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For every pair of non-bipartite finite graphs G; — G, the promise CSP with
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In particular, if H is a (possibly infinite) non-bipartite graph with x(H) € Z*,
then CSP(H) is NP-hard.
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Motivation

Can we break it?

Theorem: Not with these attempts.
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A finite structure C is the smallest finite factor of a structure S if for every
finite structure B
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>

> Ex. 2 (Q, <) has a smallest finite factor (the loop).
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Smallest finite factor

A finite structure C is the smallest finite factor of a structure S if for every
finite structure B
S — Bifand only if C - B
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> Ex. 3 If S has a (vertex) Ramsey expansion, then S has a smallest finite factor.
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Tools

Smallest finite factors

A finite structure C is the smallest finite factor of a structure S if for every
finite structure B
S — Bifand only if C - B

Ex. 4 The infinite directed path does not have a smallest finite factor.
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The CSP of a structure S is finite-domain up to high girth if there is a finite
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Finite-domain up to high girth

The CSP of a structure S is finite-domain up to high girth if there is a finite
structure C and a positive integer ¢ such that for every finite B of girth larger

than ¢
B—S ifandonly if B — C
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Obs. Il CSP(C) reduces in polynomial time to CSP(S).



Tools

Duality Theorems for Finite Structures (Neetfil and Tardif)

For every finite set of trees 7 there is a finite structure D7 such that
CSP(D7) = Forb(T)

T /4 B — Dy for every finite B
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Results

Theorem

If CSP(S) is in GMSNP, then there is a finite structure C such that
> S—C,
> S— B <= C — B for every finite structure B , and
» CSP(C) reduces in polynomial-time to CSP(S).

Corollary

If H is a non-bipartite graph with finite chromatic number, and CSP(H) is in
GMSNP, then CSP(H) is NP-complete.



Results

Theorem

If CSP(S) is in GMSNP, then there is a finite structure C such that
» S —C,
> S — B <= C — B for every finite structure B , and
» CSP(C) reduces in polynomial-time to CSP(S).

Corollary

If the tractability of a finite-template PCSP is explained by a GMSNP
sandwich, then it is explained by a finite sandwich.
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Obs I. If M is a polynomial-time algorithm that solves CSP(S) and S has a smallest
finite factor, then testing whether M solves PCSP(A,B) can be decided in polynomial
time.

Obs II. If M is a polynomial-time algorithm that solves PCSP(A,B), and it can be
tested in polynomial-time whether M solves PCSP(A’, B’), then there is a structure S
with a poly-time CSP such that A -+ S — B.

Qst . Suppose that M is a polynomial-time algorithm that solves PCSP(A, B), and it
can be tested in polynomial-time whether M solves PCSP(A’,B’). Is there a structure
S with a poly-time CSP and a smallest finite factor such that A — S — B?

Qst Il. Does every w-categorical structure have a vertex Ramsey expansion?



Thank you for your attention!



