
ΠP
2 vs PSpace Dichotomy for

the Quantified Constraint Satisfaction
Problem

Dmitriy Zhuk

Charles University

FOCS 2024

Funded by the European Union (ERC, POCOCOP, 101071674)

Views and opinions expressed are however those of the author(s) only

and do not necessarily reflect those of the European Union or the

European Research Council Executive Agency. Neither the European

Union nor the granting authority can be held responsible for them.



Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?



Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?



Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}.

QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?



Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2),

true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?



Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?



Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y),

false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?



Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?



Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2),

true

Main Question

What is the complexity of QCSP(Γ) for different Γ?



Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?



Quantified Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

QCSP(Γ):

Given a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Main Question

What is the complexity of QCSP(Γ) for different Γ?



Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Γ):

Given a sentence ∃y1 . . . ∃yt (R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Theorem [Bulatov, Zhuk, 2017]

CSP(Γ) is

▶ either solvable in polynomial time,

▶ or NP-complete.



Constraint Satisfaction Problem

A is a finite set,
Γ is a set of relations on A (a constraint language)

CSP(Γ):

Given a sentence ∃y1 . . . ∃yt (R1(. . . ) ∧ · · · ∧ Rs(. . . )),
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Theorem [Bulatov, Zhuk, 2017]

CSP(Γ) is

▶ either solvable in polynomial time,

▶ or NP-complete.



20



O



PSPACE



Ksp
PSPACE



QCSP Complexity Classes

▶ If Γ contains all relations then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a finite field then QCSP(Γ) is in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0, 1}. Then
▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P PSPACE



QCSP Complexity Classes
▶ If Γ contains all relations then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a finite field then QCSP(Γ) is in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0, 1}. Then
▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P

PSPACE



QCSP Complexity Classes
▶ If Γ contains all relations then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a finite field then QCSP(Γ) is in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0, 1}. Then
▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P PSPACE



QCSP Complexity Classes
▶ If Γ contains all relations then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a finite field then QCSP(Γ) is in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0, 1}. Then
▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P PSPACE



QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ There exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ There exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ There exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2



QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ There exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ There exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ There exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2



QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ There exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ There exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ There exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2



QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ There exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ There exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ There exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE
coNP

DP

ΘP
2



QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ There exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ There exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ There exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE
coNP

DP

ΘP
2



QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ There exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ There exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ There exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE
coNP

DP

ΘP
2



QCSP Complexity Classes

Theorem [Zhuk, Martin, 2019]

Suppose Γ is a constraint language on {0, 1, 2} containing
{x = a | a ∈ {0, 1, 2}}. Then QCSP(Γ) is

▶ in P, or

▶ NP-complete, or

▶ coNP-complete, or

▶ PSPACE-complete.

P

NP

PSPACE
coNP

DP

ΘP
2



QCSP Complexity Classes

Theorem [Zhuk, Martin, 2019]

Suppose Γ is a constraint language on {0, 1, 2} containing
{x = a | a ∈ {0, 1, 2}}. Then QCSP(Γ) is

▶ in P, or

▶ NP-complete, or

▶ coNP-complete, or

▶ PSPACE-complete.

P

NP

PSPACE
coNP

DP

ΘP
2



Main Results

Theorem

Suppose

▶ QCSP(Γ) is not PSpace-hard

▶ ∃y0∀x1∃y1 . . . ∀xn∃ynΨ is a No-instance of QCSP(Γ)

Then there exists S ⊆ An with |S | ≤ |A|2 · (n · |A|)22|A|
|A|+1

s. t.

∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)

does not hold.

We can restrict the Universal Player to polynomially many moves and he still wins.

Corollary

QCSP(Γ) is not PSpace-hard ⇒ QCSP(Γ) is in ΠP
2 .

Proof:

For each polynomial-size S ⊆ An check the existence of a
winning strategy for the Existential Player.

ΠP
2 = {∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z ) : V ∈ P, p, q - polynomials}



Main Results

Theorem

Suppose

▶ QCSP(Γ) is not PSpace-hard

▶ ∃y0∀x1∃y1 . . . ∀xn∃ynΨ is a No-instance of QCSP(Γ)

Then there exists S ⊆ An with |S | ≤ |A|2 · (n · |A|)22|A|
|A|+1

s. t.

∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)

does not hold.

We can restrict the Universal Player to polynomially many moves and he still wins.

Corollary

QCSP(Γ) is not PSpace-hard ⇒ QCSP(Γ) is in ΠP
2 .

Proof:

For each polynomial-size S ⊆ An check the existence of a
winning strategy for the Existential Player.

ΠP
2 = {∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z ) : V ∈ P, p, q - polynomials}



Main Results

Theorem

Suppose

▶ QCSP(Γ) is not PSpace-hard

▶ ∃y0∀x1∃y1 . . . ∀xn∃ynΨ is a No-instance of QCSP(Γ)

Then there exists S ⊆ An with |S | ≤ |A|2 · (n · |A|)22|A|
|A|+1

s. t.

∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)

does not hold.

We can restrict the Universal Player to polynomially many moves and he still wins.

Corollary

QCSP(Γ) is not PSpace-hard ⇒ QCSP(Γ) is in ΠP
2 .

Proof:

For each polynomial-size S ⊆ An check the existence of a
winning strategy for the Existential Player.

ΠP
2 = {∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z ) : V ∈ P, p, q - polynomials}



Main Results

Theorem

Suppose

▶ QCSP(Γ) is not PSpace-hard

▶ ∃y0∀x1∃y1 . . . ∀xn∃ynΨ is a No-instance of QCSP(Γ)

Then there exists S ⊆ An with |S | ≤ |A|2 · (n · |A|)22|A|
|A|+1

s. t.

∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)

does not hold.

We can restrict the Universal Player to polynomially many moves and he still wins.

Corollary

QCSP(Γ) is not PSpace-hard ⇒ QCSP(Γ) is in ΠP
2 .

Proof:

For each polynomial-size S ⊆ An check the existence of a
winning strategy for the Existential Player.

ΠP
2 = {∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z ) : V ∈ P, p, q - polynomials}



Main Results

Theorem

Suppose

▶ QCSP(Γ) is not PSpace-hard

▶ ∃y0∀x1∃y1 . . . ∀xn∃ynΨ is a No-instance of QCSP(Γ)

Then there exists S ⊆ An with |S | ≤ |A|2 · (n · |A|)22|A|
|A|+1

s. t.

∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)

does not hold.

We can restrict the Universal Player to polynomially many moves and he still wins.

Corollary

QCSP(Γ) is not PSpace-hard ⇒ QCSP(Γ) is in ΠP
2 .

Proof:

For each polynomial-size S ⊆ An check the existence of a
winning strategy for the Existential Player.

ΠP
2 = {∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z ) : V ∈ P, p, q - polynomials}



Main Results

Theorem

Suppose

▶ QCSP(Γ) is not PSpace-hard

▶ ∃y0∀x1∃y1 . . . ∀xn∃ynΨ is a No-instance of QCSP(Γ)

Then there exists S ⊆ An with |S | ≤ |A|2 · (n · |A|)22|A|
|A|+1

s. t.

∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)

does not hold.

We can restrict the Universal Player to polynomially many moves and he still wins.

Corollary

QCSP(Γ) is not PSpace-hard ⇒ QCSP(Γ) is in ΠP
2 .

Proof:

For each polynomial-size S ⊆ An check the existence of a
winning strategy for the Existential Player.

ΠP
2 = {∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z ) : V ∈ P, p, q - polynomials}



Main Results

Theorem

Suppose

▶ QCSP(Γ) is not PSpace-hard

▶ ∃y0∀x1∃y1 . . . ∀xn∃ynΨ is a No-instance of QCSP(Γ)

Then there exists S ⊆ An with |S | ≤ |A|2 · (n · |A|)22|A|
|A|+1

s. t.

∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)

does not hold.

We can restrict the Universal Player to polynomially many moves and he still wins.

Corollary

QCSP(Γ) is not PSpace-hard ⇒ QCSP(Γ) is in ΠP
2 .

Proof:

For each polynomial-size S ⊆ An check the existence of a
winning strategy for the Existential Player.

ΠP
2 = {∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z ) : V ∈ P, p, q - polynomials}



Main Results

Theorem

Suppose

▶ QCSP(Γ) is not PSpace-hard

▶ ∃y0∀x1∃y1 . . . ∀xn∃ynΨ is a No-instance of QCSP(Γ)

Then there exists S ⊆ An with |S | ≤ |A|2 · (n · |A|)22|A|
|A|+1

s. t.

∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)

does not hold.

We can restrict the Universal Player to polynomially many moves and he still wins.

Corollary

QCSP(Γ) is not PSpace-hard ⇒ QCSP(Γ) is in ΠP
2 .

Proof:

For each polynomial-size S ⊆ An check the existence of a
winning strategy for the Existential Player.

ΠP
2 = {∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z ) : V ∈ P, p, q - polynomials}



Main Results

Theorem

Suppose

▶ QCSP(Γ) is not PSpace-hard

▶ ∃y0∀x1∃y1 . . . ∀xn∃ynΨ is a No-instance of QCSP(Γ)

Then there exists S ⊆ An with |S | ≤ |A|2 · (n · |A|)22|A|
|A|+1

s. t.

∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)

does not hold.

We can restrict the Universal Player to polynomially many moves and he still wins.

Corollary

QCSP(Γ) is not PSpace-hard ⇒ QCSP(Γ) is in ΠP
2 .

Proof: For each polynomial-size S ⊆ An check the existence of a
winning strategy for the Existential Player.

ΠP
2 = {∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z ) : V ∈ P, p, q - polynomials}



Main Results

Corollary

QCSP(Γ)

▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP
2 -complete.

Are there any other complexity classes?



Main Results

Corollary

QCSP(Γ)

▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2

ΠP
2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP
2 -complete.

Are there any other complexity classes?



Main Results

Corollary

QCSP(Γ)

▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP
2 -complete.

Are there any other complexity classes?



Main Results

Corollary

QCSP(Γ)

▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP
2 -complete.

Are there any other complexity classes?



Main Results

Corollary

QCSP(Γ)

▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP
2 -complete.

Are there any other complexity classes?



Main Results

Corollary

QCSP(Γ)

▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP
2 -complete.

Are there any other complexity classes?



Main Results

Corollary

QCSP(Γ)

▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP
2 -complete.

Are there any other complexity classes?



Main Results

Corollary

QCSP(Γ)

▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP
2 -complete.

Are there any other complexity classes?



Main Results

Corollary

QCSP(Γ)

▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP
2 -complete.

Are there any other complexity classes?



Ideas of the proof

▶ Any instance of QCSP(Γ) is equivalent to an exponential-size
CSP instance I.

▶ I can be solved by enforcing arc-consistency.

▶ I has no solution ⇒ constraint propagation gives a
tree-instance without a solution.

▶ If the tree-instance is big enough it has “repetitions”, and
these “repetitions” give PSpace-hardness of QCSP(Γ).

▶ If the tree-instance is small then there exists a polynomial-size
subinstance of I without a solution.

▶ The polynomial-size subinstance gives S ⊆ An s. .t.
∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)
is not satisfiable.



Ideas of the proof

▶ Any instance of QCSP(Γ) is equivalent to an exponential-size
CSP instance I.

▶ I can be solved by enforcing arc-consistency.

▶ I has no solution ⇒ constraint propagation gives a
tree-instance without a solution.

▶ If the tree-instance is big enough it has “repetitions”, and
these “repetitions” give PSpace-hardness of QCSP(Γ).

▶ If the tree-instance is small then there exists a polynomial-size
subinstance of I without a solution.

▶ The polynomial-size subinstance gives S ⊆ An s. .t.
∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)
is not satisfiable.



Ideas of the proof

▶ Any instance of QCSP(Γ) is equivalent to an exponential-size
CSP instance I.

▶ I can be solved by enforcing arc-consistency.

▶ I has no solution ⇒ constraint propagation gives a
tree-instance without a solution.

▶ If the tree-instance is big enough it has “repetitions”, and
these “repetitions” give PSpace-hardness of QCSP(Γ).

▶ If the tree-instance is small then there exists a polynomial-size
subinstance of I without a solution.

▶ The polynomial-size subinstance gives S ⊆ An s. .t.
∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)
is not satisfiable.



Ideas of the proof

▶ Any instance of QCSP(Γ) is equivalent to an exponential-size
CSP instance I.

▶ I can be solved by enforcing arc-consistency.

▶ I has no solution ⇒ constraint propagation gives a
tree-instance without a solution.

▶ If the tree-instance is big enough it has “repetitions”, and
these “repetitions” give PSpace-hardness of QCSP(Γ).

▶ If the tree-instance is small then there exists a polynomial-size
subinstance of I without a solution.

▶ The polynomial-size subinstance gives S ⊆ An s. .t.
∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)
is not satisfiable.



Ideas of the proof

▶ Any instance of QCSP(Γ) is equivalent to an exponential-size
CSP instance I.

▶ I can be solved by enforcing arc-consistency.

▶ I has no solution ⇒ constraint propagation gives a
tree-instance without a solution.

▶ If the tree-instance is big enough it has “repetitions”, and
these “repetitions” give PSpace-hardness of QCSP(Γ).

▶ If the tree-instance is small then there exists a polynomial-size
subinstance of I without a solution.

▶ The polynomial-size subinstance gives S ⊆ An s. .t.
∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)
is not satisfiable.



Ideas of the proof

▶ Any instance of QCSP(Γ) is equivalent to an exponential-size
CSP instance I.

▶ I can be solved by enforcing arc-consistency.

▶ I has no solution ⇒ constraint propagation gives a
tree-instance without a solution.

▶ If the tree-instance is big enough it has “repetitions”, and
these “repetitions” give PSpace-hardness of QCSP(Γ).

▶ If the tree-instance is small then there exists a polynomial-size
subinstance of I without a solution.

▶ The polynomial-size subinstance gives S ⊆ An s. .t.
∃y0∀x1∃y1 . . . ∀xn∃yn((x1, . . . , xn) ∈ S → Ψ)
is not satisfiable.



Thank you for your attention



Thank you for your attention



Thank you for your attention



Thank you for your attention


	Introduction
	Known Results
	Main Results

