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Thm (Ladner): If P ̸= NP then
P ∪ NP-complete ⊊ NP

NP-complete

P

̸= ∅

Thm (Fagin): NP and Existential
Second-Order logic (ESO) express the
same class of problems

(X ;R1, . . . ,Rk) (X ;R1, . . . ,Rk ,S1, . . . ,Sℓ)

|= φ

∃?

first-order sentence
over the signature
{R1, . . . ,Sℓ}
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F

existential relations are unary

forbidden maps are homomorphisms
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2-col

1in3

Γ = {Red(·),Blue(·)} F

provably not in “finite-
domain CSP”

No-Monochromatic-Triangle

Every finite-domain CSP(i)

(ii)
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MMSNP MMSNP MMSNP ̸=

Thm (Feder, Vardi): Losing any of the 3
properties of MMSNP produces an NP-rich
class

Thm (Feder, Vardi): Every problem in
MMSNP is p-time equivalent to a finite-
domain CSP

NP-rich

hope for
dichotomy

Thm (Bulatov) (Zhuk): Finite-domain
CSPs have a dichotomy

Q: Is there smth above MMSNP that has a
dichotomy?
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Every finite-domain CSP(i)

Every MMSNP(ii)

No-Monochromatic-Edge-Triangle(iii)

σ = {Red(·, ·),Blue(·, ·)}

B., Mottet, Perinti: provably
not in MMSNP

(iv) NOT example: CSP(Q, <) provably not in GMSNP



GMSNP as infinite-domain CSP



Homogeneity and Amalgamation

Goal: for every F ∈ GMSNP, to have “nice” structure DF s.t. X ∈ Forb(F)
if and only if X → DF



Homogeneity and Amalgamation

Goal: for every F ∈ GMSNP, to have “nice” structure DF s.t. X ∈ Forb(F)
if and only if X → DF
Def (“nice”): structure is homogeneous if every isomorphism between finite
substructures extends to automorphism of whole structure

∼= ⇒ ∼=



Homogeneity and Amalgamation

Goal: for every F ∈ GMSNP, to have “nice” structure DF s.t. X ∈ Forb(F)
if and only if X → DF
Def (“nice”): structure is homogeneous if every isomorphism between finite
substructures extends to automorphism of whole structure

Example:

∼= ⇒ ∼=

0 < 1 5 < 7∼= ↪→ (Q, <) take α : Q → Q
x 7→ 2x + 5



Homogeneity and Amalgamation

Goal: for every F ∈ GMSNP, to have “nice” structure DF s.t. X ∈ Forb(F)
if and only if X → DF
Def (“nice”): structure is homogeneous if every isomorphism between finite
substructures extends to automorphism of whole structure

Example:

∼= ⇒ ∼=

0 < 1 5 < 7∼= ↪→ (Q, <) take α : Q → Q
x 7→ 2x + 5
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Template: CSP( )
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Def: Given problems Φ and Ψ with the same input, to decide whether
I ∈ Φ ⇒ I ∈ Ψ, for every input I, denoted Φ ⊆ Ψ

Obs: For finite A and B, we have:
A → B ⇔ CSP(A) ⊆ CSP(B) – easy to decide

Thm (Trakhtenbrot): For FO-sentences ϕ and ψ, checking ϕ→ ψ is unde-
cidable

Thm (Shmueli): Containment is undecidable for Datalog programs

Thm (Feder, Vardi): containment is decidable for MMSNP (by reduction to
finite CSP)

Q (Bienvenu, ten Cate, Lutz, Wolter) (Bourhis, Lutz): Is it still decidable
for GMSNP?
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FΦ

r :

Def: r : {colors of Φ} → {colors of Ψ} is a recoloring from Φ to Ψ

if the preimage r−1(FΨ) has no FΦ-free structures

∃ recoloring from Φ to Ψ ⇒ Φ ⊆ Ψ
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h(α(ā))h

canonical maps well-
define maps between
the orbits of n-tuples



Canonical mappings

h

α β

Def: mapping h : A → B is canonical w.r.t. groups G and H acting on sets
A and B, if for every n, every ā ∈ An, and every α ∈ G there is β ∈ H s.t.

ā

α(ā)

h(ā)

h(α(ā))h

canonical maps well-
define maps between
the orbits of n-tuples

Thm (Bodirsky, Pinsker, Tsankov): If h : A → B is hom between ω-
categorical structures and if A has homogeneous Ramsey expansion A∗, then
there is a hom g : A → B which is canonical w.r.t. Aut(A∗) and Aut(B)
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Searching for recoloring is 2NEXPTIME-complete problem
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Decidability of containment for class C can motivate to study the complexity
of promise problems on C:

Template: Φ,Ψ ∈ C s.t.
Φ ⊆ Ψ

Input: X Q: Y, if X is accepted by Φ
N, if X is rejected by Ψ

MMSNP and now even GMSNP

Approximate graph coloring: for all m < n, the following is NP-hard

PromiseMMSNP

(
. . . . . .

)
m-many colors n-many colors

Obs: for all m < n, the following is p-time equiv to PCSP(NAEm,NAEn)

PromiseMMSNP

(
. . .

)
m-many colors n-many colors

. . .

Q: what is the complexity of the following PromiseMMSNP?

PromiseMMSNP

( ) each problem is equiv to
Bool CSP: 3-ary and 4-ary
NAE



Dichotomy for GMSNP

whose complexity classification belongs to the
most prominent open problems in infinite-
domain constraint satisfaction

Feller, Pinsker
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Forbidden tournaments: proof strategy

Let DF be the Fräıssé-limit of Forb(F) and HF be its graph reduct (forget
orientation of edges)

Prove that Pol(HF ) → Proj iff Pol(DF ) → Proj, and that CSP(HF ) and
CSP(DF ) are p-time equivalent, and work with DF instead

Prove that CSP(DF ) is p-time equivalent to some Boolean CSP

(i)

(ii)

Polymorphisms of that Boolean CSP are canonical polymorphisms of DF

Motivation: explore step (i) for more general classes of GMSNP: such like
edge-colored graphs
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Def: Precolored GMSNP consists of the problems of the form:

Template: finite set σ
of new colors for τ -tuples
and finite family F of fi-
nite structures s.t. every τ -
tuple is colored with some
σ-color

Input: relational τ -
structure X with some
τ -tuples colored with σ

Q: to complete coloring of
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F ∈ F , there is hom F →
(X, σ)

F

(X ;R1, . . . ,Rk) (X ;R1, . . . ,Rk , σ)

∃?

Obs: GMSNP(F) always reduces to pre-
colored version
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Def: for G – graph, ξ – partial edge-coloring, e – edge of G , i – color, tuple
(G, ξ, e) is a colored determiner for color i if

Motivation: Prove that original and precolored versions always have the same
complexity and to work only with precolored GMSNP

one of the two vertices incident to e is not incident to any edge of
dom(ξ)
there is an F-free extension of ξ
if γ is an F-free extension of ξ, then γ(e) = i

(i)

(ii)
(iii)

Ex: for F = colored red- and blue-determiners are
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Colored determiners: reduction

B., Mottet, Perinti: Let d > maxF∈F |F|. If there are d-remote determiners
for each color, then precolored GMSNP(F) reduces to original GMSNP(F)

Def: Colored determiner is d-remote if distance between e and dom(ξ) is at
least d

X
take precolored input X

to every i-colored edge attach
d-remote i-determiner

glue colored edges of all de-
terminers, for each i indepen-
dently

the orbit of colored edges is pp-
definable in graph reduct
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dichotomy for various classes F such like
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Q: Do colored determiners always exist? at least for edge-colored cliques? at
least for 2-edge-colored cliques?

A: No. Take F to be colored determiners provably do not exist for F
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