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Values Constraint Satisfaction Problems

VCSPs: broad class of computational optimisation problems.

Phrased here as minimisation problems over Q ∪ {∞}.

Informally:
Input: a sum of cost functions applied to some variables.
Task: find a variable assignment that minimises the cost.

CSPs: special case where cost functions only take values from {0,∞}.

Min-CSPs: special case where cost functions only take values from {0,1}.
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Example 1: Max-Cut

Digraph Max-Cut:

Input: Directed graph (V ;E).
Task: Find partition V = A ] B
such that (A× B) ∪ E is maximal.

Formulation as VCSP: Minimise∑
(x,y)∈E

φ(x , y)

where φ : V 2 → {0,1} is defined as φ(x , y) :=

{
0 if x = 0 and y = 1

1 otherwise.
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Example 2: Minimum Feedback Arc Set

Minimum Feedback Arc Set:

Input: Directed graph (V ;E).
Task: Find smallest-size F ⊆ E
such that (V ,E \ F ) has no directed cycles.

Formulation as VCSP: Minimise∑
(x,y)∈E

φ(x , y)

where φ : V 2 → Q is defined as φ(x , y) :=

{
0 if x < y

1 otherwise.
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VCSPs, formally

Domain D: fixed set.
Valued relation of arity k : function R : Dk → Q ∪ {∞}.
Valued structure:

Γ = (D;R1,R2, . . . )

(a relational structure with valued relations instead of relations)

VCSP(Γ):
Input: u ∈ Q and an expression

φ(x1, . . . , xn) :=
∑

i

ψi

where ψi is atomic formula over Γ with variables from {x1, . . . , xn}.
Question: is there α : {x1, . . . , xn}→ D such that φ(α(x1), . . . , φ(xn)) ≤ u?

For which Γ can VCSP(Γ) be solved in polynomial time?
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Finite Domains

Combining results
by Kozik+Ochremiak’15, Kolmogorov+Krokhin+Rolı́nek’17, Zhuk’20:

Theorem (Dichotomy).

Γ : valued structure over finite domain D.
Then VCSP(Γ) is in P or NP-complete.

Does not capture Minimum Feedback Arc Set!
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Temporal CSPs

Temporal structure: a relational structure with domain Q
where all relations are definable with <.

Examples.

(Q;B) where B =
{
(x , y , z) | x < y < z ∨ z < y < x

}
(Q;C) where C =

{
(x , y , z) | x < y < z ∨ y < z < x ∨ z < x < y

}
(Q;≤, 6=).

Temporal CSP: the CSP for a temporal structure.

Theorem (Bodirsky+Kara’2010): Every temporal CSP is in P or NP-complete.

Observation: Minimum Feedback Arc Set is MinCSP for (Q;<).

What is a reasonable definition of valued temporal structure?

Theorem (Cameron’1976):
A structure Γ = (Q;R1,R2, . . . ) is isomorphic to a temporal structure
if and only if R1,R2, . . . are preserved by every monotone f : Q→ Q.
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Temporal VCSPs

Γ : valued structure with domain D.

an automorphism of Γ is a permutation of D
that preserves all valued relations of Γ .

Aut(Γ): set of all automorphisms of Γ .

a valued structure Γ is called temporal if Aut(Q;<) ⊆ Aut(Γ).

temporal VCSP: the VCSP for a temporal valued structure.

Examples of temporal VCSPs:

all temporal CSPs,

Minimum Feedback Arc Set,

Directed Subset Feedback Arc Set, Edge Multicut, Symmetric Directed
Multicut, Steiner Multicut, Disjunctive Multicut, . . .

Theorem (B.+Bonnet+Semanišinová MFCS’25):
Every temporal VCSP is in P or NP-complete.
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Proof techniques

To prove our result, we use logic and algebraic tools
from B.+Semanišinová+Lutz LICS’24

Valued primitive positive constructions
for proving NP-hardness

Fractional polymorphisms
for concisely stating the tractable cases

First complete VCSP complexity classification
for a class infinite valued structures with specified automorphism group.

Several intermediate results hold in a larger setting:
A permutation group G on a set D is called oligomorphic if for every n ∈ N
the componentwise action of G on Dn has only finitely many orbits.

Examples: Aut(Q;<), Aut(Γ) for temporal valued structures Γ , Aut(Rado), . . .
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Open Problems

Provide a similar classification for valued structures that are preserved by
the automorphisms of the Rado graph.

Γ with an oligomorphic permutation group. Do fractional polymorphisms
of Γ capture primitive positive constructibility in Γ?

True or false?
A relation is preserved by the fractional polymorphisms of Γ
if and only if R has valued primitive positive definition in Γ .
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