex 1 F -free edge completion problems (e.g., acyclic digraphs)

Ex 2. Edge-completion to ϕ

Extensional ESO

Extensional ESO is the fragment of ESO

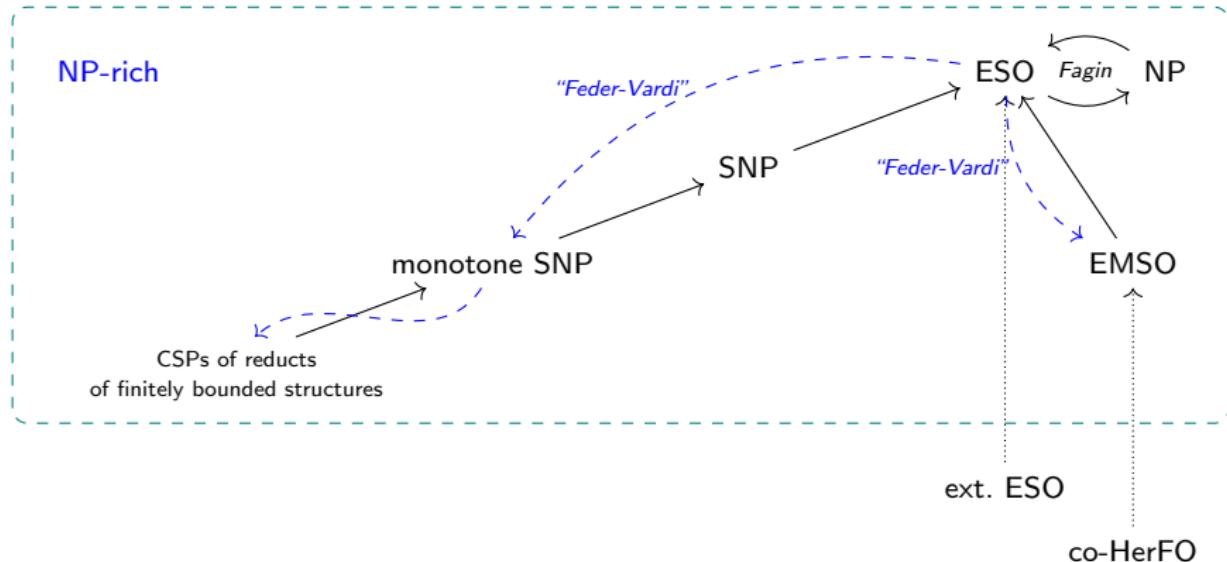
$$\exists R, B, G. \left[\bigwedge_{C \in \{R, B, G\}} \forall x. C'(x) \implies C(x) \right] \wedge (R, B, G) \text{ is a proper 3-colouring}$$

Ex 1 F -free edge completion problems (e.g., acyclic digraphs)

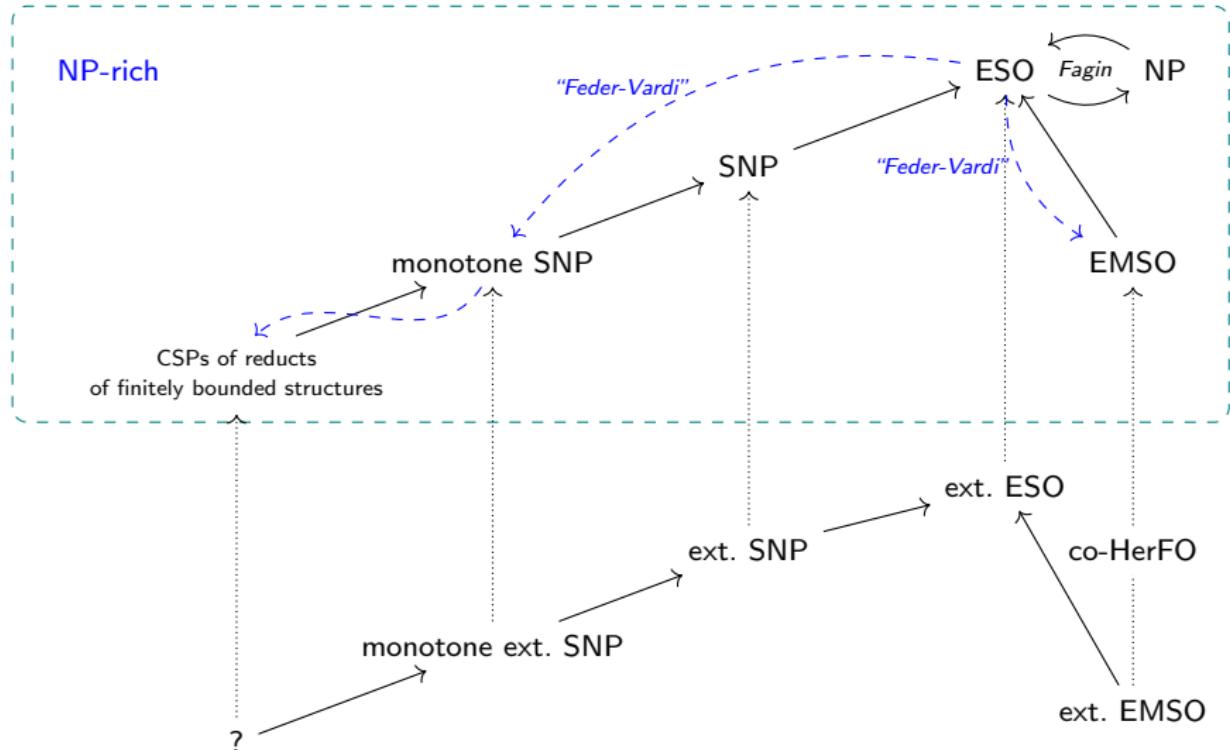
Ex 2. Edge-completion to ϕ

Ex 4. Pre-coloured 3-COL (more generally, pre-coloured H -COL)

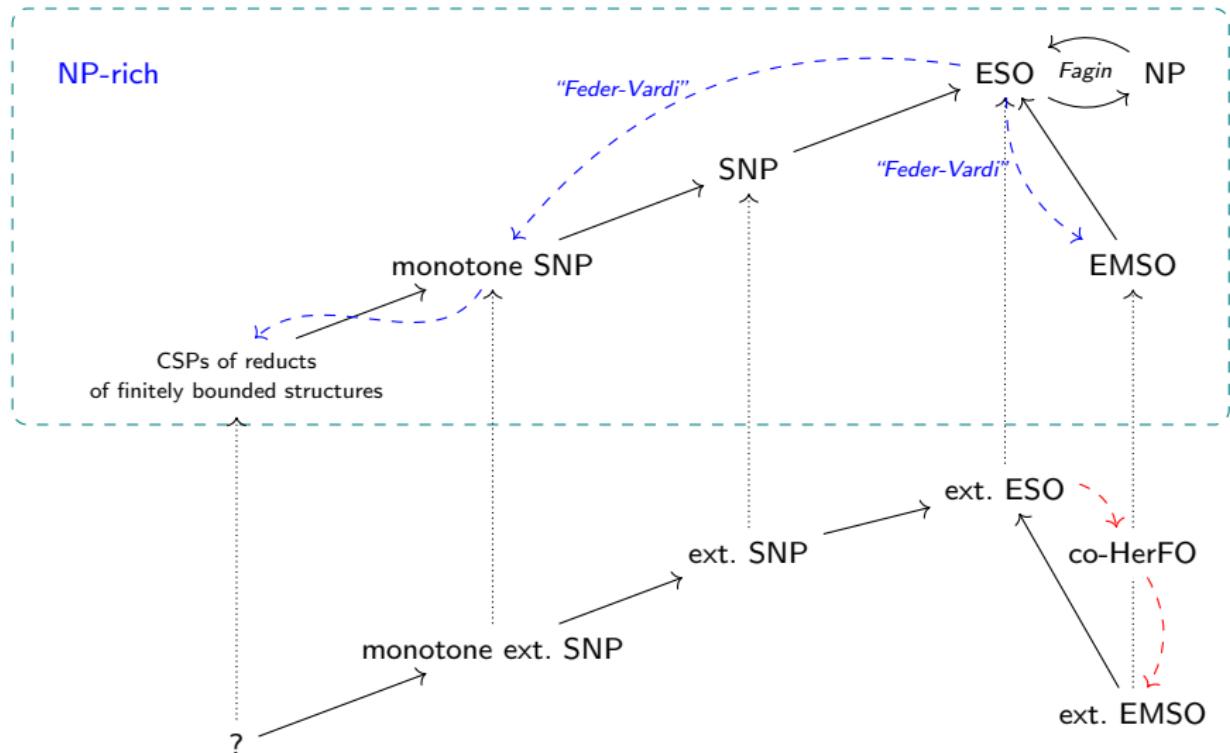
Extensional ESO



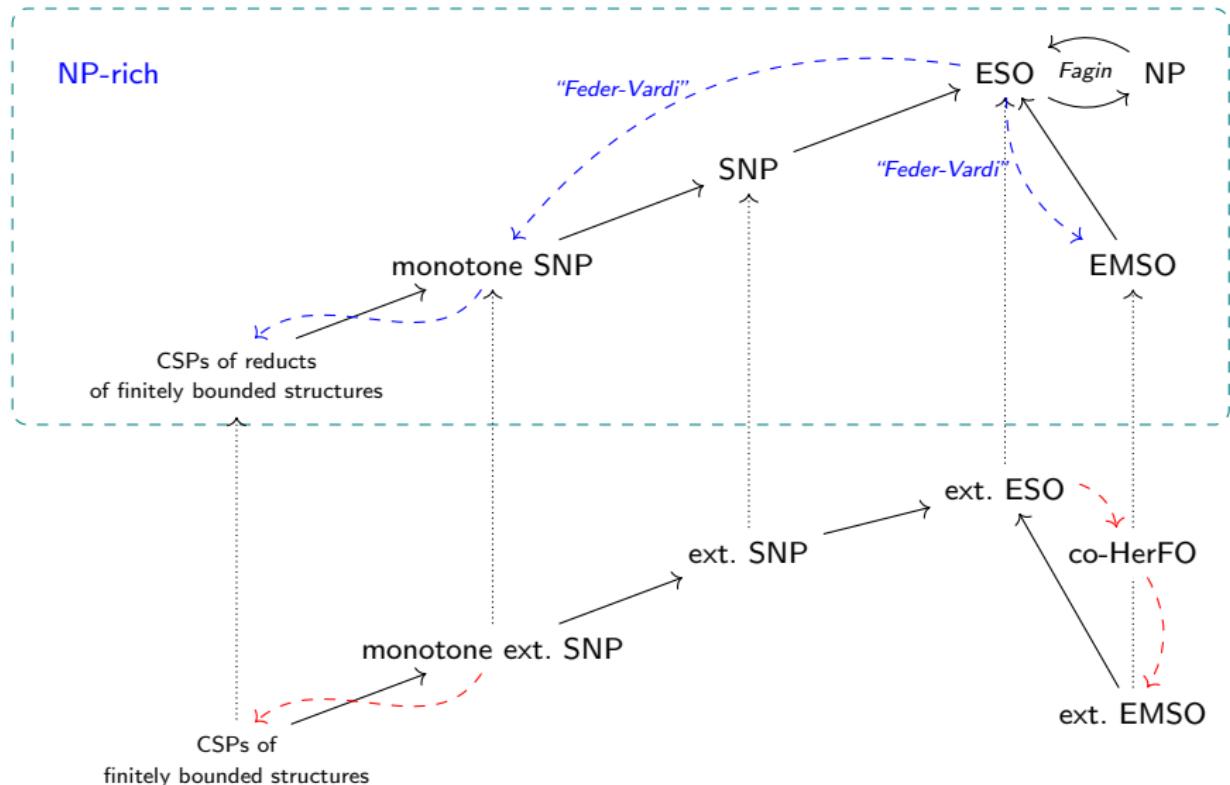
Extensional ESO



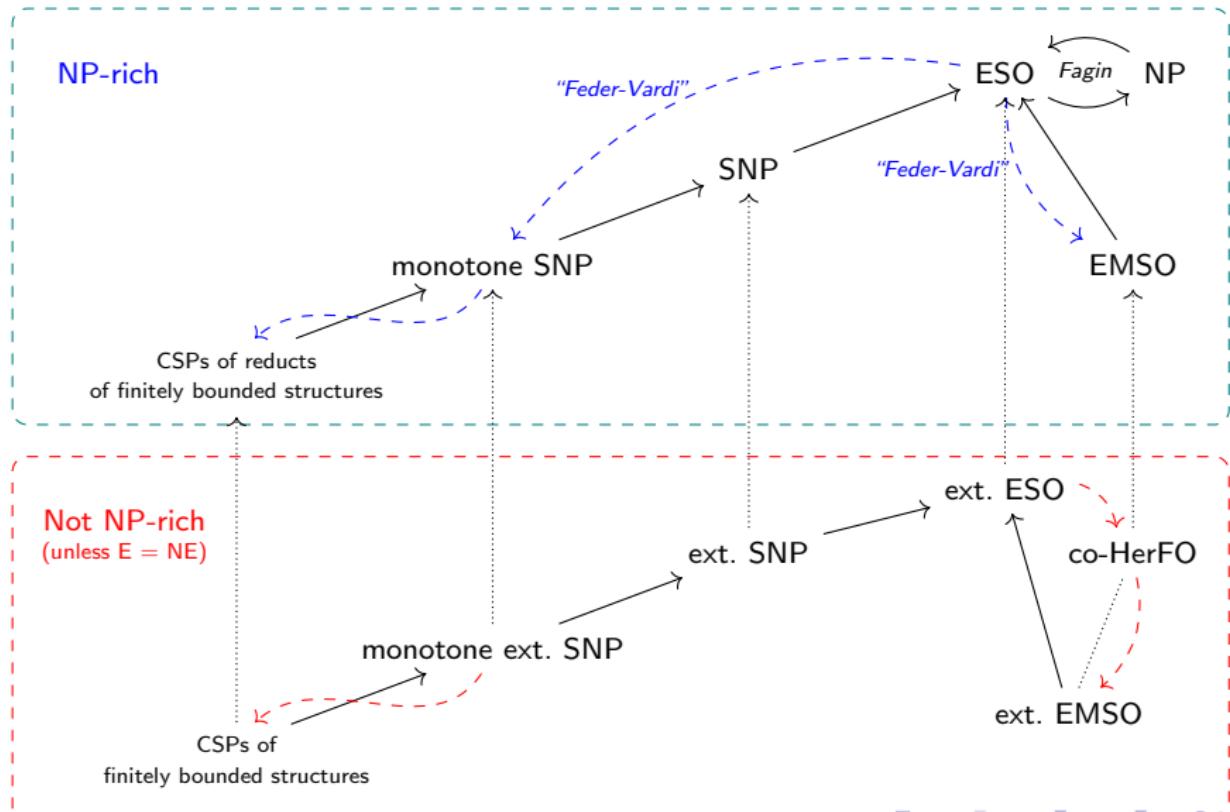
Extensional ESO



Extensional ESO



Extensional ESO



Thank you for your attention!

