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Computational Problems over Rings

B Problems about Q, left open by Guépin, Haase, and Worrel
B Two polynomial-time algorithms

A Consequences for satisfiability problems over Q.
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Satisfiability problems over rings

Fixed: Ring R.

Input: Given a system X of polynomial equations with integer coefficients.
Question: |s there a solution to £ over R?
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Satisfiability problems over rings

Fixed: Ring R.
Input: Given a system X of polynomial equations with integer coefficients.
Question: Is there a solution to X over R?

Computational Complexity:

Ring | Linear equations | Linear inequalities | Polynomial equations

R in P (Gauss) in P (Ellipsoid) in PSPACE, NP-hard
Q inP in P Decidability open
Z NP-complete in P (Hermit NF) Undecidable

Research directions:
m different rings?
m different constraint languages?
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p: prime number.
Field of p-adic numbers (Kummer, Hensel, ...):

m Roughly: allows for ‘taking modulo p® for all e at once’.
m Many applications in number theory

m See survey on applications by Rozikov (2013)
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p: prime number.
Field of p-adic numbers (Kummer, Hensel, ...):

m Roughly: allows for ‘taking modulo p® for all e at once’.
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Vo (g) = vp(a) — vp(b).
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The p-adic Numbers

p: prime number.
Field of p-adic numbers (Kummer, Hensel, ...):

m Roughly: allows for ‘taking modulo p® for all e at once’.

m Many applications in number theory

m See survey on applications by Rozikov (2013)
p-adic valution: For x € Z define vp(x) := sup{j : p/lx} € NU{oo}.
Extend to Q: a

Vo (5) = vp(a) — vp(b).
p-adic absolute value:
IX[p = p_Vp(X)
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The p-adic Numbers

p: prime number.
Field of p-adic numbers (Kummer, Hensel, ...):

m Roughly: allows for ‘taking modulo p® for all e at once’.

m Many applications in number theory

m See survey on applications by Rozikov (2013)
p-adic valution: For x € Z define v,(x) := sup{j : p/Ix} € NU{oo}.
Extend to Q:

Vo (g) = vp(a) — vp(b).

p-adic absolute value:
IX[p = p_vP(X)

Qp: completion of Q with respect to |.|p
(similarly to R being the completion of Q with respect to |.|).
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Satisfiability Problems over Q,

Guépin, Haase, and Worrel (LICS 2019):
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Satisfiability Problems over Q,

Guépin, Haase, and Worrel (LICS 2019): Satisfiability of systems of linear
equations with valuation constraints of the form v,(x) = ¢

m in NP
m NP-hard forp > 5

m “While we believe it to be the case, it remains an open problem whether
an NP lower bound can be established for the cases p = 2,3”

Our results answer this.

Let Qp == (Qp; +, 1, (<B)eezy (B)cez, (=) cez, (#5)cez) Where

m <?is unary relation symbol for {x € Qp | Vp(x) < c},

m >? =P and #P: defined analogously.
For a structure &, define CSP(&) to be the problem of deciding whether a set
of atomic formulas is satisfiable over &.

Proposition: The structure 9, and its substructure with domain Q
have the same first-order theory, and hence the same CSP.
(we use a quantifier-elimination result of Weispfenning’1988)
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Complexity Classification: p > 3

Theorem. Let i be a reduct of Q, whose signature contains {+, 1}.

Then CSP(R) is in P if RR is a reduct of one of

(Qp; +, 1, (<R)cez, (#R)cez)
(Qp;+) 1) (Zg)cel))

and is NP-complete otherwise.
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Complexity Classification: p > 3

Theorem. Let i be a reduct of Q, whose signature contains {+, 1}.
Then CSP(R) is in P if RR is a reduct of one of

(Qp;"’_) 1a (

<Bcez, (#8)cez) (1)
(Qp;+, 1, (=F

Joez), (@)

and is NP-complete otherwise.

Answers the question of Guépin, Haase, and Worrel for p = 3:
their problem has =g, so is NP-hard.
Comments.

m Need two polynomial-time algorithms!

m Both can deal with coefficients p, ¢ given in binary.

m Hardness proofs: ‘gadget reductions’ from p-colorability,
which is NP-hard for p > 3.

Tractable Problems over Qp Manuel Bodirsky



Complexity Classification: p =2

Tractable Problems over ;,p Manuel Bodirsky



Complexity Classification: p =2

Theorem. Let R be a reduct of Qo whose signature contains {+, 1}.

Tractable Problems over ;p Manuel Bodirsky



Complexity Classification: p =2

Theorem. Let R be a reduct of Qo whose signature contains {+, 1}.
Then CSP(fR) is in P if

Tractable Problems over ;p Manuel Bodirsky



Complexity Classification: p =2

Theorem. Let R be a reduct of Qo whose signature contains {+, 1}.
Then CSP(fR) is in P if R is a reduct of one of

(Q2;+» 1) (Sg)CGZ) (#E)CGZ)
(QZ;‘h 1) (:g)CEZ) (Zg)CEZ)a

and is NP-complete otherwise.
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Complexity Classification: p =2

Theorem. Let R be a reduct of Qo whose signature contains {+, 1}.
Then CSP(fR) is in P if R is a reduct of one of

(Q2;+» 1) (Sg)CGZ) (#E)CGZ) (3)
(QZ;‘h 1) (:g)CEZ) (Zg)CEZ)a (4)

and is NP-complete otherwise.

Answers the question of Guépin, Haase, and Worrel for p = 2:
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Complexity Classification: p =2

Theorem. Let R be a reduct of Qo whose signature contains {+, 1}.
Then CSP(fR) is in P if R is a reduct of one of

(Q2;+» 1) (Sg)CGZ) (#g)CGZ) (3)
(Q2;+»1)(:g)CEZ)(Zg)CEZ)a (4)
and is NP-complete otherwise.

Answers the question of Guépin, Haase, and Worrel for p = 2:
their problem is captured by (4), so in P!
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Algorithm 1

Proposition. There is a polynomial time algorithm that decides, given
BmneN,peP,
B CE (ZU{oo})",
mAc QM
m be Q" and
m finite sets Dy, ..., D, C Z,
whether there exists x € Q" with Ax = b such that
m vp(X;) < ¢, and
W Vy(x;) ¢ Diforj=1,...,n.
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Algorithm 1

Proposition. There is a polynomial time algorithm that decides, given
BmneN,peP,
B CE (ZU{oo})",
mAc QM
m be Q" and
m finite sets Dy, ..., D, C Z,
whether there exists x € Q" with Ax = b such that
m vp(X;) < ¢, and
W Vy(x;) ¢ Diforj=1,...,n.

Remark: Cannot compute a solution in binary representation in P:
all solutions of ‘v,(x) < ¢’ have doubly exponential representation size.

Idea: Compute linear expression E for solution space of Ax = b.
Using E, test whether single constraints of the form v,(x) < ¢ are unsat.
If not, then there exists a solution to all constraints.
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Algorithm 2

Theorem. There is a polynomial-time algorithm that decides, given
mmneN, peP,
B cc (ZU{—o})",
mAc Q™" and
mbeQm,
whether there exists x € Q" with Ax = b such that v,(x) > c.
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mmneN, peP,
B cc (ZU{—o})",
mAc Q™" and
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whether there exists x € Q" with Ax = b such that v,(x) > c.

In the case p = 2, we can additionally treat constraints of the form v»(x) = c.
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Algorithm 2

Theorem. There is a polynomial-time algorithm that decides, given
mmneN, peP,
B cc (ZU{—o})",
mAc Q™" and
mbeQm,
whether there exists x € Q" with Ax = b such that v,(x) > c.
In the case p = 2, we can additionally treat constraints of the form v»(x) = c.
Proof ideas:

m Substantially more involved.
m Develop an appropriate row echelon form.

m Example: Consider a;xy +--- + apx, = b, for a1,...,an, b € Q.
Has a solution x € Q" with v,(x;) > 0 for every j € {1,...,n}
if and only if
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Algorithm 2

Theorem. There is a polynomial-time algorithm that decides, given
mmneN, peP,
B cc (ZU{—o})",
mAc Q™" and
mbecQm,
whether there exists x € Q" with Ax = b such that v,(x) > c.
In the case p = 2, we can additionally treat constraints of the form v»(x) = c.
Proof ideas:
m Substantially more involved.
m Develop an appropriate row echelon form.

m Example: Consider a1 x1 + - -+ + anxp = b, for ay, ..., an, b € Q.
Has a solution x € Q" with v,(x;) > 0 for every j € {1,...,n}
if and only if vp(b) > min;vy(a;).
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Combining several primes, and the ordering!
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Combining several primes, and the ordering!

: expansion of (Q;+, 1) with all the relations

{Slga zg) :gv 762 ‘ cc Z»P prime}-
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Combining several primes, and the ordering!
: expansion of (Q;+, 1) with all the relations

{S'g) zg) :gv #g ‘ cc Z»P prime}-

Theorem. Let 2R be a reduct of (Q, <) that contains {1, +}.
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Combining several primes, and the ordering!

: expansion of (Q;+, 1) with all the relations

{Sga zg) :’g» 76[3 ‘ cc Z»P prime}-

Theorem. Let 2R be a reduct of (Q, <) that contains {1, +}.
If R contains

m =’ for some ¢ € Z and prime p > 3,
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Combining several primes, and the ordering!

: expansion of (Q;+, 1) with all the relations

{Sga zg) :’g» #g | ¢ € Z, p prime}.

Theorem. Let 2R be a reduct of (Q, <) that contains {1, +}.
If R contains
m =’ for some ¢ € Z and prime p > 3,

m > and a relation from {<£,, #5 } for some ¢y, ¢, € Z and prime p > 3, or
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Combining several primes, and the ordering!

: expansion of (Q;+, 1) with all the relations
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Combining several primes, and the ordering!

: expansion of (Q;+, 1) with all the relations
{Sg) zg) :’g» #g ‘ cc Z»P prime}-
Theorem. Let 2R be a reduct of (Q, <) that contains {1, +}.
If R contains
m =’ for some ¢ € Z and prime p > 3,
m > and a relation from {<£,, #5 } for some ¢y, ¢, € Z and prime p > 3, or
m arelation from {>2 =2 } and a relation from {<2 , £ } for some ¢y, ¢; € Z,

then CSP(fR) is NP-complete; otherwise, CSP(fR) is in P.

Proof ingredient: the approximation theorem for finitely many inequivalent
absolute values (see, e.g., Lang’s Algebra).
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Conclusion

m Two polynomial-time tractability results for linear systems over Q.
m Have matching hardness results.
m Algorithms for various primes p can be combined over Q, and with <.

Open question: is there a polynomial-time algorithm for systems of linear
(in-)equalities with coefficients of the form 2¢, for ¢ given in binary?

m would imply our tractability result for linear systems with valuation
constraints of the form v, (x) = c.

m would imply a polynomial-time algorithm for mean-payoff-games
(currently not known to be in P).
See Bodirsky, Loho, Skomra ICALP’2025 for more on this connection.
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