Polynomial-time Tractable Problems over the p-adic Numbers

Manuel Bodirsky

Institut für Algebra, TU Dresden

Joint work with Arno Fehm

Warsaw, 26.8.2025

ERC Synergy Grant POCOCOP (GA 101071674).

Outline

- Computational Problems over Rings
- **2** Problems about \mathbb{Q}_p left open by Guépin, Haase, and Worrel
- Two polynomial-time algorithms
- 4 Consequences for satisfiability problems over \mathbb{Q} .

Fixed: Ring R.

Input: Given a system Σ of polynomial equations with integer coefficients.

Question: Is there a solution to Σ over R?

Fixed: Ring R.

Input: Given a system Σ of polynomial equations with integer coefficients.

Question: Is there a solution to Σ over R?

Fixed: Ring *R*.

Input: Given a system Σ of polynomial equations with integer coefficients.

Question: Is there a solution to Σ over R?

Ring	Linear equations	Linear inequalities	Polynomial equations
\mathbb{R}	in P (Gauss)	in P (Ellipsoid)	in PSPACE, NP-hard

Fixed: Ring R.

Input: Given a system Σ of polynomial equations with integer coefficients.

Question: Is there a solution to Σ over R?

R	ling	Linear equations	Linear inequalities	Polynomial equations
\mathbb{R}		in P (Gauss)	in P (Ellipsoid)	in PSPACE, NP-hard
\mathbb{Q})	in P	in P	Decidability open

Fixed: Ring R.

Input: Given a system Σ of polynomial equations with integer coefficients.

Question: Is there a solution to Σ over R?

R	ing	Linear equations	Linear inequalities	Polynomial equations
\mathbb{R}		in P (Gauss)	in P (Ellipsoid)	in PSPACE, NP-hard
\mathbb{Q}		in P	in P	Decidability open
\mathbb{Z}		NP-complete	in P (Hermit NF)	Undecidable

Fixed: Ring R.

Input: Given a system Σ of polynomial equations with integer coefficients.

Question: Is there a solution to Σ over R?

Computational Complexity:

Ring	Linear equations	Linear inequalities	Polynomial equations
\mathbb{R}	in P (Gauss)	in P (Ellipsoid)	in PSPACE, NP-hard
\mathbb{Q}	in P	in P	Decidability open
\mathbb{Z}	NP-complete	in P (Hermit NF)	Undecidable

Research directions:

Fixed: Ring R.

Input: Given a system Σ of polynomial equations with integer coefficients.

Question: Is there a solution to Σ over R?

Computational Complexity:

Ring	Linear equations	Linear inequalities	Polynomial equations
\mathbb{R}	in P (Gauss)	in P (Ellipsoid)	in PSPACE, NP-hard
\mathbb{Q}	in P	in P	Decidability open
\mathbb{Z}	NP-complete	in P (Hermit NF)	Undecidable

Research directions:

■ different rings?

Fixed: Ring R.

Input: Given a system Σ of polynomial equations with integer coefficients.

Question: Is there a solution to Σ over R?

Computational Complexity:

Ring	Linear equations	Linear inequalities	Polynomial equations
\mathbb{R}	in P (Gauss)	in P (Ellipsoid)	in PSPACE, NP-hard
\mathbb{Q}	in P	in P	Decidability open
\mathbb{Z}	NP-complete	in P (Hermit NF)	Undecidable

Research directions:

- different rings?
- different constraint languages?

p: prime number.

```
p: prime number. Field of p-adic numbers (Kummer, Hensel, . . . ):
```

p: prime number.

Field of *p*-adic numbers (Kummer, Hensel, ...):

■ Roughly: allows for 'taking modulo pe for all e at once'.

p: prime number.

Field of *p*-adic numbers (Kummer, Hensel, ...):

- Roughly: allows for 'taking modulo pe for all e at once'.
- Many applications in number theory

p: prime number.

Field of *p*-adic numbers (Kummer, Hensel, ...):

- Roughly: allows for 'taking modulo pe for all e at once'.
- Many applications in number theory
- See survey on applications by Rozikov (2013)

p: prime number.

Field of *p*-adic numbers (Kummer, Hensel, ...):

- Roughly: allows for 'taking modulo pe for all e at once'.
- Many applications in number theory
- See survey on applications by Rozikov (2013)

p-adic valution: For $x \in \mathbb{Z}$ define $v_p(x) := \sup\{j : p^j | x\} \in \mathbb{N} \cup \{\infty\}$.

p: prime number.

Field of *p*-adic numbers (Kummer, Hensel, ...):

- Roughly: allows for 'taking modulo pe for all e at once'.
- Many applications in number theory
- See survey on applications by Rozikov (2013)

p-adic valution: For $x \in \mathbb{Z}$ define $v_p(x) := \sup\{j : p^j | x\} \in \mathbb{N} \cup \{\infty\}$. Extend to \mathbb{Q} :

$$v_p\left(\frac{a}{b}\right) := v_p(a) - v_p(b).$$

p: prime number.

Field of *p*-adic numbers (Kummer, Hensel, ...):

- Roughly: allows for 'taking modulo pe for all e at once'.
- Many applications in number theory
- See survey on applications by Rozikov (2013)

p-adic valution: For $x \in \mathbb{Z}$ define $v_p(x) := \sup\{j : p^j | x\} \in \mathbb{N} \cup \{\infty\}$. Extend to \mathbb{Q} :

$$v_p\left(\frac{a}{b}\right) := v_p(a) - v_p(b).$$

p-adic absolute value:

$$|\mathbf{x}|_p := p^{-v_p(\mathbf{x})}$$

p: prime number.

Field of *p*-adic numbers (Kummer, Hensel, ...):

- Roughly: allows for 'taking modulo pe for all e at once'.
- Many applications in number theory
- See survey on applications by Rozikov (2013)

p-adic valution: For $x \in \mathbb{Z}$ define $v_p(x) := \sup\{j : p^j | x\} \in \mathbb{N} \cup \{\infty\}$. Extend to \mathbb{Q} :

$$v_p\left(\frac{a}{b}\right):=v_p(a)-v_p(b).$$

p-adic absolute value:

$$|\mathbf{x}|_p := p^{-v_p(\mathbf{x})}$$

 \mathbb{Q}_p : completion of \mathbb{Q} with respect to $|.|_p$ (similarly to \mathbb{R} being the completion of \mathbb{Q} with respect to |.|).

Guépin, Haase, and Worrel (LICS 2019):

Guépin, Haase, and Worrel (LICS 2019): Satisfiability of systems of linear equations with valuation constraints of the form $v_p(x) = c$

Guépin, Haase, and Worrel (LICS 2019): Satisfiability of systems of linear equations with valuation constraints of the form $v_p(x) = c$

■ in NP

Guépin, Haase, and Worrel (LICS 2019): Satisfiability of systems of linear equations with valuation constraints of the form $v_p(x) = c$

- in NP
- NP-hard for $p \ge 5$

Guépin, Haase, and Worrel (LICS 2019): Satisfiability of systems of linear equations with valuation constraints of the form $v_p(x) = c$

- in NP
- NP-hard for $p \ge 5$
- "While we believe it to be the case, it remains an open problem whether an NP lower bound can be established for the cases p = 2,3"

Guépin, Haase, and Worrel (LICS 2019): Satisfiability of systems of linear equations with valuation constraints of the form $v_p(x) = c$

- in NP
- NP-hard for $p \ge 5$
- "While we believe it to be the case, it remains an open problem whether an NP lower bound can be established for the cases p = 2,3"

Our results answer this.

Guépin, Haase, and Worrel (LICS 2019): Satisfiability of systems of linear equations with valuation constraints of the form $v_p(x) = c$

- in NP
- NP-hard for $p \ge 5$
- "While we believe it to be the case, it remains an open problem whether an NP lower bound can be established for the cases p = 2,3"

Our results answer this.

Let
$$\mathfrak{Q}_p:=(\mathbb{Q}_p;+,1,(\leq^p_c)_{c\in\mathbb{Z}},(\geq^p_c)_{c\in\mathbb{Z}},(=^p_c)_{c\in\mathbb{Z}},(\neq^p_c)_{c\in\mathbb{Z}})$$

Guépin, Haase, and Worrel (LICS 2019): Satisfiability of systems of linear equations with valuation constraints of the form $v_p(x) = c$

- in NP
- NP-hard for p > 5
- "While we believe it to be the case, it remains an open problem whether an NP lower bound can be established for the cases p = 2,3"

Our results answer this.

Let
$$\mathfrak{Q}_{\rho}:=(\mathbb{Q}_{\rho};+,1,(\leq^{\rho}_{c})_{c\in\mathbb{Z}},(\geq^{\rho}_{c})_{c\in\mathbb{Z}},(=^{\rho}_{c})_{c\in\mathbb{Z}},(\neq^{\rho}_{c})_{c\in\mathbb{Z}})$$
 where

 $\blacksquare \leq_c^p$ is unary relation symbol for $\{x \in \mathbb{Q}_p \mid v_p(x) \leq c\}$,

Guépin, Haase, and Worrel (LICS 2019): Satisfiability of systems of linear equations with valuation constraints of the form $v_p(x) = c$

- in NP
- NP-hard for $p \ge 5$
- "While we believe it to be the case, it remains an open problem whether an NP lower bound can be established for the cases p = 2,3"

Our results answer this.

Let
$$\mathfrak{Q}_{\rho}:=(\mathbb{Q}_{\rho};+,1,(\leq^{\rho}_{c})_{c\in\mathbb{Z}},(\geq^{\rho}_{c})_{c\in\mathbb{Z}},(=^{\rho}_{c})_{c\in\mathbb{Z}},(\neq^{\rho}_{c})_{c\in\mathbb{Z}})$$
 where

- ullet \leq_c^p is unary relation symbol for $\{x\in\mathbb{Q}_p\mid v_p(x)\leq c\}$,
- $\blacksquare \geq_c^p, =_c^p, \text{ and } \neq_c^p$: defined analogously.

Guépin, Haase, and Worrel (LICS 2019): Satisfiability of systems of linear equations with valuation constraints of the form $v_p(x) = c$

- in NP
- NP-hard for $p \ge 5$
- "While we believe it to be the case, it remains an open problem whether an NP lower bound can be established for the cases p = 2,3"

Our results answer this.

Let
$$\mathfrak{Q}_p:=(\mathbb{Q}_p;+,1,(\leq^p_c)_{c\in\mathbb{Z}},(\geq^p_c)_{c\in\mathbb{Z}},(=^p_c)_{c\in\mathbb{Z}},(\neq^p_c)_{c\in\mathbb{Z}})$$
 where

- ullet \leq_c^p is unary relation symbol for $\{x\in\mathbb{Q}_p\mid v_p(x)\leq c\}$,
- $\ge_c^p, =_c^p, \text{ and } \ne_c^p$: defined analogously.

For a structure \mathfrak{S} , define $CSP(\mathfrak{S})$ to be the problem of deciding whether a set of atomic formulas is satisfiable over \mathfrak{S} .

Guépin, Haase, and Worrel (LICS 2019): Satisfiability of systems of linear equations with valuation constraints of the form $v_p(x) = c$

- in NP
- NP-hard for $p \ge 5$
- "While we believe it to be the case, it remains an open problem whether an NP lower bound can be established for the cases p = 2,3"

Our results answer this.

Let
$$\mathfrak{Q}_{\rho}:=(\mathbb{Q}_{\rho};+,1,(\leq^{p}_{c})_{c\in\mathbb{Z}},(\geq^{p}_{c})_{c\in\mathbb{Z}},(=^{p}_{c})_{c\in\mathbb{Z}},(\neq^{p}_{c})_{c\in\mathbb{Z}})$$
 where

- ullet \leq_c^p is unary relation symbol for $\{x\in\mathbb{Q}_p\mid v_p(x)\leq c\}$,
- $\ge_c^p, =_c^p, \text{ and } \ne_c^p$: defined analogously.

For a structure \mathfrak{S} , define $CSP(\mathfrak{S})$ to be the problem of deciding whether a set of atomic formulas is satisfiable over \mathfrak{S} .

Proposition: The structure \mathfrak{Q}_p and its substructure with domain \mathbb{Q} have the same first-order theory,

Guépin, Haase, and Worrel (LICS 2019): Satisfiability of systems of linear equations with valuation constraints of the form $v_p(x) = c$

- in NP
- NP-hard for $p \ge 5$
- "While we believe it to be the case, it remains an open problem whether an NP lower bound can be established for the cases p = 2,3"

Our results answer this.

Let
$$\mathfrak{Q}_p:=(\mathbb{Q}_p;+,1,(\leq^p_c)_{c\in\mathbb{Z}},(\geq^p_c)_{c\in\mathbb{Z}},(=^p_c)_{c\in\mathbb{Z}},(\neq^p_c)_{c\in\mathbb{Z}})$$
 where

- ullet \leq_c^p is unary relation symbol for $\{x\in\mathbb{Q}_p\mid v_p(x)\leq c\}$,
- $\blacksquare \geq_c^p$, $=_c^p$, and \neq_c^p : defined analogously.

For a structure \mathfrak{S} , define $CSP(\mathfrak{S})$ to be the problem of deciding whether a set of atomic formulas is satisfiable over \mathfrak{S} .

Proposition: The structure \mathfrak{Q}_p and its substructure with domain \mathbb{Q} have the same first-order theory, and hence the same CSP.

Guépin, Haase, and Worrel (LICS 2019): Satisfiability of systems of linear equations with valuation constraints of the form $v_p(x) = c$

- in NP
- NP-hard for $p \ge 5$
- "While we believe it to be the case, it remains an open problem whether an NP lower bound can be established for the cases p = 2,3"

Our results answer this.

Let
$$\mathfrak{Q}_{\rho}:=(\mathbb{Q}_{\rho};+,1,(\leq^{p}_{c})_{c\in\mathbb{Z}},(\geq^{p}_{c})_{c\in\mathbb{Z}},(=^{p}_{c})_{c\in\mathbb{Z}},(\neq^{p}_{c})_{c\in\mathbb{Z}})$$
 where

- ullet \leq_c^p is unary relation symbol for $\{x\in\mathbb{Q}_p\mid v_p(x)\leq c\}$,
- $\ge_c^p, =_c^p, \text{ and } \ne_c^p$: defined analogously.

For a structure \mathfrak{S} , define $CSP(\mathfrak{S})$ to be the problem of deciding whether a set of atomic formulas is satisfiable over \mathfrak{S} .

Proposition: The structure \mathfrak{Q}_p and its substructure with domain \mathbb{Q} have the same first-order theory, and hence the same CSP. (we use a quantifier-elimination result of Weispfenning'1988)

Complexity Classification: $p \ge 3$

Complexity Classification: $p \ge 3$

Theorem. Let \mathfrak{R} be a reduct of \mathfrak{Q}_p whose signature contains $\{+, 1\}$.

Complexity Classification: $p \ge 3$

Theorem. Let \mathfrak{R} be a reduct of \mathfrak{Q}_p whose signature contains $\{+, 1\}$. Then $\mathsf{CSP}(\mathfrak{R})$ is in P if \mathfrak{R} is a reduct of one of

$$(\mathbb{Q}_{\rho};+,1,(\leq_{c}^{\rho})_{c\in\mathbb{Z}},(\neq_{c}^{\rho})_{c\in\mathbb{Z}}) \tag{1}$$

$$(\mathbb{Q}_{\rho};+,1,(\geq_{c}^{\rho})_{c\in\mathbb{Z}}),\tag{2}$$

and is NP-complete otherwise.

Theorem. Let \mathfrak{R} be a reduct of \mathfrak{Q}_p whose signature contains $\{+, 1\}$. Then $\mathsf{CSP}(\mathfrak{R})$ is in P if \mathfrak{R} is a reduct of one of

$$(\mathbb{Q}_{p};+,1,(\leq_{c}^{p})_{c\in\mathbb{Z}},(\neq_{c}^{p})_{c\in\mathbb{Z}})$$
(1)

$$(\mathbb{Q}_{\rho};+,1,(\geq_{c}^{\rho})_{c\in\mathbb{Z}}),\tag{2}$$

and is NP-complete otherwise.

Answers the question of Guépin, Haase, and Worrel for p = 3:

Theorem. Let \mathfrak{R} be a reduct of \mathfrak{Q}_p whose signature contains $\{+, 1\}$. Then $\mathsf{CSP}(\mathfrak{R})$ is in P if \mathfrak{R} is a reduct of one of

$$(\mathbb{Q}_p; +, 1, (\leq_c^p)_{c \in \mathbb{Z}}, (\neq_c^p)_{c \in \mathbb{Z}}) \tag{1}$$

$$(\mathbb{Q}_{\rho};+,1,(\geq_{c}^{\rho})_{c\in\mathbb{Z}}),\tag{2}$$

and is NP-complete otherwise.

Answers the question of Guépin, Haase, and Worrel for p=3: their problem has $=_p^c$, so is NP-hard.

Theorem. Let \mathfrak{R} be a reduct of \mathfrak{Q}_p whose signature contains $\{+, 1\}$. Then $\mathsf{CSP}(\mathfrak{R})$ is in P if \mathfrak{R} is a reduct of one of

$$(\mathbb{Q}_{\rho};+,1,(\leq_{c}^{\rho})_{c\in\mathbb{Z}},(\neq_{c}^{\rho})_{c\in\mathbb{Z}}) \tag{1}$$

$$(\mathbb{Q}_{p};+,1,(\geq_{c}^{p})_{c\in\mathbb{Z}}),\tag{2}$$

and is NP-complete otherwise.

Answers the question of Guépin, Haase, and Worrel for p=3: their problem has $=_p^c$, so is NP-hard.

Comments.

Need two polynomial-time algorithms!

Theorem. Let \mathfrak{R} be a reduct of \mathfrak{Q}_p whose signature contains $\{+, 1\}$. Then $\mathsf{CSP}(\mathfrak{R})$ is in P if \mathfrak{R} is a reduct of one of

$$(\mathbb{Q}_p; +, 1, (\leq_c^p)_{c \in \mathbb{Z}}, (\neq_c^p)_{c \in \mathbb{Z}}) \tag{1}$$

$$(\mathbb{Q}_{\rho};+,1,(\geq_{c}^{\rho})_{c\in\mathbb{Z}}),\tag{2}$$

and is NP-complete otherwise.

Answers the question of Guépin, Haase, and Worrel for p=3: their problem has $=_p^c$, so is NP-hard.

Comments.

- Need two polynomial-time algorithms!
- Both can deal with coefficients *p*, *c* given in binary.

Theorem. Let \mathfrak{R} be a reduct of \mathfrak{Q}_p whose signature contains $\{+, 1\}$. Then $\mathsf{CSP}(\mathfrak{R})$ is in P if \mathfrak{R} is a reduct of one of

$$(\mathbb{Q}_{p};+,1,(\leq_{c}^{p})_{c\in\mathbb{Z}},(\neq_{c}^{p})_{c\in\mathbb{Z}})$$
(1)

$$(\mathbb{Q}_p; +, 1, (\geq_c^p)_{c \in \mathbb{Z}}), \tag{2}$$

and is NP-complete otherwise.

Answers the question of Guépin, Haase, and Worrel for p=3: their problem has $=_p^c$, so is NP-hard.

Comments.

- Need two polynomial-time algorithms!
- Both can deal with coefficients *p*, *c* given in binary.
- Hardness proofs: 'gadget reductions' from p-colorability, which is NP-hard for $p \ge 3$.

Theorem. Let \mathfrak{R} be a reduct of \mathfrak{Q}_2 whose signature contains $\{+, 1\}$.

Theorem. Let \mathfrak{R} be a reduct of \mathfrak{Q}_2 whose signature contains $\{+, 1\}$. Then $\mathsf{CSP}(\mathfrak{R})$ is in P if

Theorem. Let \mathfrak{R} be a reduct of \mathfrak{Q}_2 whose signature contains $\{+, 1\}$. Then $\mathsf{CSP}(\mathfrak{R})$ is in P if \mathfrak{R} is a reduct of one of

$$(\mathbb{Q}_2; +, 1, (\leq_c^2)_{c \in \mathbb{Z}}, (\neq_c^2)_{c \in \mathbb{Z}})$$
(3)

$$(\mathbb{Q}_2; +, 1, (=_c^2)_{c \in \mathbb{Z}}, (\geq_c^2)_{c \in \mathbb{Z}}), \tag{4}$$

and is NP-complete otherwise.

Theorem. Let \mathfrak{R} be a reduct of \mathfrak{Q}_2 whose signature contains $\{+, 1\}$. Then $\mathsf{CSP}(\mathfrak{R})$ is in P if \mathfrak{R} is a reduct of one of

$$(\mathbb{Q}_2; +, 1, (\leq_c^2)_{c \in \mathbb{Z}}, (\neq_c^2)_{c \in \mathbb{Z}})$$
(3)

$$(\mathbb{Q}_2; +, 1, (=_c^2)_{c \in \mathbb{Z}}, (\geq_c^2)_{c \in \mathbb{Z}}), \tag{4}$$

and is NP-complete otherwise.

Answers the question of Guépin, Haase, and Worrel for p = 2:

Theorem. Let \mathfrak{R} be a reduct of \mathfrak{Q}_2 whose signature contains $\{+, 1\}$. Then $\mathsf{CSP}(\mathfrak{R})$ is in P if \mathfrak{R} is a reduct of one of

$$(\mathbb{Q}_2; +, 1, (\leq_c^2)_{c \in \mathbb{Z}}, (\neq_c^2)_{c \in \mathbb{Z}})$$
(3)

$$(\mathbb{Q}_2; +, 1, (=_c^2)_{c \in \mathbb{Z}}, (\geq_c^2)_{c \in \mathbb{Z}}), \tag{4}$$

and is NP-complete otherwise.

Answers the question of Guépin, Haase, and Worrel for p = 2: their problem is captured by (4), so in P!

Proposition. There is a polynomial time algorithm that decides, given

- lacksquare $m, n \in \mathbb{N}, p \in \mathbb{P},$
- $\mathbf{c} \in (\mathbb{Z} \cup \{\infty\})^n$
- \blacksquare $A \in \mathbb{Q}^{m \times n}$,
- $b \in \mathbb{Q}^m$, and
- finite sets $D_1, \ldots, D_n \subseteq \mathbb{Z}$,

whether there exists $x \in \mathbb{Q}^n$ with Ax = b such that

- $v_p(x_j) \le c_j$, and
- $\mathbf{v}_p(x_j) \notin D_j \text{ for } j = 1, \ldots, n.$

Proposition. There is a polynomial time algorithm that decides, given

- lacksquare $m, n \in \mathbb{N}, p \in \mathbb{P},$
- $\mathbf{c} \in (\mathbb{Z} \cup \{\infty\})^n$,
- \blacksquare $A \in \mathbb{Q}^{m \times n}$,
- $b \in \mathbb{Q}^m$, and
- finite sets $D_1, \ldots, D_n \subseteq \mathbb{Z}$,

whether there exists $x \in \mathbb{Q}^n$ with Ax = b such that

- $\mathbf{v}_p(x_i) \leq c_i$, and
- $\mathbf{v}_p(x_j) \notin D_j \text{ for } j = 1, \ldots, n.$

Remark: Cannot compute a solution in binary representation in P:

Proposition. There is a polynomial time algorithm that decides, given

- lacksquare $m, n \in \mathbb{N}, p \in \mathbb{P},$
- $\mathbf{c} \in (\mathbb{Z} \cup \{\infty\})^n$,
- $\blacksquare A \in \mathbb{Q}^{m \times n}$
- $b \in \mathbb{Q}^m$, and
- finite sets $D_1, \ldots, D_n \subseteq \mathbb{Z}$,

whether there exists $x \in \mathbb{Q}^n$ with Ax = b such that

- $\mathbf{v}_p(x_j) \leq c_j, \text{ and }$
- $\mathbf{v}_p(x_j) \notin D_j \text{ for } j = 1, \ldots, n.$

Remark: Cannot compute a solution in binary representation in P: all solutions of ' $v_p(x) \le c$ ' have doubly exponential representation size.

Proposition. There is a polynomial time algorithm that decides, given

- $\mathbf{m}, n \in \mathbb{N}, p \in \mathbb{P},$
- $\mathbf{c} \in (\mathbb{Z} \cup \{\infty\})^n$,
- \blacksquare $A \in \mathbb{Q}^{m \times n}$,
- $b \in \mathbb{Q}^m$, and
- finite sets $D_1, \ldots, D_n \subseteq \mathbb{Z}$,

whether there exists $x \in \mathbb{Q}^n$ with Ax = b such that

- $\mathbf{v}_p(x_j) \leq c_j, \text{ and }$
- $\mathbf{v}_p(x_j) \notin D_j \text{ for } j = 1, \ldots, n.$

Remark: Cannot compute a solution in binary representation in P: all solutions of $v_p(x) \le c$ have doubly exponential representation size.

Idea: Compute linear expression E for solution space of Ax = b.

Proposition. There is a polynomial time algorithm that decides, given

- lacksquare $m, n \in \mathbb{N}, p \in \mathbb{P},$
- $\mathbf{c} \in (\mathbb{Z} \cup \{\infty\})^n$,
- \blacksquare $A \in \mathbb{Q}^{m \times n}$,
- $b \in \mathbb{Q}^m$, and
- finite sets $D_1, \ldots, D_n \subset \mathbb{Z}$,

whether there exists $x \in \mathbb{Q}^n$ with Ax = b such that

- $\mathbf{v}_p(x_i) \leq c_i$, and
- $\mathbf{v}_p(x_j) \notin D_j \text{ for } j = 1, \ldots, n.$

Remark: Cannot compute a solution in binary representation in P: all solutions of $v_p(x) \le c$ have doubly exponential representation size.

Idea: Compute linear expression E for solution space of Ax = b. Using E, test whether single constraints of the form $v_p(x) \le c$ are unsat.

Proposition. There is a polynomial time algorithm that decides, given

- lacksquare $m, n \in \mathbb{N}, p \in \mathbb{P},$
- $\mathbf{c} \in (\mathbb{Z} \cup \{\infty\})^n$,
- $\blacksquare A \in \mathbb{Q}^{m \times n}$
- $b \in \mathbb{Q}^m$, and
- finite sets $D_1, \ldots, D_n \subset \mathbb{Z}$,

whether there exists $x \in \mathbb{Q}^n$ with Ax = b such that

- $\mathbf{v}_p(x_i) \leq c_i$, and
- $\mathbf{v}_p(x_j) \notin D_j \text{ for } j = 1, \ldots, n.$

Remark: Cannot compute a solution in binary representation in P: all solutions of $v_p(x) \le c$ have doubly exponential representation size.

Idea: Compute linear expression E for solution space of Ax = b. Using E, test whether single constraints of the form $v_p(x) \le c$ are unsat. If not, then there exists a solution to all constraints.

Theorem. There is a polynomial-time algorithm that decides, given

- \blacksquare $m, n \in \mathbb{N}, p \in \mathbb{P},$
- $\mathbf{c} \in (\mathbb{Z} \cup \{-\infty\})^n$,
- lacksquare $A \in \mathbb{Q}^{m \times n}$, and
- lacksquare $b \in \mathbb{Q}^m$,

whether there exists $x \in \mathbb{Q}^n$ with Ax = b such that $v_p(x) \ge c$.

Theorem. There is a polynomial-time algorithm that decides, given

- \blacksquare $m, n \in \mathbb{N}, p \in \mathbb{P},$
- $\mathbf{c} \in (\mathbb{Z} \cup \{-\infty\})^n$,
- lacksquare $A \in \mathbb{Q}^{m \times n}$, and
- lacksquare $b \in \mathbb{Q}^m$,

whether there exists $x \in \mathbb{Q}^n$ with Ax = b such that $v_p(x) \ge c$.

Theorem. There is a polynomial-time algorithm that decides, given

- \blacksquare $m, n \in \mathbb{N}, p \in \mathbb{P},$
- $\mathbf{c} \in (\mathbb{Z} \cup \{-\infty\})^n$,
- lacksquare $A \in \mathbb{Q}^{m \times n}$, and
- lacksquare $b \in \mathbb{Q}^m$,

whether there exists $x \in \mathbb{Q}^n$ with Ax = b such that $v_p(x) \ge c$.

In the case p = 2, we can additionally treat constraints of the form $v_2(x) = c$.

Theorem. There is a polynomial-time algorithm that decides, given

- lacksquare $m, n \in \mathbb{N}, p \in \mathbb{P},$
- $\mathbf{c} \in (\mathbb{Z} \cup \{-\infty\})^n$,
- $lacksquare A \in \mathbb{Q}^{m \times n}$, and
- lacksquare $b \in \mathbb{Q}^m$,

whether there exists $x \in \mathbb{Q}^n$ with Ax = b such that $v_p(x) \ge c$.

In the case p = 2, we can additionally treat constraints of the form $v_2(x) = c$.

Theorem. There is a polynomial-time algorithm that decides, given

- lacksquare $m, n \in \mathbb{N}, p \in \mathbb{P},$
- $\mathbf{c} \in (\mathbb{Z} \cup \{-\infty\})^n$
- lacksquare $A \in \mathbb{Q}^{m \times n}$, and
- lacksquare $b \in \mathbb{Q}^m$,

whether there exists $x \in \mathbb{Q}^n$ with Ax = b such that $v_p(x) \ge c$.

In the case p = 2, we can additionally treat constraints of the form $v_2(x) = c$.

Proof ideas:

Substantially more involved.

Theorem. There is a polynomial-time algorithm that decides, given

- lacksquare $m, n \in \mathbb{N}, p \in \mathbb{P},$
- $\mathbf{c} \in (\mathbb{Z} \cup \{-\infty\})^n$
- \blacksquare $A \in \mathbb{Q}^{m \times n}$, and
- lacksquare $b \in \mathbb{Q}^m$,

whether there exists $x \in \mathbb{Q}^n$ with Ax = b such that $v_p(x) \ge c$.

In the case p = 2, we can additionally treat constraints of the form $v_2(x) = c$.

- Substantially more involved.
- Develop an appropriate row echelon form.

Theorem. There is a polynomial-time algorithm that decides, given

- $\mathbf{m}, n \in \mathbb{N}, p \in \mathbb{P},$
- $\mathbf{c} \in (\mathbb{Z} \cup \{-\infty\})^n$,
- lacksquare $A \in \mathbb{Q}^{m \times n}$, and
- lacksquare $b \in \mathbb{Q}^m$,

whether there exists $x \in \mathbb{Q}^n$ with Ax = b such that $v_p(x) \ge c$.

In the case p = 2, we can additionally treat constraints of the form $v_2(x) = c$.

- Substantially more involved.
- Develop an appropriate row echelon form.
- Example: Consider $a_1x_1 + \cdots + a_nx_n = b$, for $a_1, \ldots, a_n, b \in \mathbb{Q}$.

Theorem. There is a polynomial-time algorithm that decides, given

- lacksquare $m, n \in \mathbb{N}, p \in \mathbb{P},$
- $\mathbf{c} \in (\mathbb{Z} \cup \{-\infty\})^n$,
- lacksquare $A \in \mathbb{Q}^{m \times n}$, and
- lacksquare $b \in \mathbb{Q}^m$,

whether there exists $x \in \mathbb{Q}^n$ with Ax = b such that $v_p(x) \ge c$.

In the case p = 2, we can additionally treat constraints of the form $v_2(x) = c$.

- Substantially more involved.
- Develop an appropriate row echelon form.
- Example: Consider $a_1x_1 + \cdots + a_nx_n = b$, for $a_1, \ldots, a_n, b \in \mathbb{Q}$. Has a solution $x \in \mathbb{Q}^n$ with $v_p(x_j) \ge 0$ for every $j \in \{1, \ldots, n\}$ if and only if

Theorem. There is a polynomial-time algorithm that decides, given

- $\mathbf{m}, n \in \mathbb{N}, p \in \mathbb{P},$
- $\mathbf{c} \in (\mathbb{Z} \cup \{-\infty\})^n$,
- \blacksquare $A \in \mathbb{Q}^{m \times n}$, and
- lacksquare $b \in \mathbb{Q}^m$,

whether there exists $x \in \mathbb{Q}^n$ with Ax = b such that $v_p(x) \ge c$.

In the case p = 2, we can additionally treat constraints of the form $v_2(x) = c$.

- Substantially more involved.
- Develop an appropriate row echelon form.
- Example: Consider $a_1x_1 + \cdots + a_nx_n = b$, for $a_1, \ldots, a_n, b \in \mathbb{Q}$. Has a solution $x \in \mathbb{Q}^n$ with $v_p(x_j) \ge 0$ for every $j \in \{1, \ldots, n\}$ if and only if $v_p(b) \ge \min_i v_p(a_i)$.

 \mathfrak{Q} : expansion of $(\mathbb{Q}; +, 1)$ with all the relations

$$\{\leq_c^p,\geq_c^p,=_c^p,\neq_c^p\mid c\in\mathbb{Z},p \text{ prime}\}.$$

 \mathfrak{Q} : expansion of $(\mathbb{Q};+,1)$ with all the relations

$$\{\leq_c^p,\geq_c^p,=_c^p,\neq_c^p\mid c\in\mathbb{Z},p \text{ prime}\}.$$

Theorem. Let \mathfrak{R} be a reduct of (\mathfrak{Q}, \leq) that contains $\{1, +\}$.

 \mathfrak{Q} : expansion of $(\mathbb{Q};+,1)$ with all the relations

$$\{\leq_c^p,\geq_c^p,=_c^p,\neq_c^p\mid c\in\mathbb{Z},p \text{ prime}\}.$$

Theorem. Let \mathfrak{R} be a reduct of (\mathfrak{Q}, \leq) that contains $\{1, +\}$. If \mathfrak{R} contains

 $lacksquare = =_c^p ext{ for some } c \in \mathbb{Z} ext{ and prime } p \geq 3,$

 \mathfrak{Q} : expansion of $(\mathbb{Q};+,1)$ with all the relations

$$\{\leq_c^p,\geq_c^p,=_c^p,\neq_c^p\mid c\in\mathbb{Z},p \text{ prime}\}.$$

Theorem. Let \mathfrak{R} be a reduct of (\mathfrak{Q}, \leq) that contains $\{1, +\}$. If \mathfrak{R} contains

- $lacksquare = _c^{
 ho}$ for some $c \in \mathbb{Z}$ and prime $ho \geq 3$,
- $lackbox{0.5cm} \ge^{\it p}_{\it c_1}$ and a relation from $\{\le^{\it p}_{\it c_2},\ne^{\it p}_{\it c_2}\}$ for some $\it c_1,\it c_2\in\mathbb{Z}$ and prime $\it p\ge 3$, or

 \mathfrak{Q} : expansion of $(\mathbb{Q};+,1)$ with all the relations

$$\{\leq_c^p,\geq_c^p,=_c^p,\neq_c^p\mid c\in\mathbb{Z},p \text{ prime}\}.$$

Theorem. Let \mathfrak{R} be a reduct of (\mathfrak{Q}, \leq) that contains $\{1, +\}$. If \mathfrak{R} contains

- $\blacksquare = \stackrel{p}{c}$ for some $c \in \mathbb{Z}$ and prime $p \ge 3$,
- $lackbox{$\blacksquare$} \geq^p_{c_1}$ and a relation from $\{\leq^p_{c_2}, \neq^p_{c_2}\}$ for some $c_1, c_2 \in \mathbb{Z}$ and prime $p \geq 3$, or
- a relation from $\{\geq_{c_1}^2, =_{c_1}^2\}$ and a relation from $\{\leq_{c_2}^2, \neq_{c_2}^p\}$ for some $c_1, c_2 \in \mathbb{Z}$, then $\mathsf{CSP}(\mathfrak{R})$ is NP-complete;

 \mathfrak{Q} : expansion of $(\mathbb{Q};+,1)$ with all the relations

$$\{\leq_c^p,\geq_c^p,=_c^p,\neq_c^p\mid c\in\mathbb{Z},p \text{ prime}\}.$$

Theorem. Let \mathfrak{R} be a reduct of (\mathfrak{Q}, \leq) that contains $\{1, +\}$. If \mathfrak{R} contains

- $lacksquare = _c^{
 ho}$ for some $c \in \mathbb{Z}$ and prime $ho \geq 3$,
- $lackbox{$\scriptstyle \ge$}_{c_1}^{\it p}$ and a relation from $\{\le_{c_2}^{\it p},\ne_{c_2}^{\it p}\}$ for some $c_1,c_2\in\mathbb{Z}$ and prime $\it p\ge 3$, or
- a relation from $\{\geq_{c_1}^2, =_{c_1}^2\}$ and a relation from $\{\leq_{c_2}^2, \neq_{c_2}^p\}$ for some $c_1, c_2 \in \mathbb{Z}$, then $CSP(\mathfrak{R})$ is NP-complete; otherwise, $CSP(\mathfrak{R})$ is in P.

 \mathfrak{Q} : expansion of $(\mathbb{Q};+,1)$ with all the relations

$$\{\leq_c^p,\geq_c^p,=_c^p,\neq_c^p\mid c\in\mathbb{Z},p \text{ prime}\}.$$

Theorem. Let \mathfrak{R} be a reduct of (\mathfrak{Q}, \leq) that contains $\{1, +\}$. If \mathfrak{R} contains

- $lacksquare = _c^p$ for some $c \in \mathbb{Z}$ and prime $p \geq 3$,
- $lackbox{0.5cm} \ge_{c_1}^p$ and a relation from $\{\le_{c_2}^p, \ne_{c_2}^p\}$ for some $c_1, c_2 \in \mathbb{Z}$ and prime $p \ge 3$, or
- a relation from $\{\geq_{c_1}^2, =_{c_1}^2\}$ and a relation from $\{\leq_{c_2}^2, \neq_{c_2}^p\}$ for some $c_1, c_2 \in \mathbb{Z}$, then $CSP(\mathfrak{R})$ is NP-complete; otherwise, $CSP(\mathfrak{R})$ is in P.

Proof ingredient: the approximation theorem for finitely many inequivalent absolute values (see, e.g., Lang's *Algebra*).

■ Two polynomial-time tractability results for linear systems over \mathbb{Q}_p .

- Two polynomial-time tractability results for linear systems over \mathbb{Q}_p .
- Have matching hardness results.

- Two polynomial-time tractability results for linear systems over \mathbb{Q}_p .
- Have matching hardness results.
- Algorithms for various primes p can be combined over \mathbb{Q} , and with <.

- Two polynomial-time tractability results for linear systems over \mathbb{Q}_p .
- Have matching hardness results.
- Algorithms for various primes p can be combined over \mathbb{Q} , and with <.

Open question: is there a polynomial-time algorithm for systems of linear (in-)equalities with coefficients of the form 2^c , for c given in binary?

- Two polynomial-time tractability results for linear systems over \mathbb{Q}_p .
- Have matching hardness results.
- Algorithms for various primes p can be combined over \mathbb{Q} , and with <.

Open question: is there a polynomial-time algorithm for systems of linear (in-)equalities with coefficients of the form 2^c , for c given in binary?

• would imply our tractability result for linear systems with valuation constraints of the form $v_2(x) = c$.

- Two polynomial-time tractability results for linear systems over \mathbb{Q}_p .
- Have matching hardness results.
- Algorithms for various primes p can be combined over \mathbb{Q} , and with <.

Open question: is there a polynomial-time algorithm for systems of linear (in-)equalities with coefficients of the form 2^c , for c given in binary?

- would imply our tractability result for linear systems with valuation constraints of the form $v_2(x) = c$.
- would imply a polynomial-time algorithm for mean-payoff-games (currently not known to be in P).

- Two polynomial-time tractability results for linear systems over \mathbb{Q}_p .
- Have matching hardness results.
- Algorithms for various primes p can be combined over \mathbb{Q} , and with <.

Open question: is there a polynomial-time algorithm for systems of linear (in-)equalities with coefficients of the form 2^c , for c given in binary?

- would imply our tractability result for linear systems with valuation constraints of the form $v_2(x) = c$.
- would imply a polynomial-time algorithm for mean-payoff-games (currently not known to be in P).
 See Bodirsky, Loho, Skomra ICALP'2025 for more on this connection.

Tractable Problems over \mathbb{Q}_D