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Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?
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Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Γ):

Given a sentence ∃y1 . . . ∃yt (R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Theorem [Bulatov, Zhuk, 2017]

CSP(Γ) is

▶ either solvable in polynomial time,

▶ or NP-complete.
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QCSP Complexity Classes

▶ If Γ contains all relations then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a finite field then QCSP(Γ) is in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0, 1}. Then
▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P PSPACE
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QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ There exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ There exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ There exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2



QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ There exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ There exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ There exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2



QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ There exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ There exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ There exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2



QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ There exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ There exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ There exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE
coNP

DP

ΘP
2



QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ There exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ There exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ There exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE
coNP

DP

ΘP
2



QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ There exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ There exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ There exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE
coNP

DP

ΘP
2



QCSP Complexity Classes

Theorem [Zhuk, Martin, 2019]

Suppose Γ is a constraint language on {0, 1, 2} containing
{x = a | a ∈ {0, 1, 2}}. Then QCSP(Γ) is

▶ in P, or

▶ NP-complete, or

▶ coNP-complete, or

▶ PSPACE-complete.

P
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DP
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2
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Main Results

Theorem

Suppose

▶ QCSP(Γ) is not PSpace-hard

▶ ∃y0∀x1∃y1 . . . ∀xn∃ynΨ is a No-instance of QCSP(Γ)

Then there exists S ⊆ An with |S | ≤ |A|2 · (n · |A|)22|A|
|A|+1

s. t.

∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)

does not hold.

We can restrict the Universal Player to polynomially many moves and he still wins.

Corollary

QCSP(Γ) is not PSpace-hard ⇒ QCSP(Γ) is in ΠP
2 .

Proof:

For each polynomial-size S ⊆ An check the existence of a
winning strategy for the Existential Player.

ΠP
2 = {∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z ) : V ∈ P, p, q - polynomials}
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Ideas of the proof

▶ Any instance of QCSP(Γ) is equivalent to an exponential-size
CSP instance I.

▶ I can be solved by enforcing arc-consistency.

▶ I has no solution ⇒ constraint propagation gives a
tree-instance without a solution.

▶ If the tree-instance is big enough it has “repetitions”, and
these “repetitions” give PSpace-hardness of QCSP(Γ).

▶ If the tree-instance is small then there exists a polynomial-size
subinstance of I without a solution.

▶ The polynomial-size subinstance gives S ⊆ An s. .t.
∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)
is not satisfiable.
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