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Game G = (Vmin ∪ Vmax ∪ Vrand︸ ︷︷ ︸
=:V

,E , r , s,p)

(Pure positional) strategies:
σ : Vmin → V and τ : Vmax → V

Only stochastic vertices:
Markov Chain.

Mean payoff reward:
limn→∞ 1

n Eσ,τ(rsu1 + · · ·+ run−1un).

Fact (Liggett+Lippman’1969):
there exist strategies σ∗, τ∗ s.t.
g(σ∗, τ) ≤ g(σ∗, τ∗)︸ ︷︷ ︸

=:value of G

≤ g(σ, τ∗)

for all strategies σ, τ.

No stochastic vertices:
Mean Payoff Game (MPG).
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Complexity of (Stochastic) MPGs

Computational problem: given G, compute value of G.
Special case simple stochastic games:
stochastic nodes have 2 outgoing edges, each with probability 1/2.
Special terminal nodes W and L with loops, with rWW = 1 and rLL = 0.
A simple stochastic game is called stopping if for any pair of strategies,
we reach W or L with probability one.
There is a polynomial-time Turing-reduction from computing the value of
a stochastic mean payoff game to deciding whether the value of a
stopping simple stochastic game is at least 1/2
(Allamigeon+Gaubert+Skomra’2018).
Problem is in NP ∩ coNP (Condon’1992).
Not known to be in P, already for (deterministic) MPGs.
Central open problem in verification.
Parity games reduce to MPGs
Quasi-polynomial algorithms for parity games
(Calude+Jain+Khoussainov+Li+Stephan’2022) don’t work for MPGs
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Semidefinite Programming

Recap: linear programming

minx∈Qn cx> subject to Ax ≤ b

known to be in P (Khachiyan’1979).
Idea semidefinite programming: instead of Ax ≤ b,
allow more general class of constraints that are still

convex, and
semialgebraic.

A ∈ Rk×k real symmetric matrix.
A � 0: A is positive semidefinite, i.e., y>Ay ≥ 0 for all y ∈ Rk .
S ⊆ Rn is called a spectrahedron if there are symmetric matrices
A0,A1, . . . ,An ∈ Rk×k such that

S = {(x1, . . . , xn) | A0 + A1x1 + · · ·+ Anxn � 0︸ ︷︷ ︸
‘linear matrix inequality (LMI)’

}

Example. S =

{
(x , y) |

(
1 x
x y

)
� 0
}

=
{
(x , y) | y − x2 ≥ 0

}
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Complexity of SDP

Many algorithmic approaches for LP can also be applied to SDP.

Can often be solved efficiently in practise.

But: the complexity of deciding the feasibility problem

{(x1, . . . , xn) | A0 + A1x1 + · · ·+ Anxn � 0} ?
= ∅

for given symmetric A0,A1, . . . ,An ∈ Qk×k , is not known to be in P.

SDP ∈ ∃R ⊆ PSPACE.

As in LP, there are exact duals:
if problem is in NP, then it is also in coNP (Ramana’1997)

Theorem (B.+Loho+Skomra’2025).

There is a polynomial-time reduction from simple stopping stochastic games
to the feasibility problem for SDP.
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Max-Average Constraints
An instance of the Max-average constraint satisfaction problem:
consists of conjunction of constraints of the form

x0 ≤ max(x1, . . . , xn)

x0 ≤ x1+x2
2

x0 = c for some constant c ∈ Q.

Computational task: is there a solution over Q ∪ {−∞}?

Translation from stopping simple stochastic games to max-average CSPs:

xi ≤ max(i,j)∈E {xj } for every i ∈ Vmax,

xi ≤ min(i,j)∈E {xj } for every i ∈ Vmin,

xi ≤
1
2

∑
(i,j)∈E

xj for every i ∈ Vrand,

xi ≥ 0 for every i ∈ V

xL = 0, xW = 1, xs ≥ 1/2,

See, e.g., Bertrand+Bouyer-Decitre+Fijalkov+Skomra’2023.
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Non-archimedian SDPs

K : set of Puiseux series over R

x = c0ta/n + c1t(a−1)/n + c2t(a−2)/n + . . .

a real-closed field.

xi0 ≤ xi1 + · · ·+ xik for every constraint xi0 ≤ max(xi1 , . . . , xik ) in φ,

x
2
i0 ≤ xi1xi2 for every constraint xi0 ≤

xi1 + xi2

2
in φ,

xi0 = tc for every constraint xi0 = c in φ,

xi0 ≥ 0 for every i0 ∈ {1, . . . ,n}.

Max-average instance satisfiable if and only if this SDP has solution in K .
Idea:

This reduction also works if t is replaced by a large number.

Using quantifier-elimination: double exponential is large enough.
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Large Numbers

Problem: our reduction is not polynomial-time!

(representation size of doubly exponential numbers!)

Easy to express x ≥ 22n
by SDP of polynomial size in n:

x0 ≥ 2, x1 ≥ x2
0 , x2 ≥ x2

1 , . . . , x ≥ x2
n−1

Problem: need to express x = 22n
for our reduction.

Solution: Use SDP duality theory to find small expression for x = 22n
.
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Summary

Semidefinite Program Feasibility

PosSLP

Sums-of-Square-Roots

Max-Average
Constraints

Stochastic Mean
Payoff Games

New!

Mean Payoff Games

Parity Games

Stopping Simple 
Stochastic Games

Euclidean-shortest-paths Model-checking for
propositional µ-calculus
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