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(Stochastic) Mean Payoff Games

Game G = (Vmin ) Vmax ) Vranda E) rys, p)
=V
m (Pure positional) strategies:
0: Viyin — Vand t: Vipax — V

m Only stochastic vertices:
Markov Chain.

m Mean payoff reward:
Iimn%oo%EG,T(rsm + e+ ru,,,1 un)-

m Fact (Liggett+Lippman’1969):
there exist strategies o*, T* s.t.
g(o%,1) < g(o*,7") < g(0,7")

~——

=:value of G
for all strategies o, .

m No stochastic vertices:
Mean Payoff Game (MPG).
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Complexity of (Stochastic) MPGs

m Computational problem: given G, compute value of G.

m Special case simple stochastic games:
stochastic nodes have 2 outgoing edges, each with probability 1/2.
Special terminal nodes W and L with loops, with ryw =1 and r;; = 0.

m A simple stochastic game is called stopping if for any pair of strategies,
we reach W or L with probability one.

m There is a polynomial-time Turing-reduction from computing the value of
a stochastic mean payoff game to deciding whether the value of a
stopping simple stochastic game is at least 1/2
(Allamigeon+Gaubert+Skomra’2018).

m Problem is in NP N coNP (Condon’1992).

m Not known to be in P, already for (deterministic) MPGs.
m Central open problem in verification.

m Parity games reduce to MPGs

m Quasi-polynomial algorithms for parity games
(Calude+Jain+Khoussainov+Li+Stephan’2022) don’t work for MPGs
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Semidefinite Programming

m Recap: linear programming
MinyegnCX | subject to Ax < b

known to be in P (Khachiyan'1979).

m Idea semidefinite programming: instead of Ax < b,
allow more general class of constraints that are still
m convex, and
®m semialgebraic.
m A c RF*K real symmetric matrix.
A = 0: Ais positive semidefinite, i.e., y T Ay > 0 for all y € R¥.
m S C R"is called a spectrahedron if there are symmetric matrices
Ao, A1, ..., A, € RK¥K such that

S={(X1y...,X%) | Ao + A1xy +---+ Apxp = 0}

‘linear matrix inequality (LMI)’

Example. = {(x,y) | (1 ) =0} = {(ny) Iy~ = 0}
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Complexity of SDP

m Many algorithmic approaches for LP can also be applied to SDP.
m Can often be solved efficiently in practise.
m But: the complexity of deciding the feasibility problem

{(Xty oy Xn) | Ao+ A1Xi + -+ AnXn = 0} = 0

for given symmetric Ag, A1, ..., A, € QKK is not known to be in P.
m SDP € 3R C PSPACE.

m As in LP, there are exact duals:
if problem is in NP, then it is also in coNP (Ramana’1997)

Theorem (B.+Loho+Skomra’2025).

There is a polynomial-time reduction from simple stopping stochastic games
to the feasibility problem for SDP.
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Max-Average Constraints

An instance of the Max-average constraint satisfaction problem:
consists of conjunction of constraints of the form

B Xp < max(Xi,...,Xn)
X1+X
H X S %
m xo = c for some constant ¢ € Q.
Computational task: is there a solution over Q U {—c0}?

Translation from stopping simple stochastic games to max-average CSPs:

Xi < max; jjee{X} for every i € Vinax,
X < ming jee{x} for every i € Vi,
1 .
X< Z X; for every i € Viand,
(h))EE
x>0 foreveryie V

xL=0,xw=1,xs>1/2,

See, e.g., Bertrand+Bouyer-Decitre+Fijalkov+Skomra’2023.
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Non-archimedian SDPs

K: set of Puiseux series over R
x = Cota/n + C1t(af1)/n + Czt(272)/n 4.,

a real-closed field.

xp <x, +---+x;, forevery constraint x; < max(x;,...,X;)in ¢,
. Xi, + Xi, .

x2 < x;,%), for every constraint x;, < % in o,

x;, = t° for every constraint x;, = cin ¢,

xi, >0 for every iy € {1,...,n}.

Max-average instance satisfiable if and only if this SDP has solution in K.
Idea:

m This reduction also works if ¢ is replaced by a large number.
m Using quantifier-elimination: double exponential is large enough.
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Large Numbers

Problem: our reduction is not polynomial-time!
(representation size of doubly exponential numbers!)

Easy to express x > 22" by SDP of polynomial size in n:

Xo > 2,X1 > X5, X0 > X2, ... X > X2,

Problem: need to express x = 22" for our reduction.

Solution: Use SDP duality theory to find small expression for x = 22",
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