Reducing Stochastic Games to Semidefinite Programming

Manuel Bodirsky

Institut für Algebra, TU Dresden

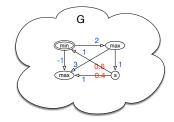
Joint work with Georg Loho and Mateusz Skomra

Jena, 3.3.2025

ERC Synergy Grant POCOCOP (GA 101071674).

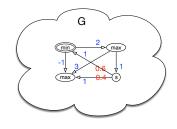
Stochastic Games and SDP

Manuel Bodirsky



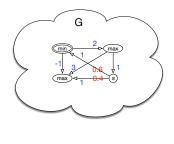
1 (Stochastic) Mean Payoff Games

2 Semidefinite Programming (SDP)



1 (Stochastic) Mean Payoff Games

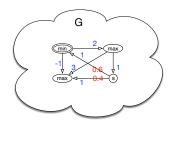
2 Semidefinite Programming (SDP)



3 From Stochastic Games to Max-Average Constraints

1 (Stochastic) Mean Payoff Games

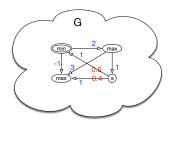
2 Semidefinite Programming (SDP)



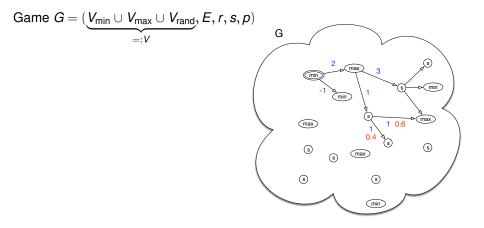
- 3 From Stochastic Games to Max-Average Constraints
- 4 From Max-Average Constraints to non-archimedian SDPs

1 (Stochastic) Mean Payoff Games

2 Semidefinite Programming (SDP)

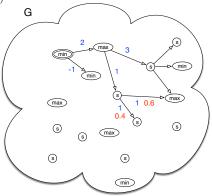


- From Stochastic Games to Max-Average Constraints
- 4 From Max-Average Constraints to non-archimedian SDPs
- 5 From non-archimdedian SDPs to real SDPs



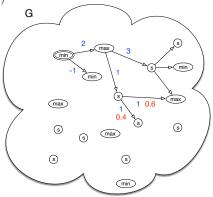
Game
$$G = (\underbrace{V_{\min} \cup V_{\max} \cup V_{rand}}_{=:V}, E, r, s, p)$$

=:V
(Pure positional) strategies:
 $\sigma: V_{\min} \rightarrow V \text{ and } \tau: V_{\max} \rightarrow V$



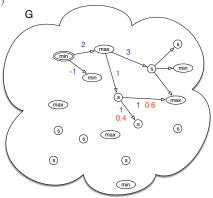
Game
$$G = (\underbrace{V_{\min} \cup V_{\max} \cup V_{rand}}_{=:V}, E, r, s, p)$$

- (Pure positional) strategies: $\sigma: V_{\min} \rightarrow V \text{ and } \tau: V_{\max} \rightarrow V$
- Only stochastic vertices: Markov Chain.



Game
$$G = (\underbrace{V_{\min} \cup V_{\max} \cup V_{rand}}_{=:V}, E, r, s, p)$$

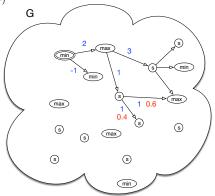
- (Pure positional) strategies: $\sigma: V_{\min} \rightarrow V \text{ and } \tau: V_{\max} \rightarrow V$
- Only stochastic vertices: Markov Chain.
- Mean payoff reward: $\lim_{n\to\infty}\frac{1}{n}E_{\sigma,\tau}(r_{su_1}+\cdots+r_{u_{n-1}u_n}).$



Game
$$G = (\underbrace{V_{\min} \cup V_{\max} \cup V_{rand}}_{=:V}, E, r, s, p)$$

- (Pure positional) strategies: $\sigma: V_{\min} \rightarrow V \text{ and } \tau: V_{\max} \rightarrow V$
- Only stochastic vertices: Markov Chain.
- Mean payoff reward: $\lim_{n\to\infty}\frac{1}{n}E_{\sigma,\tau}(r_{su_1}+\cdots+r_{u_{n-1}u_n}).$
- Fact (Liggett+Lippman'1969): there exist strategies σ^* , τ^* s.t. $g(\sigma^*, \tau) \leq \underbrace{g(\sigma^*, \tau^*)}_{=:value \text{ of } G} \leq g(\sigma, \tau^*)$

for all strategies σ, τ .

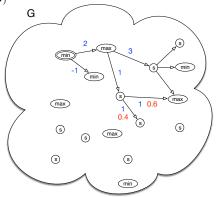


Game
$$G = (\underbrace{V_{\min} \cup V_{\max} \cup V_{rand}}_{=:V}, E, r, s, p)$$

- (Pure positional) strategies: $\sigma: V_{\min} \rightarrow V \text{ and } \tau: V_{\max} \rightarrow V$
- Only stochastic vertices: Markov Chain.
- Mean payoff reward: $\lim_{n\to\infty}\frac{1}{n}E_{\sigma,\tau}(r_{su_1}+\cdots+r_{u_{n-1}u_n}).$
- Fact (Liggett+Lippman'1969): there exist strategies σ^* , τ^* s.t. $g(\sigma^*, \tau) \leq \underbrace{g(\sigma^*, \tau^*)}_{=:value \text{ of } G} \leq g(\sigma, \tau^*)$

for all strategies σ, τ .

 No stochastic vertices: Mean Payoff Game (MPG).



• Computational problem: given *G*, compute value of *G*.

- Computational problem: given *G*, compute value of *G*.
- Special case simple stochastic games: stochastic nodes have 2 outgoing edges, each with probability 1/2.
 Special terminal nodes W and L with loops, with r_{WW} = 1 and r_{LL} = 0.

- Computational problem: given *G*, compute value of *G*.
- Special case simple stochastic games: stochastic nodes have 2 outgoing edges, each with probability 1/2. Special terminal nodes W and L with loops, with r_{WW} = 1 and r_{LL} = 0.
- A simple stochastic game is called stopping if for any pair of strategies, we reach W or L with probability one.

- Computational problem: given *G*, compute value of *G*.
- Special case simple stochastic games: stochastic nodes have 2 outgoing edges, each with probability 1/2. Special terminal nodes W and L with loops, with r_{WW} = 1 and r_{LL} = 0.
- A simple stochastic game is called stopping if for any pair of strategies, we reach W or L with probability one.
- There is a polynomial-time Turing-reduction from computing the value of a stochastic mean payoff game to deciding whether the value of a stopping simple stochastic game is at least 1/2 (Allamigeon+Gaubert+Skomra'2018).

- Computational problem: given *G*, compute value of *G*.
- Special case simple stochastic games: stochastic nodes have 2 outgoing edges, each with probability 1/2. Special terminal nodes W and L with loops, with r_{WW} = 1 and r_{LL} = 0.
- A simple stochastic game is called stopping if for any pair of strategies, we reach W or L with probability one.
- There is a polynomial-time Turing-reduction from computing the value of a stochastic mean payoff game to deciding whether the value of a stopping simple stochastic game is at least 1/2 (Allamigeon+Gaubert+Skomra'2018).
- Problem is in NP \cap coNP (Condon'1992).

- Computational problem: given *G*, compute value of *G*.
- Special case simple stochastic games: stochastic nodes have 2 outgoing edges, each with probability 1/2. Special terminal nodes W and L with loops, with r_{WW} = 1 and r_{LL} = 0.
- A simple stochastic game is called stopping if for any pair of strategies, we reach W or L with probability one.
- There is a polynomial-time Turing-reduction from computing the value of a stochastic mean payoff game to deciding whether the value of a stopping simple stochastic game is at least 1/2 (Allamigeon+Gaubert+Skomra'2018).
- Problem is in NP \cap coNP (Condon'1992).
- Not known to be in P, already for (deterministic) MPGs.

- Computational problem: given *G*, compute value of *G*.
- Special case simple stochastic games: stochastic nodes have 2 outgoing edges, each with probability 1/2. Special terminal nodes W and L with loops, with r_{WW} = 1 and r_{LL} = 0.
- A simple stochastic game is called stopping if for any pair of strategies, we reach *W* or *L* with probability one.
- There is a polynomial-time Turing-reduction from computing the value of a stochastic mean payoff game to deciding whether the value of a stopping simple stochastic game is at least 1/2 (Allamigeon+Gaubert+Skomra'2018).
- Problem is in NP \cap coNP (Condon'1992).
- Not known to be in P, already for (deterministic) MPGs.
- Central open problem in verification.

- Computational problem: given *G*, compute value of *G*.
- Special case simple stochastic games: stochastic nodes have 2 outgoing edges, each with probability 1/2. Special terminal nodes W and L with loops, with r_{WW} = 1 and r_{LL} = 0.
- A simple stochastic game is called stopping if for any pair of strategies, we reach *W* or *L* with probability one.
- There is a polynomial-time Turing-reduction from computing the value of a stochastic mean payoff game to deciding whether the value of a stopping simple stochastic game is at least 1/2 (Allamigeon+Gaubert+Skomra'2018).
- Problem is in NP \cap coNP (Condon'1992).
- Not known to be in P, already for (deterministic) MPGs.
- Central open problem in verification.
- Parity games reduce to MPGs

- Computational problem: given *G*, compute value of *G*.
- Special case simple stochastic games: stochastic nodes have 2 outgoing edges, each with probability 1/2. Special terminal nodes W and L with loops, with r_{WW} = 1 and r_{LL} = 0.
- A simple stochastic game is called stopping if for any pair of strategies, we reach *W* or *L* with probability one.
- There is a polynomial-time Turing-reduction from computing the value of a stochastic mean payoff game to deciding whether the value of a stopping simple stochastic game is at least 1/2 (Allamigeon+Gaubert+Skomra'2018).
- Problem is in NP \cap coNP (Condon'1992).
- Not known to be in P, already for (deterministic) MPGs.
- Central open problem in verification.
- Parity games reduce to MPGs
- Quasi-polynomial algorithms for parity games (Calude+Jain+Khoussainov+Li+Stephan'2022) don't work for MPGs

Recap: linear programming

 $\min_{x \in \mathbb{Q}^n} cx^\top$ subject to $Ax \leq b$

Recap: linear programming

 $\min_{x \in \mathbb{Q}^n} cx^\top$ subject to $Ax \leq b$

known to be in P (Khachiyan'1979).

Recap: linear programming

 $\min_{x \in \mathbb{Q}^n} cx^\top$ subject to $Ax \leq b$

known to be in P (Khachiyan'1979).

- Idea semidefinite programming: instead of Ax ≤ b, allow more general class of constraints that are still
 - convex, and
 - semialgebraic.

Recap: linear programming

 $\min_{x \in \mathbb{Q}^n} cx^\top$ subject to $Ax \leq b$

known to be in P (Khachiyan'1979).

- Idea semidefinite programming: instead of Ax ≤ b, allow more general class of constraints that are still
 - convex, and
 - semialgebraic.
- $A \in \mathbb{R}^{k \times k}$ real symmetric matrix.

Recap: linear programming

 $\min_{x \in \mathbb{Q}^n} cx^\top$ subject to $Ax \leq b$

known to be in P (Khachiyan'1979).

- Idea semidefinite programming: instead of $Ax \le b$, allow more general class of constraints that are still
 - convex, and
 - semialgebraic.
- $A \in \mathbb{R}^{k \times k}$ real symmetric matrix.

 $A \succeq 0$: A is positive semidefinite, i.e., $y^{\top}Ay \ge 0$ for all $y \in \mathbb{R}^k$.

Recap: linear programming

 $\min_{x \in \mathbb{Q}^n} cx^\top$ subject to $Ax \leq b$

known to be in P (Khachiyan'1979).

- Idea semidefinite programming: instead of $Ax \le b$, allow more general class of constraints that are still
 - convex, and
 - semialgebraic.
- $A \in \mathbb{R}^{k \times k}$ real symmetric matrix.

 $A \succeq 0$: A is positive semidefinite, i.e., $y^{\top}Ay \ge 0$ for all $y \in \mathbb{R}^k$.

■ $S \subseteq \mathbb{R}^n$ is called a spectrahedron if there are symmetric matrices $A_0, A_1, \ldots, A_n \in \mathbb{R}^{k \times k}$ such that

$$S = \{(x_1,\ldots,x_n) \mid \underbrace{A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0}_{0}\}$$

'linear matrix inequality (LMI)'

Recap: linear programming

 $\min_{x \in \mathbb{Q}^n} cx^\top$ subject to $Ax \leq b$

known to be in P (Khachiyan'1979).

- Idea semidefinite programming: instead of Ax ≤ b, allow more general class of constraints that are still
 - convex, and
 - semialgebraic.
- $A \in \mathbb{R}^{k \times k}$ real symmetric matrix.

 $A \succeq 0$: A is positive semidefinite, i.e., $y^{\top}Ay \ge 0$ for all $y \in \mathbb{R}^k$.

■ $S \subseteq \mathbb{R}^n$ is called a spectrahedron if there are symmetric matrices $A_0, A_1, \ldots, A_n \in \mathbb{R}^{k \times k}$ such that

$$S = \{(x_1,\ldots,x_n) \mid \underbrace{A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0}_{0}\}$$

'linear matrix inequality (LMI)'

Example.
$$S = \left\{ (x, y) \mid \begin{pmatrix} 1 & x \\ x & y \end{pmatrix} \succeq 0 \right\} = \left\{ (x, y) \mid y - x^2 \ge 0 \right\}$$

Many algorithmic approaches for LP can also be applied to SDP.

- Many algorithmic approaches for LP can also be applied to SDP.
- Can often be solved efficiently in practise.

- Many algorithmic approaches for LP can also be applied to SDP.
- Can often be solved efficiently in practise.
- But: the complexity of deciding the feasibility problem

$$\{(x_1,\ldots,x_n) \mid A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0\} \stackrel{?}{=} \emptyset$$

for given symmetric $A_0, A_1, \ldots, A_n \in \mathbb{Q}^{k \times k}$, is not known to be in P.

- Many algorithmic approaches for LP can also be applied to SDP.
- Can often be solved efficiently in practise.
- But: the complexity of deciding the feasibility problem

$$\{(x_1,\ldots,x_n) \mid A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0\} \stackrel{?}{=} \emptyset$$

for given symmetric $A_0, A_1, \ldots, A_n \in \mathbb{Q}^{k \times k}$, is not known to be in P. SDP $\in \exists \mathbb{R} \subseteq \mathsf{PSPACE}$.

Complexity of SDP

- Many algorithmic approaches for LP can also be applied to SDP.
- Can often be solved efficiently in practise.
- But: the complexity of deciding the feasibility problem

$$\{(x_1,\ldots,x_n) \mid A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0\} \stackrel{?}{=} \emptyset$$

for given symmetric $A_0, A_1, \ldots, A_n \in \mathbb{Q}^{k \times k}$, is not known to be in P.

- **SDP** $\in \exists \mathbb{R} \subseteq \mathsf{PSPACE}.$
- As in LP, there are exact duals: if problem is in NP, then it is also in coNP (Ramana'1997)

Complexity of SDP

- Many algorithmic approaches for LP can also be applied to SDP.
- Can often be solved efficiently in practise.
- But: the complexity of deciding the feasibility problem

$$\{(x_1,\ldots,x_n) \mid A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0\} \stackrel{?}{=} \emptyset$$

for given symmetric $A_0, A_1, \ldots, A_n \in \mathbb{Q}^{k \times k}$, is not known to be in P.

- **SDP** $\in \exists \mathbb{R} \subseteq \mathsf{PSPACE}.$
- As in LP, there are exact duals: if problem is in NP, then it is also in coNP (Ramana'1997)

Theorem (B.+Loho+Skomra'2025).

There is a polynomial-time reduction from simple stopping stochastic games to the feasibility problem for SDP.

An **instance** of the Max-average constraint satisfaction problem: consists of conjunction of constraints of the form

$$\bullet x_0 \leq \max(x_1,\ldots,x_n)$$

■
$$x_0 \le \frac{x_1 + x_2}{2}$$

• $x_0 = c$ for some constant $c \in \mathbb{Q}$.

An **instance** of the Max-average constraint satisfaction problem: consists of conjunction of constraints of the form

$$\bullet x_0 \leq \max(x_1,\ldots,x_n)$$

$$\quad I \quad x_0 \leq \frac{x_1 + x_2}{2}$$

• $x_0 = c$ for some constant $c \in \mathbb{Q}$.

Computational **task:** is there a solution over $\mathbb{Q} \cup \{-\infty\}$?

An **instance** of the Max-average constraint satisfaction problem: consists of conjunction of constraints of the form

- $\quad \blacksquare \ x_0 \leq \frac{x_1 + x_2}{2}$
- $x_0 = c$ for some constant $c \in \mathbb{Q}$.

Computational **task:** is there a solution over $\mathbb{Q} \cup \{-\infty\}$?

Translation from stopping simple stochastic games to max-average CSPs:

An **instance** of the Max-average constraint satisfaction problem: consists of conjunction of constraints of the form

$$\bullet x_0 \leq \max(x_1,\ldots,x_n)$$

$$\quad \mathbf{X}_0 \leq \frac{x_1 + x_2}{2}$$

• $x_0 = c$ for some constant $c \in \mathbb{Q}$.

Computational **task:** is there a solution over $\mathbb{Q} \cup \{-\infty\}$?

Translation from stopping simple stochastic games to max-average CSPs:

$$\begin{array}{ll} x_i \leq \max_{(i,j)\in E}\{x_j\} & \text{for every } i\in V_{\max}, \\ x_i \leq \min_{(i,j)\in E}\{x_j\} & \text{for every } i\in V_{\min}, \\ x_i \leq \frac{1}{2}\sum_{(i,j)\in E}x_j & \text{for every } i\in V_{\text{rand}}, \\ x_i \geq 0 & \text{for every } i\in V \\ x_L = 0, x_W = 1, x_s \geq 1/2, \end{array}$$

,

An **instance** of the Max-average constraint satisfaction problem: consists of conjunction of constraints of the form

$$\bullet x_0 \leq \max(x_1,\ldots,x_n)$$

$$\quad \mathbf{X}_0 \leq \frac{x_1 + x_2}{2}$$

• $x_0 = c$ for some constant $c \in \mathbb{Q}$.

Computational **task:** is there a solution over $\mathbb{Q} \cup \{-\infty\}$?

Translation from stopping simple stochastic games to max-average CSPs:

$$\begin{array}{ll} x_i \leq \max_{(i,j)\in E} \{x_j\} & \text{for every } i\in V_{\max}, \\ x_i \leq \min_{(i,j)\in E} \{x_j\} & \text{for every } i\in V_{\min}, \\ x_i \leq \frac{1}{2}\sum_{(i,j)\in E} x_j & \text{for every } i\in V_{\text{rand}}, \\ x_i \geq 0 & \text{for every } i\in V \\ x_L = 0, x_W = 1, x_s \geq 1/2, \end{array}$$

See, e.g., Bertrand+Bouyer-Decitre+Fijalkov+Skomra'2023.

K: set of Puiseux series over \mathbb{R}

K: set of Puiseux series over \mathbb{R}

$$\mathbf{x} = c_0 t^{a/n} + c_1 t^{(a-1)/n} + c_2 t^{(a-2)/n} + \dots$$

K: set of Puiseux series over \mathbb{R}

$$\mathbf{x} = c_0 t^{a/n} + c_1 t^{(a-1)/n} + c_2 t^{(a-2)/n} + \dots$$

a real-closed field.

K: set of Puiseux series over \mathbb{R}

$$\mathbf{x} = c_0 t^{a/n} + c_1 t^{(a-1)/n} + c_2 t^{(a-2)/n} + \dots$$

a real-closed field.

 $\mathbf{x}_{i_0} \leq \mathbf{x}_{i_1} + \cdots + \mathbf{x}_{i_k}$ for every constraint $x_{i_0} \leq \max(x_{i_1}, \dots, x_{i_k})$ in ϕ ,

K: set of Puiseux series over \mathbb{R}

$$\mathbf{x} = c_0 t^{a/n} + c_1 t^{(a-1)/n} + c_2 t^{(a-2)/n} + \dots$$

a real-closed field.

$$\begin{split} & \mathbf{x}_{i_0} \leq \mathbf{x}_{i_1} + \dots + \mathbf{x}_{i_k} & \text{ for every constraint } \mathbf{x}_{i_0} \leq \max(\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_k}) \text{ in } \boldsymbol{\varphi}, \\ & \mathbf{x}_{i_0}^2 \leq \mathbf{x}_{i_1} \mathbf{x}_{i_2} & \text{ for every constraint } \mathbf{x}_{i_0} \leq \frac{\mathbf{x}_{i_1} + \mathbf{x}_{i_2}}{2} \text{ in } \boldsymbol{\varphi}, \end{split}$$

K: set of Puiseux series over \mathbb{R}

$$\mathbf{x} = c_0 t^{a/n} + c_1 t^{(a-1)/n} + c_2 t^{(a-2)/n} + \dots$$

a real-closed field.

$$\begin{split} \mathbf{x}_{i_0} &\leq \mathbf{x}_{i_1} + \dots + \mathbf{x}_{i_k} & \text{ for every constraint } \mathbf{x}_{i_0} &\leq \max(\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_k}) \text{ in } \phi, \\ \mathbf{x}_{i_0}^2 &\leq \mathbf{x}_{i_1} \mathbf{x}_{i_2} & \text{ for every constraint } \mathbf{x}_{i_0} &\leq \frac{\mathbf{x}_{i_1} + \mathbf{x}_{i_2}}{2} \text{ in } \phi, \\ \mathbf{x}_{i_0} &= t^c & \text{ for every constraint } \mathbf{x}_{i_0} = c \text{ in } \phi, \end{split}$$

K: set of Puiseux series over \mathbb{R}

$$\mathbf{x} = c_0 t^{a/n} + c_1 t^{(a-1)/n} + c_2 t^{(a-2)/n} + \dots$$

a real-closed field.

$$\begin{split} \mathbf{x}_{i_0} &\leq \mathbf{x}_{i_1} + \dots + \mathbf{x}_{i_k} & \text{ for every constraint } \mathbf{x}_{i_0} \leq \max(\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_k}) \text{ in } \phi, \\ \mathbf{x}_{i_0}^2 &\leq \mathbf{x}_{i_1} \mathbf{x}_{i_2} & \text{ for every constraint } \mathbf{x}_{i_0} \leq \frac{\mathbf{x}_{i_1} + \mathbf{x}_{i_2}}{2} \text{ in } \phi, \\ \mathbf{x}_{i_0} &= t^c & \text{ for every constraint } \mathbf{x}_{i_0} = c \text{ in } \phi, \\ \mathbf{x}_{i_0} \geq 0 & \text{ for every } i_0 \in \{1, \dots, n\}. \end{split}$$

K: set of Puiseux series over \mathbb{R}

$$\mathbf{x} = c_0 t^{a/n} + c_1 t^{(a-1)/n} + c_2 t^{(a-2)/n} + \dots$$

a real-closed field.

$\mathtt{x}_{i_0} \leq \mathtt{x}_{i_1} + \cdots + \mathtt{x}_{i_k}$	for every constraint $x_{i_0} \leq \max(x_{i_1}, \ldots, x_{i_k})$ in ϕ ,
$\mathtt{x}_{i_0}^2 \leq \mathtt{x}_{i_1} \mathtt{x}_{i_2}$	for every constraint $x_{i_0} \leq rac{x_{i_1}+x_{i_2}}{2}$ in ${\varphi},$
$\mathtt{x}_{i_0} = t^c$	for every constraint $x_{i_0} = c$ in ϕ ,
$\mathbf{x}_{i_0} \geq 0$	for every $i_0 \in \{1, \ldots, n\}$.

Max-average instance satisfiable if and only if this SDP has solution in K.

K: set of Puiseux series over \mathbb{R}

$$\mathbf{x} = c_0 t^{a/n} + c_1 t^{(a-1)/n} + c_2 t^{(a-2)/n} + \dots$$

a real-closed field.

$\mathtt{x}_{i_0} \leq \mathtt{x}_{i_1} + \cdots + \mathtt{x}_{i_k}$	for every constraint $x_{i_0} \leq \max(x_{i_1}, \ldots, x_{i_k})$ in ϕ ,
$\mathtt{x}_{i_0}^2 \leq \mathtt{x}_{i_1} \mathtt{x}_{i_2}$	for every constraint $x_{i_0} \leq rac{x_{i_1}+x_{i_2}}{2}$ in ${\mathrm ft}$,
$\mathtt{x}_{i_0} = t^c$	for every constraint $x_{i_0} = c$ in ϕ ,
$\mathbf{x}_{i_0} \geq 0$	for every $i_0 \in \{1, \ldots, n\}$.

Max-average instance satisfiable if and only if this SDP has solution in K. **Idea:**

■ This reduction also works if *t* is replaced by a large number.

K: set of Puiseux series over \mathbb{R}

$$\mathbf{x} = c_0 t^{a/n} + c_1 t^{(a-1)/n} + c_2 t^{(a-2)/n} + \dots$$

a real-closed field.

$\mathtt{x}_{i_0} \leq \mathtt{x}_{i_1} + \cdots + \mathtt{x}_{i_k}$	for every constraint $x_{i_0} \leq \max(x_{i_1}, \ldots, x_{i_k})$ in ϕ ,
$\mathtt{x}_{i_0}^2 \leq \mathtt{x}_{i_1} \mathtt{x}_{i_2}$	for every constraint $x_{i_0} \leq rac{x_{i_1}+x_{i_2}}{2}$ in $\varphi,$
$\mathtt{x}_{i_0} = t^c$	for every constraint $x_{i_0} = c$ in ϕ ,
$\mathtt{x}_{\mathit{i}_0} \geq 0$	for every $i_0 \in \{1, \ldots, n\}$.

Max-average instance satisfiable if and only if this SDP has solution in K. **Idea:**

- This reduction also works if *t* is replaced by a large number.
- Using quantifier-elimination: double exponential is large enough.

Large Numbers

Problem: our reduction is not polynomial-time!

Problem: our reduction is not polynomial-time! (representation size of doubly exponential numbers!) Easy to express $x > 2^{2^n}$ by SDP of polynomial size in *n*:

Easy to express $x \ge 2^{2^n}$ by SDP of polynomial size in *n*:

 $x_0 \ge 2$,

Easy to express $x \ge 2^{2^n}$ by SDP of polynomial size in *n*:

$$x_0 \geq 2, x_1 \geq x_0^2,$$

Easy to express $x \ge 2^{2^n}$ by SDP of polynomial size in *n*:

$$x_0 \ge 2, x_1 \ge x_0^2, x_2 \ge x_1^2,$$

Easy to express $x \ge 2^{2^n}$ by SDP of polynomial size in *n*:

$$x_0 \ge 2, x_1 \ge x_0^2, x_2 \ge x_1^2, \dots, x \ge x_{n-1}^2$$

Easy to express $x \ge 2^{2^n}$ by SDP of polynomial size in *n*:

$$x_0 \ge 2, x_1 \ge x_0^2, x_2 \ge x_1^2, \ldots, x \ge x_{n-1}^2$$

Problem: need to express $x = 2^{2^n}$ for our reduction.

Easy to express $x \ge 2^{2^n}$ by SDP of polynomial size in *n*:

$$x_0 \ge 2, x_1 \ge x_0^2, x_2 \ge x_1^2, \ldots, x \ge x_{n-1}^2$$

Problem: need to express $x = 2^{2^n}$ for our reduction.

Solution: Use SDP duality theory to find small expression for $x = 2^{2^n}$.

Summary

