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Satisfiability problems over rings

Fixed: Ring R.
Input: Given a system Σ of polynomial equations with integer coefficients.
Question: Is there a solution to Σ over R?

Computational Complexity:

Ring Linear equations Linear inequalities Polynomial equations
R in P (Gauss) in P (Ellipsoid) in PSPACE, NP-hard
Q in P in P Decidability open
Z NP-complete in P (Hermit NF) Undecidable

Research directions:

different rings?

different constraint languages?
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The p-adic Numbers

p: prime number.
Field of p-adic numbers (Kummer, Hensel, . . . ):

Roughly: allows for ‘taking modulo pe for all e at once’.

Many applications in number theory

See survey on applications by Rozikov (2013)

p-adic valution: For x ∈ Z define vp(x) := sup
{

j : pj |x
}
∈ N ∪ {∞}.

Extend to Q:
vp

(a
b

)
:= vp(a) − vp(b).

p-adic absolute value:
|x |p := p−vp(x)

Qp: completion of Q with respect to |.|p
(similarly to R being the completion of Q with respect to |.|).
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Satisfiability Problems over Qp

Guépin, Haase, and Worrel (LICS 2019):

Satisfiability of systems of linear
equations with valuation constraints of the form vp(x) = c

in NP

NP-hard for p ≥ 5

“While we believe it to be the case, it remains an open problem whether
an NP lower bound can be established for the cases p = 2,3”

Our results answer this.

Let Qp := (Qp ; +,1, (≤p
c)c∈Z, (≥p

c)c∈Z, (=
p
c)c∈Z, ( 6=p

c)c∈Z) where

≤p
c is unary relation symbol for {x ∈ Qp | vp(x) ≤ c},

≥p
c , =p

c , and 6=p
c : defined analogously.

For a structure S, define CSP(S) to be the problem of deciding whether a set
of atomic formulas is satisfiable over S.

Proposition: The structure Qp and its substructure with domain Q
have the same first-order theory, and hence the same CSP.
(we use a quantifier-elimination result of Weispfenning’1988)
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Complexity Classification: p ≥ 3

Theorem. Let R be a reduct of Qp whose signature contains {+,1}.
Then CSP(R) is in P if R is a reduct of one of

(Qp ; +,1, (≤p
c)c∈Z, ( 6=p

c)c∈Z) (1)

(Qp ; +,1, (≥p
c)c∈Z), (2)

and is NP-complete otherwise.

Answers the question of Guépin, Haase, and Worrel for p = 3:
their problem has =c

p, so is NP-hard.

Comments.

Need two polynomial-time algorithms!

Both can deal with coefficients p, c given in binary.

Hardness proofs: ‘gadget reductions’ from p-colorability,
which is NP-hard for p ≥ 3.
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Complexity Classification: p = 2

Theorem. Let R be a reduct of Q2 whose signature contains {+,1}.
Then CSP(R) is in P if R is a reduct of one of

(Q2; +,1, (≤2
c)c∈Z, ( 6=2

c)c∈Z) (3)

(Q2; +,1, (=2
c)c∈Z, (≥2

c)c∈Z), (4)

and is NP-complete otherwise.

Answers the question of Guépin, Haase, and Worrel for p = 2:
their problem is captured by (4), so in P!
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Algorithm 1

Proposition. There is a polynomial time algorithm that decides, given

m,n ∈ N, p ∈ P,

c ∈ (Z ∪ {∞})n,

A ∈ Qm×n,

b ∈ Qm, and

finite sets D1, . . . ,Dn ⊆ Z,

whether there exists x ∈ Qn with Ax = b such that

vp(xj) ≤ cj , and

vp(xj) /∈ Dj for j = 1, . . . ,n.

Remark: Cannot compute a solution in binary representation in P:
all solutions of ‘vp(x) ≤ c’ have doubly exponential representation size.

Idea: Compute linear expression E for solution space of Ax = b.
Using E , test whether single constraints of the form vp(x) ≤ c are unsat.
If not, then there exists a solution to all constraints.
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Algorithm 2

Theorem. There is a polynomial-time algorithm that decides, given

m,n ∈ N, p ∈ P,

c ∈ (Z ∪ {−∞})n,

A ∈ Qm×n, and

b ∈ Qm,

whether there exists x ∈ Qn with Ax = b such that vp(x) ≥ c.

In the case p = 2, we can additionally treat constraints of the form v2(x) = c.

Proof ideas:

Substantially more involved.

Develop an appropriate row echelon form.

Example: Consider a1x1 + · · ·+ anxn = b, for a1, . . . ,an,b ∈ Q.
Has a solution x ∈ Qn with vp(xj) ≥ 0 for every j ∈ {1, . . . ,n}
if and only if vp(b) ≥ minjvp(aj).
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Combining several primes, and the ordering!

Q: expansion of (Q; +,1) with all the relations

{≤p
c ,≥

p
c ,=

p
c , 6=

p
c | c ∈ Z,p prime}.

Theorem. Let R be a reduct of (Q,≤) that contains {1,+}.
If R contains

=p
c for some c ∈ Z and prime p ≥ 3,

≥p
c1 and a relation from {≤p

c2 , 6=
p
c2 } for some c1, c2 ∈ Z and prime p ≥ 3, or

a relation from {≥2
c1
,=2

c1
} and a relation from {≤2

c2
, 6=p

c2 } for some c1, c2 ∈ Z,

then CSP(R) is NP-complete; otherwise, CSP(R) is in P.

Proof ingredient: the approximation theorem for finitely many inequivalent
absolute values (see, e.g., Lang’s Algebra).
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Conclusion

Two polynomial-time tractability results for linear systems over Qp.

Have matching hardness results.

Algorithms for various primes p can be combined over Q, and with <.

Open question: is there a polynomial-time algorithm for systems of linear
(in-)equalities with coefficients of the form 2c , for c given in binary?

would imply our tractability result for linear systems with valuation
constraints of the form v2(x) = c.

would imply a polynomial-time algorithm for mean-payoff-games
(currently not known to be in P).
See Bodirsky, Loho, Skomra ICALP’2025 for more on this connection.
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