GMSNP and finite-template PCSPs

Santiago Guzmán-Pro

Institute of Algebra TU Dresden

20th May, Dagstuhl

ERC Synergy Grant POCOCOP (GA 101071674)

Santiago G.P. GMSNP and PCSPs

伺 ト イヨ ト イヨト

Conjecture (Brakensiek and Guruswami)

For every pair of non-bipartite finite graphs $G_1 \rightarrow G_2$ the promise CSP with template (G_1, G_2) is NP-hard.

▲御▶ ▲ 臣▶ ▲ 臣▶

Conjecture (Brakensiek and Guruswami)

For every pair of non-bipartite finite graphs $G_1 \rightarrow G_2$ the promise CSP with template (G_1, G_2) is NP-hard.

In particular, if *H* is a (possibly infinite) non-bipartite graph with $\chi(H) \in \mathbb{Z}^+$, then CSP(*H*) is NP-hard.

< 同 ト < 三 ト < 三 ト

Can we break it?

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めの(

Can we break it?

Attempt 1: Via Monotone Monadic Strict NP (MMSNP)

æ

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Can we break it?

Attempt 1: Via Monotone Monadic Strict NP (MMSNP)

白とくヨとく

Can we break it?

Attempt 1: Via Monotone Monadic Strict NP (MMSNP)

Can we break it?

Attempt 1: Via Monotone Monadic Strict NP (MMSNP)

Can we break it?

Attempt 2: Via Guarded Monotone Strict NP (GMSNP)

э

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Can we break it?

Attempt 2: Via Guarded Monotone Strict NP (GMSNP)

白とくヨとく

Can we break it?

Attempt 2: Via Guarded Monotone Strict NP (GMSNP)

Can we break it?

Theorem: Not with these attempts.

Santiago G.P. GMSNP and PCSPs

æ

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Santiago G.P. GMSNP and PCSPs

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ

Smallest finite factor

A finite structure $\mathbb C$ is the smallest finite factor of a structure $\mathbb S$ if for every finite structure $\mathbb B$

$\mathbb{S} \to \mathbb{B}$ if and only if $\mathbb{C} \to \mathbb{B}$

- **Ex. 1** Every finite structure has a smallest finite factor.
- ► Ex. 2 (Q, <) has a smallest finite factor (the loop).
- **Ex. 3** If \mathbb{S} has a (vertex) Ramsey expansion, then \mathbb{S} has a smallest finite factor.
- **Ex. 4** The infinite directed path does not have a smallest finite factor.

< 同 > < 国 > < 国 >

Smallest finite factor

A finite structure $\mathbb C$ is the smallest finite factor of a structure $\mathbb S$ if for every finite structure $\mathbb B$

 $\mathbb{S} \to \mathbb{B}$ if and only if $\mathbb{C} \to \mathbb{B}$

- **Ex. 1** Every finite structure has a smallest finite factor.
- ▶ Ex. 2 (Q, <) has a smallest finite factor (the loop).
- **Ex. 3** If \mathbb{S} has a (vertex) Ramsey expansion, then \mathbb{S} has a smallest finite factor.
- **Ex. 4** The infinite directed path does not have a smallest finite factor.

▲御▶ ▲陸▶ ▲陸▶

Smallest finite factor

A finite structure $\mathbb C$ is the smallest finite factor of a structure $\mathbb S$ if for every finite structure $\mathbb B$

$\mathbb{S} \to \mathbb{B}$ if and only if $\mathbb{C} \to \mathbb{B}$

- **Ex.** 1 Every finite structure has a smallest finite factor.
- ▶ Ex. 2 (Q, <) has a smallest finite factor (the loop).
- **Ex. 3** If S has a (vertex) Ramsey expansion, then S has a smallest finite factor.
- **Ex. 4** The infinite directed path does not have a smallest finite factor.

▲御▶ ▲陸▶ ▲陸▶

Smallest finite factor

A finite structure $\mathbb C$ is the smallest finite factor of a structure $\mathbb S$ if for every finite structure $\mathbb B$

$\mathbb{S} \to \mathbb{B}$ if and only if $\mathbb{C} \to \mathbb{B}$

- **Ex. 1** Every finite structure has a smallest finite factor.
- ▶ Ex. 2 (Q, <) has a smallest finite factor (the loop).
- **Ex. 3** If S has a (vertex) Ramsey expansion, then S has a smallest finite factor.
- **Ex. 4** The infinite directed path does not have a smallest finite factor.

- (同) - (目) - (目)

Smallest finite factors

A finite structure $\mathbb C$ is the smallest finite factor of a structure $\mathbb S$ if for every finite structure $\mathbb B$

$\mathbb{S} \to \mathbb{B}$ if and only if $\mathbb{C} \to \mathbb{B}$

- **Ex. 1** Every finite structure has a smallest finite factor.
- ▶ Ex. 2 (Q, <) has a smallest finite factor (the loop).
- **Ex. 3** If S has a (vertex) Ramsey expansion, then S has a smallest finite factor.
- **Ex. 4** The infinite directed path does not have a smallest finite factor.

- (同) - (目) - (目)

Finite-domain up to high girth

The CSP of a structure $\mathbb S$ is *finite-domain up to high girth* if there is a finite structure $\mathbb C$ and a positive integer ℓ such that for every finite $\mathbb B$ of girth larger than ℓ

 $\mathbb{B} \to \mathbb{S} \;\; \text{if and only if} \;\; \mathbb{B} \to \mathbb{C}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Finite-domain up to high girth

The CSP of a structure \mathbb{S} is *finite-domain up to high girth* if there is a finite structure \mathbb{C} and a positive integer ℓ such that for every finite \mathbb{B} of girth larger than ℓ

$$\mathbb{B} \to \mathbb{S}$$
 if and only if $\ \mathbb{B} \to \mathbb{C}$

Obs. I If \mathbb{S} is finite-domain up to high girth, then \mathbb{S} has a smallest finite factor.

$$\mathbb{C} \longrightarrow \mathbb{B} \qquad \iff \qquad \mathbb{S} \longrightarrow \mathbb{B}$$

▲冊▶ ▲臣▶ ▲臣▶

Finite-domain up to high girth

The CSP of a structure \mathbb{S} is *finite-domain up to high girth* if there is a finite structure \mathbb{C} and a positive integer ℓ such that for every finite \mathbb{B} of girth larger than ℓ

 $\mathbb{B} \to \mathbb{S} \;\; \text{if and only if} \;\; \mathbb{B} \to \mathbb{C}$

Obs. I If \mathbb{S} is finite-domain up to high girth, then \mathbb{S} has a smallest finite factor.

$$\mathbb{C} \dashrightarrow \mathbb{B} \quad \iff \quad \mathbb{S} \dashrightarrow \mathbb{B}$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Finite-domain up to high girth

The CSP of a structure \mathbb{S} is *finite-domain up to high girth* if there is a finite structure \mathbb{C} and a positive integer ℓ such that for every finite \mathbb{B} of girth larger than ℓ

$$\mathbb{B} \to \mathbb{S}$$
 if and only if $\ \mathbb{B} \to \mathbb{C}$

Obs. I If \mathbb{S} is finite-domain up to high girth, then \mathbb{S} has a smallest finite factor.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Finite-domain up to high girth

The CSP of a structure \mathbb{S} is *finite-domain up to high girth* if there is a finite structure \mathbb{C} and a positive integer ℓ such that for every finite \mathbb{B} of girth larger than ℓ

$$\mathbb{B} \to \mathbb{S}$$
 if and only if $\mathbb{B} \to \mathbb{C}$

Obs. I If \mathbb{S} is finite-domain up to high girth, then \mathbb{S} has a smallest finite factor.

・ロト ・行下・ キョン・ キョン

3

Finite-domain up to high girth

The CSP of a structure S is *finite-domain up to high girth* if there is a finite structure C and a positive integer ℓ such that for every finite B of girth larger than ℓ

$$\mathbb{B} \to \mathbb{S}$$
 if and only if $\mathbb{B} \to \mathbb{C}$

Obs. I If \mathbb{S} is finite-domain up to high girth, then \mathbb{S} has a smallest finite factor.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Finite-domain up to high girth

The CSP of a structure S is *finite-domain up to high girth* if there is a finite structure C and a positive integer ℓ such that for every finite B of girth larger than ℓ

$$\mathbb{B} \to \mathbb{S}$$
 if and only if $\mathbb{B} \to \mathbb{C}$

Obs. I If \mathbb{S} is finite-domain up to high girth, then \mathbb{S} has a smallest finite factor.

▲御▶ ▲注▶ ▲注▶

Finite-domain up to high girth

The CSP of a structure S is *finite-domain up to high girth* if there is a finite structure C and a positive integer ℓ such that for every finite B of girth larger than ℓ

$$\mathbb{B} \to \mathbb{S}$$
 if and only if $\mathbb{B} \to \mathbb{C}$

Obs. I If \mathbb{S} is finite-domain up to high girth, then \mathbb{S} has a smallest finite factor.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Finite-domain up to high girth

The CSP of a structure \mathbb{S} is *finite-domain up to high girth* if there is a finite structure \mathbb{C} and a positive integer ℓ such that for every finite \mathbb{B} of girth larger than ℓ

$$\mathbb{B} \to \mathbb{S}$$
 if and only if $\mathbb{B} \to \mathbb{C}$

Obs. I If \mathbb{S} is finite-domain up to high girth, then \mathbb{S} has a smallest finite factor.

Obs. II $CSP(\mathbb{C})$ reduces in polynomial time to $CSP(\mathbb{S})$.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Duality Theorems for Finite Structures (Nešetřil and Tardif)

For every finite set of trees \mathcal{T} there is a finite structure $\mathbb{D}_{\mathcal{T}}$ such that $CSP(\mathbb{D}_{\mathcal{T}}) = Forb(\mathcal{T})$

 $\mathcal{T}\not\to \mathbb{B}\to \mathbb{D}_{\mathcal{T}} \ \, \text{for every finite} \ \, \mathbb{B}$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

Lemma

If CSP(S) is in GMSNP, then CSP(S) is finite-domain up to high girth.

▲御▶ ▲ 臣▶ ▲ 臣▶

æ

Lemma

If CSP(S) is in GMSNP, then CSP(S) is finite-domain up to high girth.

▲御▶ ▲屋▶ ▲屋▶

Lemma

If CSP(S) is in GMSNP, then CSP(S) is finite-domain up to high girth.

æ

Lemma

If CSP(S) is in GMSNP, then CSP(S) is finite-domain up to high girth.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Lemma

If CSP(S) is in GMSNP, then CSP(S) is finite-domain up to high girth.

Lemma

If CSP(S) is in GMSNP, then CSP(S) is finite-domain up to high girth.

▲御▶ ▲陸▶ ▲陸▶

æ

Lemma

If CSP(S) is in GMSNP, then CSP(S) is finite-domain up to high girth.

▲御▶ ▲ 臣▶ ▲ 臣▶

æ

Lemma

If CSP(S) is in GMSNP, then CSP(S) is finite-domain up to high girth.

▲御▶ ▲臣▶ ▲臣▶

Lemma

If CSP(S) is in GMSNP, then CSP(S) is finite-domain up to high girth.

▲御▶ ▲ 臣▶ ▲ 臣

Lemma

If CSP(S) is in GMSNP, then CSP(S) is finite-domain up to high girth.

Lemma

If CSP(S) is in GMSNP, then CSP(S) is finite-domain up to high girth.

ヘロト ヘロト ヘビト ヘビト

3

Lemma

If CSP(S) is in GMSNP, then CSP(S) is finite-domain up to high girth.

Lemma

If CSP(S) is in GMSNP, then CSP(S) is finite-domain up to high girth.

Lemma

If CSP(S) is in GMSNP, then CSP(S) is finite-domain up to high girth.

▲御▶ ▲臣▶ ▲臣▶

Lemma

If CSP(S) is in GMSNP, then CSP(S) is finite-domain up to high girth.

▲御▶ ▲臣▶ ▲臣▶

Theorem

If $\mathsf{CSP}(\mathbb{S})$ is in GMSNP, then there is a finite structure \mathbb{C} such that

- $\blacktriangleright \ \mathbb{S} \to \mathbb{C},$
- $\blacktriangleright~\mathbb{S}\to\mathbb{B}\iff\mathbb{C}\to\mathbb{B}$ for every finite structure \mathbb{B} , and
- ▶ CSP(ℂ) reduces in polynomial-time to CSP(ℂ).

< □ > < □ > < □ >

Theorem

If $\mathsf{CSP}(\mathbb{S})$ is in GMSNP, then there is a finite structure \mathbb{C} such that

- $\blacktriangleright \ \mathbb{S} \to \mathbb{C},$
- $\blacktriangleright~\mathbb{S}\to\mathbb{B}\iff\mathbb{C}\to\mathbb{B}$ for every finite structure \mathbb{B} , and
- ▶ CSP(ℂ) reduces in polynomial-time to CSP(ℂ).

Corollary

If \mathbb{H} is a non-bipartite graph with finite chromatic number, and CSP(\mathbb{H}) is in GMSNP, then CSP(\mathbb{H}) is NP-complete.

▲御▶ ★ 国▶ ★ 国▶

Theorem

If $\mathsf{CSP}(\mathbb{S})$ is in GMSNP, then there is a finite structure \mathbb{C} such that

- $\blacktriangleright \ \mathbb{S} \to \mathbb{C},$
- $\blacktriangleright~\mathbb{S}\to\mathbb{B}\iff\mathbb{C}\to\mathbb{B}$ for every finite structure \mathbb{B} , and
- ▶ CSP(ℂ) reduces in polynomial-time to CSP(ℂ).

Corollary

If the tractability of a finite-template PCSP is explained by a GMSNP sandwich, then it is explained by a finite sandwich.

< 同 ト < 三 ト < 三 ト

Thm. (Larrauri) There are polynomial-time algorithms M such that testing whether M solves $PCSP(\mathbb{A}, \mathbb{B})$ is undecidable.

æ

Thm. (Larrauri) There are polynomial-time algorithms M such that testing whether M solves $PCSP(\mathbb{A}, \mathbb{B})$ is undecidable.

Obs I. If *M* is a polynomial-time algorithm that solves CSP(S) and S has a smallest finite factor, then testing whether *M* solves PCSP(A, B) can be decided in polynomial time.

・ロト ・同ト ・モト ・モト

Thm. (Larrauri) There are polynomial-time algorithms M such that testing whether M solves $PCSP(\mathbb{A}, \mathbb{B})$ is undecidable.

Obs I. If *M* is a polynomial-time algorithm that solves CSP(S) and S has a smallest finite factor, then testing whether *M* solves PCSP(A, B) can be decided in polynomial time.

Obs II. If *M* is a polynomial-time algorithm that solves $PCSP(\mathbb{A}, \mathbb{B})$, and it can be tested in polynomial-time whether *M* solves $PCSP(\mathbb{A}', \mathbb{B}')$, then there is a structure \mathbb{S} with a poly-time CSP such that $\mathbb{A} \to \mathbb{S} \to \mathbb{B}$.

(4 回) (4 回) (4 回)

Thm. (Larrauri) There are polynomial-time algorithms M such that testing whether M solves $PCSP(\mathbb{A}, \mathbb{B})$ is undecidable.

Obs I. If *M* is a polynomial-time algorithm that solves CSP(S) and S has a smallest finite factor, then testing whether *M* solves PCSP(A, B) can be decided in polynomial time.

Obs II. If *M* is a polynomial-time algorithm that solves $PCSP(\mathbb{A}, \mathbb{B})$, and it can be tested in polynomial-time whether *M* solves $PCSP(\mathbb{A}', \mathbb{B}')$, then there is a structure \mathbb{S} with a poly-time CSP such that $\mathbb{A} \to \mathbb{S} \to \mathbb{B}$.

Qst I. Suppose that *M* is a polynomial-time algorithm that solves $\mathsf{PCSP}(\mathbb{A}, \mathbb{B})$, and it can be tested in polynomial-time whether *M* solves $\mathsf{PCSP}(\mathbb{A}', \mathbb{B}')$. Is there a structure \mathbb{S} with a poly-time CSP and a smallest finite factor such that $\mathbb{A} \to \mathbb{S} \to \mathbb{B}$?

▲冊▶ ▲注▶ ▲注▶

Thm. (Larrauri) There are polynomial-time algorithms M such that testing whether M solves $PCSP(\mathbb{A}, \mathbb{B})$ is undecidable.

Obs I. If *M* is a polynomial-time algorithm that solves CSP(S) and S has a smallest finite factor, then testing whether *M* solves PCSP(A, B) can be decided in polynomial time.

Obs II. If *M* is a polynomial-time algorithm that solves $PCSP(\mathbb{A}, \mathbb{B})$, and it can be tested in polynomial-time whether *M* solves $PCSP(\mathbb{A}', \mathbb{B}')$, then there is a structure \mathbb{S} with a poly-time CSP such that $\mathbb{A} \to \mathbb{S} \to \mathbb{B}$.

Qst I. Suppose that *M* is a polynomial-time algorithm that solves $\mathsf{PCSP}(\mathbb{A}, \mathbb{B})$, and it can be tested in polynomial-time whether *M* solves $\mathsf{PCSP}(\mathbb{A}', \mathbb{B}')$. Is there a structure \mathbb{S} with a poly-time CSP and a smallest finite factor such that $\mathbb{A} \to \mathbb{S} \to \mathbb{B}$?

Qst II. Does every ω -categorical structure have a vertex Ramsey expansion?

→ 同 ▶ → 臣 ▶ → 臣 ▶

Thank you for your attention!

Santiago G.P. GMSNP and PCSPs

日本・モン・