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Example

Check whether there exists a solution x1, x2, x3, . . . ∈ {0,1}.
x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 0 mod 2
x2 + x3 + x5 = 1 mod 2

Gaussian elimination solves the
problem in polynomial time.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3

The problem is NP-hard.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3 mod 24

What is the complexity of this
problem? Nobody knows!
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What is CSP?

Constraint Satisfaction Problem
is a triple ⟨X,D,C⟩, where
▶ X = {x1, . . . , xn} is a set of variables,
▶ D = {D1, . . . ,Dn} is a set of the respective domains of

values, and
▶ C = {C1, . . . ,Cm} is a set of constraints

Almost everything
is CSP!!!
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CSP example: map coloring

Problem: assign each territory a color such that no two adjacent 
territories have the same color

Variables:

Domain of variables:

Constraints:



  

Another example: sudoku

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Variables:
 Each (open) square

 Domains:
 {1,2,…,9}

 Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch 
of pairwise inequality 
constraints)



Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?



Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?



Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?



Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?



Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4,

No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?



Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions

x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?



Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1,

x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?



Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?



Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?



Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,
▶ or we can find an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.
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Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,
▶ or we can find an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.



Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,
▶ or we can find an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.
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System of linear equations in a finite field
x1 + x2 + 2x3 = 0 mod 3
x1 + 2x3 + x5 = 0 mod 3
2x2 + x4 + x5 = 0 mod 3
x1 + x3 + 2x5 = 1 mod 3

Gaussian elimination solves the problem.

Domain D = {0,1,2}
Constraint language
Γ = {a1x + a2y + a3z = a0 | a0,a1,a2,a3 ∈ D}.
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Constraint language Γ = {≠}.
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̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn’t give a contradiction.

▶ The instance has no solutions.
The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.
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Reduction from one language to another

CSP(Γ)

Given: a sentence

∃x1 . . . ∃xn R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

primitive positive (pp) definition is

R(. . . ) = ∃y1 . . . ∃yℓ R1(. . . ) ∧ . . . ∧ Rs(. . . )

Fact [Schaefer, 1978]

Suppose |Γ1| < ∞, |Γ2| < ∞, Γ2 pp-defines Γ1. Then CSP(Γ1) is
log-space reducible to CSP(Γ2).

Theorem [Bodnarchuk, Kaluzhnin, Kotov, Romov, Geiger, 1969]
Γ2 pp-defines Γ1 IFF every operation preserving Γ2 preserves Γ1
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Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1
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n
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 ∈ R,
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...
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 ∈ R

Example

The relation ≤ on {0,1,2} is
(

0 0 0 1 1 2
0 1 2 1 2 2

)

An operation f preserves ≤ iff f

a1
1 . . . a1

n

⩾

. . . ⩾

a2
1 . . . a2

n

 =

b1

⩾

b2


or, equivalently, f is monotone.
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CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]

CSP(Γ) is solvable in polynomial time if there is a WNU
operation preserving Γ; it is NP-complete otherwise.

A weak near unanimity operation (WNU) is an operation f
satisfying f (x , . . . , x , y) = f (x , . . . , x , y , x) = · · · = f (y , x , . . . , x).

Examples: x ∨ y , x ∧ y , xy ∨ xz ∨ yz, x + y + z,0,min(x , y), . . .
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Hardness

Theorem [McKenzie, Maróti, 2007]
Suppose Γ is not preserved by a WNU.

Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-definable from Γ.

Corollary
Suppose Γ is not preserved by a WNU. Then
▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.
▶ CSP(∆) is log-space reducible to CSP(Γ) for any finite

constraint language ∆.
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Polynomial algorithm

Tractable cases on {0,1}

▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0
x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.

How to solve: force local consistency.
How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.
▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.
▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.
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QCSP Complexity Classes

▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a finite field then QCSP(Γ) is
in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0,1}. Then

▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU
operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.
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▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.
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Theorem [Zhuk, Martin, 2019]

Suppose Γ is a constraint language on {0,1,2} containing
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Infinite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False
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relations are boolean combinations of equalities. (P, NP-complete,
PSPACE-complete)

What is the complexity of QCSP({x < y ∨ y < z})?
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Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a finite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . . ) + f2(. . . ) + · · ·+ fs(. . . ),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . . ) + f2(. . . ) + · · ·+ fs(. . . ) < T is satisfiable.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})
▶ VCSP({f}) is equivalent to MAX-CUT problem.
▶ VCSP({f}) is NP-complete.

Complexity classification
[Kolmogorov, Krokhin, Roĺinek, 2015+Bulatov, Zhuk, 2017]

A full classification of the complexity for any finite set of cost
functions Γ (P vs NP-complete).
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Promise Constraint Satisfaction Problem
There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satisfied

▶ Weak version is not satisfied

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})

is in P (promise helps).

Theorem [Ficak, Kozik, Olsák, Stankiewicz, 2019])

A classification of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.
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▶ What is the complexity of (3,6)-colorability?

▶ What is the complexity of (3,1000000000)-colorability?
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Counting Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

Counting-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Find the number of solutions.

Theorem [Bulatov, 2008]
A classification of the complexity of Counting-CSP(Γ) for every Γ.
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Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example
A = {0,1,2}, Γ = {x ≤ y}. Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4, x1 = 0, x2 = 1, x3 = x4 = 2.
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, No surjective solutions

Question
What is the complexity of the SCSP(Γ)?
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Surjective Graph Homomorphism Problem

Let H be a finite graph.

SurjHom(H):
Given: a graph G.
Decide: whether there exists a surjective homomorphism from G to H.
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x6

x5 0

1 2

SurjHom(H) is equivalent to SCSP({x + y ̸= 0 mod 3}).
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History

▶ The complexity of SCSP(Γ) was described for every Γ on a
two-element domain [Creignou, N., and Hébrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ The complexity of SurjHom(H) was described for partially
reflexive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4 ) is NP-complete [Martin, Paulusma, Vikas,

2011]
▶ SurjHom(C6) is NP-complete [Vikas, 2017]
▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]

SCSP({(a,b, c) : |{a,b, c}| < 3}).
▶ The complexity cannot be described in terms of

polymorphisms [Zhuk, 2020]
▶ SurjHom(Cref

n ) is NP-complete for n ≥ 7 [Korchagin, 2023]
Cn and Cref

n are non-reflexive and reflexive cycles with n vertices.
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Balanced CSP
Γ is a set of relations on a finite set A.

Balanced-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a balanced solution, i.e., a solution with
equal number of every element.

Balanced-CSP(=) on {0,1}

solvable in polynomial time

Given an instance xi1 = xj1 ∧ · · · ∧ xis = xjs . Decide whether it
has a solution with equal number of 0 and 1.

Balanced-CSP(≤) on {0,1}

NP-complete

Given an instance xi1 ≤ xj1 ∧ · · · ∧ xis ≤ xjs . Decide whether it
has a solution with equal number of 0 and 1.

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classification of the complexity of Balanced-CSP(Γ) and
Cardinality-CSP(Γ) for each Γ on {0,1}.
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Global cardinality constraint

Γ is a set of relations on a finite set A.

Cardinality-CSP(Γ)

Given: a mapping π : A → N and a formula
R1(xi1,1 , . . . , xi1,n1

) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns
), where

R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution containing each element a ∈ A
exactly π(a) times.

Cardinality-CSP(Linear Equations in Z2)

NP-complete

Given a system of linear equations in Z2 and k ∈ N.
Decide whether there exists a solution with exactly k 1s.

Theorem [Bulatov, Marx, 2009]
A classification of the complexity of Cardinality-CSP(Γ) for each Γ.
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Cardinality-CSP(Linear Equations in Z2) NP-complete
Given a system of linear equations in Z2 and k ∈ N.
Decide whether there exists a solution with exactly k 1s.

Theorem [Bulatov, Marx, 2009]
A classification of the complexity of Cardinality-CSP(Γ) for each Γ.
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Global modular constraint

ModM -CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution satisfying x1 + · · ·+ xn = 0
mod M.

▶ If Γ consists of linear equations on {0, 1} and M = 25 then
ModM -CSP(Γ) is tractable

▶ If Γ consists of linear equations on {0, 1} and M = 15 then
ModM -CSP(Γ) is not tractable

▶ If Γ consists of linear equations on {0, 1} and M = 24 then the
complexity of ModM -CSP(Γ) is not known.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 0 mod 24
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Edge Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

Edge-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ and every variable appears exactly twice.
Decide: whether it has a solution.

R1

R2

R3

R4

R5

R6
x1 x2

x3

x4

x5

x6

x7

x1

x5

x7

▶ Edge-CSP({1IN2, 1IN3, 1IN4, . . . }) is equivalent to the
Perfect Matching Problem.

Theorem [Kazda, Kolmogorov, Rolinek, 2018]

A classification of the complexity for planar Edge-CSP(Γ) for
every Γ on {0,1}.
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