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What is Guarded Monotone SNP?
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A classic example

No Monochromatic Triangle

Given: a graph (V,E).
Task: to partition E in two classes
E1,E2 such that neither (V,E1)
nor (V,E2) contains a triangle.

(V,E)

What is Guarded Monotone SNP? 3/22



A classic example

No Monochromatic Triangle

Given: a graph (V,E).
Task: to partition E in two classes
E1,E2 such that neither (V,E1)
nor (V,E2) contains a triangle.

(V,E1)

What is Guarded Monotone SNP? 3/22



A classic example

No Monochromatic Triangle

Given: a graph (V,E).
Task: to partition E in two classes
E1,E2 such that neither (V,E1)
nor (V,E2) contains a triangle.
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A “real life” example

School students
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A “real life” example

Two desks, three people

The classroom
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A “real life” example

always
together

always
apart
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A “real life” example

Choose who sits together
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A formal definition of GMSNP

Given: finite relational structure A (e.g., graph or ternary
“classroom” relation)

Task: assign to every relational tuple of A one of the several colors:
A 7→ Acol

s.t. Acol is F-free, i.e., for NO F from finite family F , there is a
homomorphism F → Acol.

F = F =
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Why “guarded” and why “monotone”?

Guarded – in every F ∈ F , “colors” are defined within original
relational tuples

/∈ F

Monotone – Acol must be F-free homomorphism-wise (not
embedding, full homomorphism, etc.)

/∈ F
̸=
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History of GMSNP

Garey, Johnson (1979): No-Monochromatic-Triangle is
NP-complete

Madelaine (2009): studying problems about F-free
edge-colorings

Bienvenu, ten Cate, Lutz, Wolter (2014): GMSNP is
introduced as the complement for certain ontology-mediated
conjunctive query language (GFO,UCQ)

Bodirsky, Knäuer, Starke (2020): every connected GMSNP
is a (nice) infinite Constraint Satisfaction Problems (CSP)

B., Pinsker, Rydval (2025): containment for GMSNP is
decidable
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CSP and Dichotomy
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Constraint Satisfaction Problems

Let A = (A;RA
1 , . . . ,R

A
s ) be a relational structure with domain A

and signature {R1, . . . ,Rs} (RA
i ⊆ Aki)

CSP(A)

Given: Finite structure I = (I;RI
1, . . . ,R

I
s)

Task: Find h : I → A such that h(RI
i ) ⊆ RA

i for all i ∈ [k]

Example(
{0, 1}; {0}, {1}, {0, 1}3 \ (1, 1, 0)

)
– Horn-SAT(

{R,B}; {(R,B), (B,R)}
)
– 2-coloring
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Amalgamation Property (AP)

A

B1 B2

C

f1 f2

g1 g2

Definition

K has the amalgamation property if, for any A,B1,B2 ∈ K and
embeddings f1 : A → B1, f2 : A → B2, there exists C ∈ K and
embeddings g1 : B1 → C, g2 : B2 → C such that g1 ◦ f1 = g2 ◦ f2.
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Amalgamation for GMSNP

Let K := all finite F-free structures (all solutions).
Hubička, Nešeťril: there is K′ obtained from K by adding finitely
many new relations. K′ is closed under taking substructures (HP)
and has the amalgamation property (AP).

AP : &∈ K′ ∈ K′ & ∼= ∈ K′

Fräıssé: if K′ is closed under disjoint unions, has HP and AP, then
there is homogeneous (very symmetric) countably infinite structure
B such that Age(B) = K′.
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GMSNP seen as a CSP

τ

I Iσ

F
τ ∪ σ

K

τ ∪ σ ∪ ρ

K′

BBσBτ

Hubička

Fräıssé

(τ ∪ σ)-reductτ -reduct

Nešeťril

Observation (BKS’20)

Input I has F -free σ-expansion Iσ (I ∈ GMSNP(F)) if and only if I
homomorphically maps to Bτ (I ∈ CSP(Bτ )).
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The dichotomy question

P

NP-complete

NP-intermediate

NP=ESO
Ladner: If P ̸= NP, then NP has problems that
are neither in P nor NP-complete.
Fagin: The problems in NP are precisely those
that are described by sentences in Existential
Second-Order logic (ESO).

Question

For a given logic L ⊂ ESO, is L a subset of
(P ∪ NP-complete)?
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The dichotomy question

finite⊂MMSNP⊂ GMSNP ⊂ Monotonefirst-order reducts
of finitely bounded

homogeneous structures
CSP

⊂
SNP

CSPs of

Given: finite relational structure

Task: assign to every vertex one of the several colors

such that the result is F-free F =
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The dichotomy question

finite⊂MMSNP⊂ GMSNP ⊂ Monotonefirst-order reducts
of finitely bounded

homogeneous structures
CSP

⊂
SNP

CSPs of

Feder, Vardi: Every problem in MMSNP is P-time equivalent

to CSP with finite domain

Zhuk, Bulatov: Finite CSPs have dichotomy that is

characterized by algebraic properties of the template.
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The dichotomy question

finite⊂MMSNP⊂ GMSNP ⊂ Monotonefirst-order reducts
of finitely bounded

homogeneous structures
CSP

⊂
SNP

CSPs of

A is homogeneous if every isomorphism between its finite

substructures extends to an automorphism of A.
A is finitely bounded if for some finite family F
∀ B finite (B ⊂ A ⇔ ∀ F ∈ F F ̸→ B) (Age(A) is F-free)
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The dichotomy question

finite⊂MMSNP⊂ GMSNP ⊂ Monotonefirst-order reducts
of finitely bounded

homogeneous structures
CSP

⊂
SNP

CSPs of

B is a first-order reduct of A if B has the same domain as A
and if every relation of B is first-order definable in A.
Conjecture (Bodirsky, Pinsker): CSPs of such structures have

dichotomy characterized by algebraic properties of the template.
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The dichotomy question

finite⊂MMSNP⊂ GMSNP ⊂ Monotonefirst-order reducts
of finitely bounded

homogeneous structures
CSP

⊂
SNP

CSPs of

Given: finite relational structure A
Task: assign a color to each k-element subset of A (k is fixed)

s.t. the colors assigned to intersecting subsets are compatible

t1 t2 A
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The dichotomy question

finite⊂MMSNP⊂ GMSNP ⊂ Monotonefirst-order reducts
of finitely bounded

homogeneous structures
CSP

⊂
SNP

CSPs of

Feder, Vardi: Every problem in NP is P-time equivalent

to a problem in Monotone SNP
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Containment for GMSNP
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The containment question

Given: two decision problems Φ and Ψ
Task: to check whether every YES instance of Φ is a YES instance
of Ψ, denoted Φ ⊆ Ψ

Remark

Undecidable: Datalog (Shmueli), FO (Trakhtenbrot)
Decidable: finite-domain CSP and MMSNP (Feder, Vardi)
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Recoloring for GMSNP

r: {colors of Φ} → {colors of Ψ} is a recoloring from Φ to Ψ

if the preimage r−1(FΨ) has no FΦ-free structures

FΨr−1(FΨ)

FΦ

recoloring ⇒ containment
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Ramsey property

Class K is Ramsey if for all A,B ∈ K and all n ∈ N there is C ∈ K
s.t. for all χ :

(C
A
)
→ [n] there is B0 ∈

(C
B
)
s.t. χ is constant on

(B0

A
)
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Canonical mappings

h:A → B is canonical w.r.t. Aut(A) and Aut(B)

there is β ∈ Aut(B) s.t.

ā

α(ā)

h(ā)

h(α(ā))

h

h

α β

if for every n and every ā ∈ An and every α ∈ Aut(A)
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Canonical mappings

h:A → B is canonical w.r.t. Aut(A) and Aut(B)

there is β ∈ Aut(B) s.t.

ā

α(ā)

h(ā)

h(α(ā))

h

h

α β

if for every n and every ā ∈ An and every α ∈ Aut(A)

h sends n-colors of A to n-colors of B!
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Containment ⇒ recoloring

Φ ⊆ Ψ =⇒ ∃h:Bτ
Φ → Bτ

Ψ

Bodirsky, Pinsker, Tsankov:

Hubička, Nešeťril: Bτ
Φ has such an expansion BΦ!

B., Pinsker, Rydval: Φ transforms to an equivalent Φ′ s.t.

{colors of Φ′} ←→ {orbits of τ -tuples in BΦ′}bij

Canonical mapping h well-defines a recoloring

r: {colors of Φ′} → {colors of Ψ′}
containment ⇒ recoloring

Bτ
Φ has a homogeneous

Ramsey expansion BΦ

h can be made canonical w.r.t.
Aut(BΦ) and Aut(BΨ)

=⇒

=⇒ CSP(Bτ
Φ) ⊆ CSP(Bτ

Ψ)
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Conclusion

For GMSNP, Φ ⊆ Ψ ⇔ Φ′ rec−−→ Ψ′

Checking containment Φ ⊆ Ψ is 2NEXPTIME-complete

Future work

1 To extend the decidability of containment on bigger classes

2 To prove decidability for GMSNP as it is done for MMSNP

3 To study approximation (promise) GMSNP
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Thank You!
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