
The complexity of the
Constraint Satisfaction Problem

and its variations

Dmitriy Zhuk

Charles University

Colloquium of Faculty of Informatics

Funded by the European Union (ERC, POCOCOP, 101071674)
Views and opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union or the
European Research Council Executive Agency. Neither the European
Union nor the granting authority can be held responsible for them.

Example

Check whether there exists a solution x1, x2, x3, . . . ∈ {0,1}.
x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 0 mod 2
x2 + x3 + x5 = 1 mod 2

Gaussian elimination solves the
problem in polynomial time.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3

The problem is NP-hard.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3 mod 24

What is the complexity of this
problem? Nobody knows!

Example

Check whether there exists a solution x1, x2, x3, . . . ∈ {0,1}.
x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 0 mod 2
x2 + x3 + x5 = 1 mod 2

Gaussian elimination solves the
problem in polynomial time.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3

The problem is NP-hard.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3 mod 24

What is the complexity of this
problem? Nobody knows!

Example

Check whether there exists a solution x1, x2, x3, . . . ∈ {0,1}.
x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 0 mod 2
x2 + x3 + x5 = 1 mod 2

Gaussian elimination solves the
problem in polynomial time.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3

The problem is NP-hard.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3 mod 24

What is the complexity of this
problem? Nobody knows!

Example

Check whether there exists a solution x1, x2, x3, . . . ∈ {0,1}.
x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 0 mod 2
x2 + x3 + x5 = 1 mod 2

Gaussian elimination solves the
problem in polynomial time.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3

The problem is NP-hard.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3 mod 24

What is the complexity of this
problem? Nobody knows!

Example

Check whether there exists a solution x1, x2, x3, . . . ∈ {0,1}.
x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 0 mod 2
x2 + x3 + x5 = 1 mod 2

Gaussian elimination solves the
problem in polynomial time.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3

The problem is NP-hard.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3 mod 24

What is the complexity of this
problem? Nobody knows!

Example

Check whether there exists a solution x1, x2, x3, . . . ∈ {0,1}.
x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 0 mod 2
x2 + x3 + x5 = 1 mod 2

Gaussian elimination solves the
problem in polynomial time.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3

The problem is NP-hard.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3 mod 24

What is the complexity of this
problem?

Nobody knows!

Example

Check whether there exists a solution x1, x2, x3, . . . ∈ {0,1}.
x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 0 mod 2
x2 + x3 + x5 = 1 mod 2

Gaussian elimination solves the
problem in polynomial time.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3

The problem is NP-hard.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3 mod 24

What is the complexity of this
problem? Nobody knows!

P

PNP

20

20

What is CSP?

Constraint Satisfaction Problem
is a triple ⟨X,D,C⟩, where
▶ X = {x1, . . . , xn} is a set of variables,
▶ D = {D1, . . . ,Dn} is a set of the respective domains of

values, and
▶ C = {C1, . . . ,Cm} is a set of constraints

Almost everything
is CSP!!!

What is CSP?

Constraint Satisfaction Problem
is a triple ⟨X,D,C⟩, where
▶ X = {x1, . . . , xn} is a set of variables,
▶ D = {D1, . . . ,Dn} is a set of the respective domains of

values, and
▶ C = {C1, . . . ,Cm} is a set of constraints

Almost everything
is CSP!!!

What is CSP?

Constraint Satisfaction Problem
is a triple ⟨X,D,C⟩, where
▶ X = {x1, . . . , xn} is a set of variables,
▶ D = {D1, . . . ,Dn} is a set of the respective domains of

values, and
▶ C = {C1, . . . ,Cm} is a set of constraints

Almost everything
is CSP!!!

CSP example: map coloring

Problem: assign each territory a color such that no two adjacent
territories have the same color

Variables:

Domain of variables:

Constraints:

Another example: sudoku

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Variables:
 Each (open) square

 Domains:
 {1,2,…,9}

 Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch
of pairwise inequality
constraints)

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4,

No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions

x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1,

x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question
What is the complexity of CSP(Γ) for different Γ?

Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,
▶ or we can find an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.

Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,
▶ or we can find an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.

Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,
▶ or we can find an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.

Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,
▶ or we can find an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.

Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,
▶ or we can find an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.

Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,
▶ or we can find an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.

Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,
▶ or we can find an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.

Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,
▶ or we can find an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.

System of linear equations in a finite field
x1 + x2 + 2x3 = 0 mod 3
x1 + 2x3 + x5 = 0 mod 3
2x2 + x4 + x5 = 0 mod 3
x1 + x3 + 2x5 = 1 mod 3

Gaussian elimination solves the problem.

Domain D = {0,1,2}
Constraint language
Γ = {a1x + a2y + a3z = a0 | a0,a1,a2,a3 ∈ D}.

System of linear equations in a finite field
x1 + x2 + 2x3 = 0 mod 3
x1 + 2x3 + x5 = 0 mod 3
2x2 + x4 + x5 = 0 mod 3
x1 + x3 + 2x5 = 1 mod 3

Gaussian elimination solves the problem.

Domain D = {0,1,2}
Constraint language
Γ = {a1x + a2y + a3z = a0 | a0,a1,a2,a3 ∈ D}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn’t give a contradiction.
▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=
x1

x2

x3

x4

x7

x6

x6x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn’t give a contradiction.
▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=
x1

x2

x3

x4

x7

x6

x6x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn’t give a contradiction.
▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=
x1

x2

x3

x4

x7

x6

x6x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn’t give a contradiction.
▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=
x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn’t give a contradiction.
▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=
x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn’t give a contradiction.

▶ The instance has no solutions.
The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn’t give a contradiction.

▶ The instance has no solutions.
The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn’t give a contradiction.

▶ The instance has no solutions.
The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn’t give a contradiction.

▶ The instance has no solutions.
The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn’t give a contradiction.

▶ The instance has no solutions.
The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn’t give a contradiction.

▶ The instance has no solutions.
The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn’t give a contradiction.
▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn’t give a contradiction.
▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

2-S
AT

3-S
AT

Linear
Equations

Graph
2-Colouring

Graph
3-Colouring

2-S
AT

3-S
AT

Linear
Equations

Graph
2-Colouring

Graph
3-Colouring

2-S
AT

3-S
AT

Linear
Equations

Graph
2-Colouring

Graph
3-Colouring

2-S
AT

3-S
AT

Linear
Equations

Graph
2-Colouring

Graph
3-Colouring

2-S
AT

3-S
AT

Linear
Equations

Graph
2-Colouring

Graph
3-Colouring

2-S
AT

3-S
AT

Linear
Equations

Graph
2-Colouring

Graph
3-Colouring

Reduction from one language to another

CSP(Γ)

Given: a sentence

∃x1 . . . ∃xn R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

primitive positive (pp) definition is

R(. . .) = ∃y1 . . . ∃yℓ R1(. . .) ∧ . . . ∧ Rs(. . .)

Fact [Schaefer, 1978]

Suppose |Γ1| < ∞, |Γ2| < ∞, Γ2 pp-defines Γ1. Then CSP(Γ1) is
log-space reducible to CSP(Γ2).

Theorem [Bodnarchuk, Kaluzhnin, Kotov, Romov, Geiger, 1969]
Γ2 pp-defines Γ1 IFF every operation preserving Γ2 preserves Γ1

Reduction from one language to another

CSP(Γ)

Given: a sentence

∃x1 . . . ∃xn R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

primitive positive (pp) definition is

R(. . .) = ∃y1 . . . ∃yℓ R1(. . .) ∧ . . . ∧ Rs(. . .)

Fact [Schaefer, 1978]

Suppose |Γ1| < ∞, |Γ2| < ∞, Γ2 pp-defines Γ1. Then CSP(Γ1) is
log-space reducible to CSP(Γ2).

Theorem [Bodnarchuk, Kaluzhnin, Kotov, Romov, Geiger, 1969]
Γ2 pp-defines Γ1 IFF every operation preserving Γ2 preserves Γ1

Reduction from one language to another

CSP(Γ)

Given: a sentence

∃x1 . . . ∃xn R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

primitive positive (pp) definition is

R(. . .) = ∃y1 . . . ∃yℓ R1(. . .) ∧ . . . ∧ Rs(. . .)

Fact [Schaefer, 1978]

Suppose |Γ1| < ∞, |Γ2| < ∞, Γ2 pp-defines Γ1. Then CSP(Γ1) is
log-space reducible to CSP(Γ2).

Theorem [Bodnarchuk, Kaluzhnin, Kotov, Romov, Geiger, 1969]
Γ2 pp-defines Γ1 IFF every operation preserving Γ2 preserves Γ1

Reduction from one language to another

CSP(Γ)

Given: a sentence

∃x1 . . . ∃xn R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

primitive positive (pp) definition is

R(. . .) = ∃y1 . . . ∃yℓ R1(. . .) ∧ . . . ∧ Rs(. . .)

Fact [Schaefer, 1978]

Suppose |Γ1| < ∞, |Γ2| < ∞, Γ2 pp-defines Γ1. Then CSP(Γ1) is
log-space reducible to CSP(Γ2).

Theorem [Bodnarchuk, Kaluzhnin, Kotov, Romov, Geiger, 1969]
Γ2 pp-defines Γ1 IFF every operation preserving Γ2 preserves Γ1

Reduction from one language to another

CSP(Γ)

Given: a sentence

∃x1 . . . ∃xn R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

primitive positive (pp) definition is

R(. . .) = ∃y1 . . . ∃yℓ R1(. . .) ∧ . . . ∧ Rs(. . .)

Fact [Schaefer, 1978]

Suppose |Γ1| < ∞, |Γ2| < ∞, Γ2 pp-defines Γ1. Then CSP(Γ1) is
log-space reducible to CSP(Γ2).

Theorem [Bodnarchuk, Kaluzhnin, Kotov, Romov, Geiger, 1969]
Γ2 pp-defines Γ1 IFF every operation preserving Γ2 preserves Γ1

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

Example

The relation ≤ on {0,1,2} is
(

0 0 0 1 1 2
0 1 2 1 2 2

)

An operation f preserves ≤ iff f

a1
1 . . . a1

n

⩾

. . . ⩾

a2
1 . . . a2

n

 =

b1

⩾

b2

or, equivalently, f is monotone.

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

Example

The relation ≤ on {0,1,2} is
(

0 0 0 1 1 2
0 1 2 1 2 2

)

An operation f preserves ≤ iff f

a1
1 . . . a1

n

⩾

. . . ⩾

a2
1 . . . a2

n

 =

b1

⩾

b2

or, equivalently, f is monotone.

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

Example

The relation ≤ on {0,1,2}

is
(

0 0 0 1 1 2
0 1 2 1 2 2

)

An operation f preserves ≤ iff f

a1
1 . . . a1

n

⩾

. . . ⩾

a2
1 . . . a2

n

 =

b1

⩾

b2

or, equivalently, f is monotone.

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

Example

The relation ≤ on {0,1,2} is
(

0 0 0 1 1 2
0 1 2 1 2 2

)

An operation f preserves ≤ iff f

a1
1 . . . a1

n

⩾

. . . ⩾

a2
1 . . . a2

n

 =

b1

⩾

b2

or, equivalently, f is monotone.

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

Example

The relation ≤ on {0,1,2} is
(

0 0 0 1 1 2
0 1 2 1 2 2

)

An operation f preserves ≤ iff f

a1
1 . . . a1

n

⩾

. . . ⩾
a2

1 . . . a2
n

 =

b1

⩾

b2

or, equivalently, f is monotone.

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

Example

The relation ≤ on {0,1,2} is
(

0 0 0 1 1 2
0 1 2 1 2 2

)

An operation f preserves ≤ iff f

a1
1 . . . a1

n

⩾

. . . ⩾
a2

1 . . . a2
n

 =

b1

⩾

b2

or, equivalently, f is monotone.

Polymorphisms
An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]

CSP(Γ) is solvable in polynomial time if there is a WNU
operation preserving Γ; it is NP-complete otherwise.

A weak near unanimity operation (WNU) is an operation f
satisfying f (x , . . . , x , y) = f (x , . . . , x , y , x) = · · · = f (y , x , . . . , x).

Examples: x ∨ y , x ∧ y , xy ∨ xz ∨ yz, x + y + z,0,min(x , y), . . .

Polymorphisms
An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]

CSP(Γ) is solvable in polynomial time if there is a WNU
operation preserving Γ; it is NP-complete otherwise.

A weak near unanimity operation (WNU) is an operation f
satisfying f (x , . . . , x , y) = f (x , . . . , x , y , x) = · · · = f (y , x , . . . , x).

Examples: x ∨ y , x ∧ y , xy ∨ xz ∨ yz, x + y + z,0,min(x , y), . . .

Polymorphisms
An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]

CSP(Γ) is solvable in polynomial time if there is a WNU
operation preserving Γ; it is NP-complete otherwise.

A weak near unanimity operation (WNU) is an operation f
satisfying f (x , . . . , x , y) = f (x , . . . , x , y , x) = · · · = f (y , x , . . . , x).

Examples: x ∨ y , x ∧ y , xy ∨ xz ∨ yz, x + y + z,0,min(x , y), . . .

Polymorphisms
An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]

CSP(Γ) is solvable in polynomial time if there is a WNU
operation preserving Γ; it is NP-complete otherwise.

A weak near unanimity operation (WNU) is an operation f
satisfying f (x , . . . , x , y) = f (x , . . . , x , y , x) = · · · = f (y , x , . . . , x).

Examples: x ∨ y , x ∧ y , xy ∨ xz ∨ yz, x + y + z,0,min(x , y), . . .

Hardness

Theorem [McKenzie, Maróti, 2007]
Suppose Γ is not preserved by a WNU.

Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-definable from Γ.

Corollary
Suppose Γ is not preserved by a WNU. Then
▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.
▶ CSP(∆) is log-space reducible to CSP(Γ) for any finite

constraint language ∆.

Hardness

Theorem [McKenzie, Maróti, 2007]
Suppose Γ is not preserved by a WNU.

Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-definable from Γ.

Corollary
Suppose Γ is not preserved by a WNU. Then
▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.
▶ CSP(∆) is log-space reducible to CSP(Γ) for any finite

constraint language ∆.

Hardness

Theorem [McKenzie, Maróti, 2007]
Suppose Γ is not preserved by a WNU.

Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-definable from Γ.

Corollary
Suppose Γ is not preserved by a WNU. Then
▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.
▶ CSP(∆) is log-space reducible to CSP(Γ) for any finite

constraint language ∆.

Hardness

Theorem [McKenzie, Maróti, 2007]
Suppose Γ is not preserved by a WNU. Then there exists
D ⊆ A,

D = B0 ⊔ B1 s.t. D3 \ (B3
0 ∪ B3

1) is pp-definable from Γ.

Corollary
Suppose Γ is not preserved by a WNU. Then
▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.
▶ CSP(∆) is log-space reducible to CSP(Γ) for any finite

constraint language ∆.

Hardness

Theorem [McKenzie, Maróti, 2007]
Suppose Γ is not preserved by a WNU. Then there exists
D ⊆ A, D = B0 ⊔ B1

s.t. D3 \ (B3
0 ∪ B3

1) is pp-definable from Γ.

Corollary
Suppose Γ is not preserved by a WNU. Then
▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.
▶ CSP(∆) is log-space reducible to CSP(Γ) for any finite

constraint language ∆.

Hardness

Theorem [McKenzie, Maróti, 2007]
Suppose Γ is not preserved by a WNU. Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-definable from Γ.

Corollary
Suppose Γ is not preserved by a WNU. Then
▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.
▶ CSP(∆) is log-space reducible to CSP(Γ) for any finite

constraint language ∆.

Hardness

Theorem [McKenzie, Maróti, 2007]
Suppose Γ is not preserved by a WNU. Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-definable from Γ.

Corollary
Suppose Γ is not preserved by a WNU. Then

▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.
▶ CSP(∆) is log-space reducible to CSP(Γ) for any finite

constraint language ∆.

Hardness

Theorem [McKenzie, Maróti, 2007]
Suppose Γ is not preserved by a WNU. Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-definable from Γ.

Corollary
Suppose Γ is not preserved by a WNU. Then
▶ CSP(NAE3) is log-space reducible to CSP(Γ)

▶ CSP(Γ) is NP-complete.
▶ CSP(∆) is log-space reducible to CSP(Γ) for any finite

constraint language ∆.

Hardness

Theorem [McKenzie, Maróti, 2007]
Suppose Γ is not preserved by a WNU. Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-definable from Γ.

Corollary
Suppose Γ is not preserved by a WNU. Then
▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.

▶ CSP(∆) is log-space reducible to CSP(Γ) for any finite
constraint language ∆.

Hardness

Theorem [McKenzie, Maróti, 2007]
Suppose Γ is not preserved by a WNU. Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-definable from Γ.

Corollary
Suppose Γ is not preserved by a WNU. Then
▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.
▶ CSP(∆) is log-space reducible to CSP(Γ) for any finite

constraint language ∆.

Polynomial algorithm

Tractable cases on {0,1}

▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0
x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.

How to solve: force local consistency.
How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.
▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.
▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}

▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0
x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.

How to solve: force local consistency.
How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.
▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.
▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}
▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0

x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.

How to solve: force local consistency.
How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.
▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.
▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}
▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0

x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.

How to solve: force local consistency.
How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.

▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.
▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}
▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0

x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.

How to solve: force local consistency.
How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.

▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.

▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}
▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0

x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.
How to solve:

force local consistency.
How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.

▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.

▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}
▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0

x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.
How to solve: force local consistency.

How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.

▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.

▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}
▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0

x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.
How to solve: force local consistency.
How to find a solution:

set xi := 0 and force consistency again.
{0} is a strong subset.

▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.

▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}
▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0

x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.
How to solve: force local consistency.
How to find a solution: set xi := 0 and force consistency again.

{0} is a strong subset.

▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.

▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}
▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0

x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.
How to solve: force local consistency.
How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.
▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.

▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}
▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0

x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.
How to solve: force local consistency.
How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.
▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.

▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}
▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0

x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.
How to solve: force local consistency.
How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.
▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve:

force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.

▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}
▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0

x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.
How to solve: force local consistency.
How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.
▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.

How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.

▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}
▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0

x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.
How to solve: force local consistency.
How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.
▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution:

set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.

▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}
▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0

x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.
How to solve: force local consistency.
How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.
▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.

Both {0} and {1} are strong subsets.

▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}
▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0

x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.
How to solve: force local consistency.
How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.
▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.
▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}
▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0

x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.
How to solve: force local consistency.
How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.
▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.
▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution:

Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

Tractable cases on {0,1}
▶ Horn-SAT: Γ = {x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0

x1 = 0 ∨ · · · ∨ xn = 0 | n ≥ 0}.
How to solve: force local consistency.
How to find a solution: set xi := 0 and force consistency again.
{0} is a strong subset.
▶ 2-SAT: Γ = {R | R ⊆ {0,1}2}

How to solve: force local consistency.
How to find a solution: set xi := 0 or xi := 1 and force consistency again.
Both {0} and {1} are strong subsets.
▶ System of linear equations: Γ = {a1x1 + · · ·+ anxn = a0 | a0, . . . , an ∈ {0, 1}}.

How to find a solution: Gaussian elimination.

B ⊆ Di is called strong if reducing xi ∈ B does not kill all the solution
for any consistent enough instance of CSP.

Polynomial algorithm

instance Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

AA

D1

D1

D1
D1

x1

AA

D2

D2

D2

x2

AA

D3

D3
D3

D3
D3

x3

AA
D4

D4
D4
D4

x4

AA

D5

D5
D5
D5
D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

Polynomial algorithm

instance

Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

AA

D1

D1

D1
D1

x1

AA

D2

D2

D2

x2

AA

D3

D3
D3

D3
D3

x3

AA
D4

D4
D4
D4

x4

AA

D5

D5
D5
D5
D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

Polynomial algorithm

instance

Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

A

A

D1

D1

D1
D1

x1

A

A

D2

D2

D2

x2

A

A

D3

D3
D3

D3
D3

x3

A

A
D4

D4
D4
D4

x4

A

A

D5

D5
D5
D5
D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

Polynomial algorithm

instance Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

A

A

D1

D1

D1
D1

x1

A

A

D2

D2

D2

x2

A

A

D3

D3
D3

D3
D3

x3

A

A
D4

D4
D4
D4

x4

A

A

D5

D5
D5
D5
D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

Polynomial algorithm

instance Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

A

A

D1

D1

D1
D1

x1

A

A

D2

D2

D2

x2

A

A

D3

D3

D3

D3
D3

x3

A

A
D4

D4
D4
D4

x4

A

A

D5

D5

D5
D5
D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

Polynomial algorithm

instance Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

A

A

D1

D1

D1

D1

x1

A

A

D2

D2

D2

x2

A

A

D3

D3

D3

D3
D3

x3

A

A

D4

D4

D4
D4

x4

A

A

D5

D5

D5

D5
D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

Polynomial algorithm

instance Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

A

A

D1

D1

D1

D1

x1

A

A

D2

D2

D2

x2

A

A

D3

D3

D3

D3
D3

x3

A

A

D4

D4

D4

D4

x4

A

A

D5

D5

D5

D5
D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

Polynomial algorithm

instance Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

A

A

D1

D1

D1

D1

x1

A

A

D2

D2

D2

x2

A

A

D3

D3

D3

D3
D3

x3

A

A

D4

D4

D4

D4

x4

A

A

D5

D5

D5

D5
D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

Polynomial algorithm

instance Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

A

A

D1

D1

D1

D1

x1

A

A

D2

D2

D2

x2

A

A

D3

D3

D3

D3
D3

x3

A

A

D4

D4

D4

D4

x4

A

A

D5

D5

D5

D5
D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

Polynomial algorithm

instance Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

A

A

D1

D1

D1

D1

x1

A

A

D2

D2

D2

x2

A

A

D3

D3
D3

D3

D3

x3

A

A

D4

D4

D4

D4

x4

A

A

D5

D5

D5

D5
D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

Polynomial algorithm

instance Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

A

A

D1

D1

D1

D1

x1

A

A

D2

D2

D2

x2

A

A

D3

D3
D3

D3

D3

x3

A

A

D4

D4
D4

D4

x4

A

A

D5

D5
D5

D5

D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

Polynomial algorithm

instance Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

A

A

D1

D1

D1
D1

x1

A

A

D2

D2

D2

x2

A

A

D3

D3
D3

D3

D3

x3

A

A

D4

D4
D4

D4

x4

A

A

D5

D5
D5
D5

D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

Polynomial algorithm

instance Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

A

A

D1

D1

D1
D1

x1

A

A

D2

D2

D2

x2

A

A

D3

D3
D3

D3
D3

x3

A

A

D4

D4
D4

D4

x4

A

A

D5

D5
D5
D5
D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

Polynomial algorithm

instance Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

A

A

D1

D1

D1
D1

x1

A

A

D2

D2

D2

x2

A

A

D3

D3
D3

D3
D3

x3

A

A

D4

D4
D4

D4

x4

A

A

D5

D5
D5
D5
D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

Polynomial algorithm

instance Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

A

A

D1

D1

D1
D1

x1

A

A

D2

D2

D2

x2

A

A

D3

D3
D3

D3
D3

x3

A

A

D4

D4
D4

D4

x4

A

A

D5

D5
D5
D5
D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

Polynomial algorithm

instance Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

A

A

D1

D1

D1
D1

x1

A

A

D2

D2

D2

x2

A

A

D3

D3
D3

D3
D3

x3

A

A

D4

D4
D4

D4

x4

A

A

D5

D5
D5
D5
D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

Polynomial algorithm

instance Check
Consistency

Look for a
strong subset

if
consistent

Reduce domains

Reduce a domain

A

A

D1

D1

D1
D1

x1

A

A

D2

D2

D2

x2

A

A

D3

D3
D3

D3
D3

x3

A

A

D4

D4
D4

D4

x4

A

A

D5

D5
D5
D5
D5

x5

Upgraded Gaussian
Elimination

No strong
subsets

For every i with |Di | > 1 there exists an equivalence relation σi
on Di such that the instance modulo them is a system of linear
equations in a field.

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat
+

+

+
Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat
+

+

+
Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat
+

+

+
Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed

NP-complete

Horn-Sat

2-Sat
+

+

+
Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat
+

+

+
Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat
+

+

+
Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat
+

+

+
Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat

+

+

+
Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat
+

+

+

Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat
+

+

+

Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat
+

+

+

Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat
+

+

+
Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

Quantified Valued Promise Counting Approxim.

CSP

CSP CSP CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domain)

Full classification

Quantified Valued Promise Counting Approxim.

CSP

CSP CSP CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domain)

Full classification

Quantified Valued Promise Counting Approxim.

CSP

CSP CSP CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domain)

Full classification

Quantified Valued Promise Counting Approxim.

CSP

CSP CSP CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domain)

Full classification

Infinite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y}) is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

Infinite Domain CSP

Γ is a set of relations on Q.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y}) is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

Infinite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y}) is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

PNP

PNP

Undecidable

Р

i

Undecidable

Р

i

Undecidable

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y})

is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y})

is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y})

is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y})

is in P.

CSP instances:

x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y})

is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3,

has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y})

is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution

x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y})

is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1,

has no solutions
The instance has a solution IFF there is no oriented cycle.

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y})

is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions

The instance has a solution IFF there is no oriented cycle.

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y})

is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y}) is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classification for temporal constraint languages [Bodirsky, Kára, 2008]

A full classification of the complexity for constraint languages
admitting a first-order definition in(Q;<) (P vs NP-complete).

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x})

is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classification for temporal constraint languages [Bodirsky, Kára, 2008]

A full classification of the complexity for constraint languages
admitting a first-order definition in(Q;<) (P vs NP-complete).

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classification for temporal constraint languages [Bodirsky, Kára, 2008]

A full classification of the complexity for constraint languages
admitting a first-order definition in(Q;<) (P vs NP-complete).

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x})

is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classification for temporal constraint languages [Bodirsky, Kára, 2008]

A full classification of the complexity for constraint languages
admitting a first-order definition in(Q;<) (P vs NP-complete).

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classification for temporal constraint languages [Bodirsky, Kára, 2008]

A full classification of the complexity for constraint languages
admitting a first-order definition in(Q;<) (P vs NP-complete).

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y})

is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classification for temporal constraint languages [Bodirsky, Kára, 2008]

A full classification of the complexity for constraint languages
admitting a first-order definition in(Q;<) (P vs NP-complete).

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classification for temporal constraint languages [Bodirsky, Kára, 2008]

A full classification of the complexity for constraint languages
admitting a first-order definition in(Q;<) (P vs NP-complete).

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1})

is NP-complete.

Classification for temporal constraint languages [Bodirsky, Kára, 2008]

A full classification of the complexity for constraint languages
admitting a first-order definition in(Q;<) (P vs NP-complete).

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classification for temporal constraint languages [Bodirsky, Kára, 2008]

A full classification of the complexity for constraint languages
admitting a first-order definition in(Q;<) (P vs NP-complete).

Infinite Domain CSP
Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satisfiable.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classification for temporal constraint languages [Bodirsky, Kára, 2008]

A full classification of the complexity for constraint languages
admitting a first-order definition in(Q;<) (P vs NP-complete).

Quantified Valued Promise Counting Approxim.

CSP

CSP CSP CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domain)

Full classification

Quantified Valued Promise Counting Approxim.

CSP

CSP CSP CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domain)

Full classification

Quantified

Valued Promise Counting Approxim.

CSP CSP

CSP CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domain)

Full classification

Quantified Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

CSP(Γ)

Given: a sentence

∃x1 . . . ∃xn R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Quantified Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question
What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}.

QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question
What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2),

true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question
What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question
What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y),

false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question
What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question
What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2),

true

Question
What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question
What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question
What is the complexity of QCSP(Γ) for different Γ?

20

O

PSPACE

Ksp
PSPACE

QCSP Complexity Classes

▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a finite field then QCSP(Γ) is
in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0,1}. Then

▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU
operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P PSPACE

QCSP Complexity Classes
▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a finite field then QCSP(Γ) is
in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0,1}. Then

▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU
operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P

PSPACE

QCSP Complexity Classes
▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a finite field then QCSP(Γ) is
in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0,1}. Then

▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU
operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P PSPACE

QCSP Complexity Classes
▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a finite field then QCSP(Γ) is
in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0,1}. Then

▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU
operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P PSPACE

QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2

QCSP Complexity Classes
▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is

equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2

QCSP Complexity Classes
▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is

equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP
PSPACE

coNP

DP

ΘP
2

QCSP Complexity Classes
▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is

equivalent to CSP(Γ).
▶ there exists Γ on a 3-element domain such that QCSP(Γ) is

coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP
PSPACE

coNP

DP

ΘP
2

QCSP Complexity Classes
▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is

equivalent to CSP(Γ).
▶ there exists Γ on a 3-element domain such that QCSP(Γ) is

coNP-complete.
▶ there exists Γ on a 4-element domain such that QCSP(Γ) is

DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP
PSPACE

coNP

DP

ΘP
2

QCSP Complexity Classes
▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is

equivalent to CSP(Γ).
▶ there exists Γ on a 3-element domain such that QCSP(Γ) is

coNP-complete.
▶ there exists Γ on a 4-element domain such that QCSP(Γ) is

DP-complete, where DP = NP ∧ coNP.
▶ there exists Γ on a 10-element domain such that

QCSP(Γ) is ΘP
2 -complete.

P

NP
PSPACE

coNP

DP

ΘP
2

QCSP Complexity Classes

Theorem [Zhuk, Martin, 2019]

Suppose Γ is a constraint language on {0,1,2} containing
{x = a | a ∈ {0,1,2}}. Then QCSP(Γ) is
▶ in P, or
▶ NP-complete, or
▶ coNP-complete, or
▶ PSPACE-complete.

P

NP
PSPACE

coNP

DP

ΘP
2

QCSP Complexity Classes

Theorem [Zhuk, Martin, 2019]

Suppose Γ is a constraint language on {0,1,2} containing
{x = a | a ∈ {0,1,2}}. Then QCSP(Γ) is
▶ in P, or
▶ NP-complete, or
▶ coNP-complete, or
▶ PSPACE-complete.

P

NP
PSPACE

coNP

DP

ΘP
2

QCSP Complexity Classes

Theorem [Zhuk, 2024]

QCSP(Γ)
▶ is either PSpace-complete,
▶ or in ΠP

2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma [Zhuk, 2024]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

QCSP Complexity Classes

Theorem [Zhuk, 2024]

QCSP(Γ)
▶ is either PSpace-complete,
▶ or in ΠP

2 .

P

NP

coNP

DP

ΘP
2

ΠP
2

PSPACE

Lemma [Zhuk, 2024]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

QCSP Complexity Classes

Theorem [Zhuk, 2024]

QCSP(Γ)
▶ is either PSpace-complete,
▶ or in ΠP

2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma [Zhuk, 2024]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

QCSP Complexity Classes

Theorem [Zhuk, 2024]

QCSP(Γ)
▶ is either PSpace-complete,
▶ or in ΠP

2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma [Zhuk, 2024]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

QCSP Complexity Classes

Theorem [Zhuk, 2024]

QCSP(Γ)
▶ is either PSpace-complete,
▶ or in ΠP

2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma [Zhuk, 2024]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

QCSP Complexity Classes

Theorem [Zhuk, 2024]

QCSP(Γ)
▶ is either PSpace-complete,
▶ or in ΠP

2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma [Zhuk, 2024]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

QCSP Complexity Classes

Theorem [Zhuk, 2024]

QCSP(Γ)
▶ is either PSpace-complete,
▶ or in ΠP

2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma [Zhuk, 2024]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

QCSP Complexity Classes

Theorem [Zhuk, 2024]

QCSP(Γ)
▶ is either PSpace-complete,
▶ or in ΠP

2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma [Zhuk, 2024]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

QCSP Complexity Classes

Theorem [Zhuk, 2024]

QCSP(Γ)
▶ is either PSpace-complete,
▶ or in ΠP

2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma [Zhuk, 2024]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

Quantified

Valued Promise Counting Approxim.

CSP CSP

CSP CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domain)

Full classification

Quantified

Valued Promise Counting Approxim.

CSP CSP

CSP CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified

Valued Promise Counting Approxim.

CSP CSP

CSP CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Infinite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

Infinite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

Infinite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

Infinite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

Infinite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

Infinite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:

∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

Infinite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4),

True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

Infinite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True

∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

Infinite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4),

False

Infinite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

Infinite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y}) is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

Infinite Domain QCSP
Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y}) is in P.

2. QCSP({x = y ∨ y = z}) is NP-complete.

3. QCSP({x = y → z = t}) is PSPACE-complete [Bodirsky, Chen, 2010].

4. QCSP({x = y → y = z}) is PSPACE-complete [Zhuk, Martin, 2021].

Classification for equality constraints
[Bodirsky, Chen, 2010 + Zhuk, Martin, 2021]

A full classification of the complexity for constraint languages whose
relations are boolean combinations of equalities. (P, NP-complete,
PSPACE-complete)

What is the complexity of QCSP({x < y ∨ y < z})?

Infinite Domain QCSP
Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y}) is in P.

2. QCSP({x = y ∨ y = z}) is NP-complete.

3. QCSP({x = y → z = t}) is PSPACE-complete [Bodirsky, Chen, 2010].

4. QCSP({x = y → y = z}) is PSPACE-complete [Zhuk, Martin, 2021].

Classification for equality constraints
[Bodirsky, Chen, 2010 + Zhuk, Martin, 2021]

A full classification of the complexity for constraint languages whose
relations are boolean combinations of equalities. (P, NP-complete,
PSPACE-complete)

What is the complexity of QCSP({x < y ∨ y < z})?

Infinite Domain QCSP
Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y}) is in P.

2. QCSP({x = y ∨ y = z}) is NP-complete.

3. QCSP({x = y → z = t}) is PSPACE-complete [Bodirsky, Chen, 2010].

4. QCSP({x = y → y = z}) is PSPACE-complete [Zhuk, Martin, 2021].

Classification for equality constraints
[Bodirsky, Chen, 2010 + Zhuk, Martin, 2021]

A full classification of the complexity for constraint languages whose
relations are boolean combinations of equalities. (P, NP-complete,
PSPACE-complete)

What is the complexity of QCSP({x < y ∨ y < z})?

Infinite Domain QCSP
Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y}) is in P.

2. QCSP({x = y ∨ y = z}) is NP-complete.

3. QCSP({x = y → z = t}) is PSPACE-complete [Bodirsky, Chen, 2010].

4. QCSP({x = y → y = z}) is PSPACE-complete [Zhuk, Martin, 2021].

Classification for equality constraints
[Bodirsky, Chen, 2010 + Zhuk, Martin, 2021]

A full classification of the complexity for constraint languages whose
relations are boolean combinations of equalities. (P, NP-complete,
PSPACE-complete)

What is the complexity of QCSP({x < y ∨ y < z})?

Infinite Domain QCSP
Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y}) is in P.

2. QCSP({x = y ∨ y = z}) is NP-complete.

3. QCSP({x = y → z = t}) is PSPACE-complete [Bodirsky, Chen, 2010].

4. QCSP({x = y → y = z}) is PSPACE-complete [Zhuk, Martin, 2021].

Classification for equality constraints
[Bodirsky, Chen, 2010 + Zhuk, Martin, 2021]

A full classification of the complexity for constraint languages whose
relations are boolean combinations of equalities. (P, NP-complete,
PSPACE-complete)

What is the complexity of QCSP({x < y ∨ y < z})?

Infinite Domain QCSP
Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y}) is in P.

2. QCSP({x = y ∨ y = z}) is NP-complete.

3. QCSP({x = y → z = t}) is PSPACE-complete [Bodirsky, Chen, 2010].

4. QCSP({x = y → y = z}) is PSPACE-complete [Zhuk, Martin, 2021].

Classification for equality constraints
[Bodirsky, Chen, 2010 + Zhuk, Martin, 2021]

A full classification of the complexity for constraint languages whose
relations are boolean combinations of equalities. (P, NP-complete,
PSPACE-complete)

What is the complexity of QCSP({x < y ∨ y < z})?

Quantified

Valued Promise Counting Approxim.

CSP CSP

CSP CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified

Valued Promise Counting Approxim.

CSP CSP

CSP CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued

Promise Counting Approxim.

CSP CSP CSP

CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a finite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . .) + f2(. . .) + · · ·+ fs(. . .),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . .) + f2(. . .) + · · ·+ fs(. . .) < T is satisfiable.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})
▶ VCSP({f}) is equivalent to MAX-CUT problem.
▶ VCSP({f}) is NP-complete.

Complexity classification
[Kolmogorov, Krokhin, Roĺinek, 2015+Bulatov, Zhuk, 2017]

A full classification of the complexity for any finite set of cost
functions Γ (P vs NP-complete).

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a finite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . .) + f2(. . .) + · · ·+ fs(. . .),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . .) + f2(. . .) + · · ·+ fs(. . .) < T is satisfiable.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})
▶ VCSP({f}) is equivalent to MAX-CUT problem.
▶ VCSP({f}) is NP-complete.

Complexity classification
[Kolmogorov, Krokhin, Roĺinek, 2015+Bulatov, Zhuk, 2017]

A full classification of the complexity for any finite set of cost
functions Γ (P vs NP-complete).

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a finite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . .) + f2(. . .) + · · ·+ fs(. . .),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . .) + f2(. . .) + · · ·+ fs(. . .) < T is satisfiable.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})
▶ VCSP({f}) is equivalent to MAX-CUT problem.
▶ VCSP({f}) is NP-complete.

Complexity classification
[Kolmogorov, Krokhin, Roĺinek, 2015+Bulatov, Zhuk, 2017]

A full classification of the complexity for any finite set of cost
functions Γ (P vs NP-complete).

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a finite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . .) + f2(. . .) + · · ·+ fs(. . .),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . .) + f2(. . .) + · · ·+ fs(. . .) < T is satisfiable.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})
▶ VCSP({f}) is equivalent to MAX-CUT problem.
▶ VCSP({f}) is NP-complete.

Complexity classification
[Kolmogorov, Krokhin, Roĺinek, 2015+Bulatov, Zhuk, 2017]

A full classification of the complexity for any finite set of cost
functions Γ (P vs NP-complete).

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a finite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . .) + f2(. . .) + · · ·+ fs(. . .),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . .) + f2(. . .) + · · ·+ fs(. . .) < T is satisfiable.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})

▶ VCSP({f}) is equivalent to MAX-CUT problem.
▶ VCSP({f}) is NP-complete.

Complexity classification
[Kolmogorov, Krokhin, Roĺinek, 2015+Bulatov, Zhuk, 2017]

A full classification of the complexity for any finite set of cost
functions Γ (P vs NP-complete).

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a finite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . .) + f2(. . .) + · · ·+ fs(. . .),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . .) + f2(. . .) + · · ·+ fs(. . .) < T is satisfiable.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})
▶ VCSP({f}) is equivalent to MAX-CUT problem.

▶ VCSP({f}) is NP-complete.

Complexity classification
[Kolmogorov, Krokhin, Roĺinek, 2015+Bulatov, Zhuk, 2017]

A full classification of the complexity for any finite set of cost
functions Γ (P vs NP-complete).

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a finite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . .) + f2(. . .) + · · ·+ fs(. . .),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . .) + f2(. . .) + · · ·+ fs(. . .) < T is satisfiable.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})
▶ VCSP({f}) is equivalent to MAX-CUT problem.
▶ VCSP({f}) is NP-complete.

Complexity classification
[Kolmogorov, Krokhin, Roĺinek, 2015+Bulatov, Zhuk, 2017]

A full classification of the complexity for any finite set of cost
functions Γ (P vs NP-complete).

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a finite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . .) + f2(. . .) + · · ·+ fs(. . .),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . .) + f2(. . .) + · · ·+ fs(. . .) < T is satisfiable.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})
▶ VCSP({f}) is equivalent to MAX-CUT problem.
▶ VCSP({f}) is NP-complete.

Complexity classification
[Kolmogorov, Krokhin, Roĺinek, 2015+Bulatov, Zhuk, 2017]

A full classification of the complexity for any finite set of cost
functions Γ (P vs NP-complete).

Quantified Valued

Promise Counting Approxim.

CSP CSP CSP

CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued

Promise Counting Approxim.

CSP CSP CSP

CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise

Counting Approxim.

CSP CSP CSP CSP

CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Promise Constraint Satisfaction Problem
There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satisfied

▶ Weak version is not satisfied

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})

is in P (promise helps).

Theorem [Ficak, Kozik, Olsák, Stankiewicz, 2019])

A classification of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.

Promise Constraint Satisfaction Problem
There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satisfied

▶ Weak version is not satisfied

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})

is in P (promise helps).

Theorem [Ficak, Kozik, Olsák, Stankiewicz, 2019])

A classification of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.

Promise Constraint Satisfaction Problem
There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satisfied

▶ Weak version is not satisfied

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})

is in P (promise helps).

Theorem [Ficak, Kozik, Olsák, Stankiewicz, 2019])

A classification of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.

Promise Constraint Satisfaction Problem
There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satisfied

▶ Weak version is not satisfied

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})

is in P (promise helps).

Theorem [Ficak, Kozik, Olsák, Stankiewicz, 2019])

A classification of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.

Promise Constraint Satisfaction Problem
There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satisfied

▶ Weak version is not satisfied

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}

▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})
is in P (promise helps).

Theorem [Ficak, Kozik, Olsák, Stankiewicz, 2019])

A classification of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.

Promise Constraint Satisfaction Problem
There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satisfied

▶ Weak version is not satisfied

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})

is in P

(promise helps).

Theorem [Ficak, Kozik, Olsák, Stankiewicz, 2019])

A classification of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.

Promise Constraint Satisfaction Problem
There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satisfied

▶ Weak version is not satisfied

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})

is in P (promise helps).

Theorem [Ficak, Kozik, Olsák, Stankiewicz, 2019])

A classification of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.

Promise Constraint Satisfaction Problem
There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satisfied

▶ Weak version is not satisfied

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})

is in P (promise helps).

Theorem [Ficak, Kozik, Olsák, Stankiewicz, 2019])

A classification of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.

Promise Constraint Satisfaction Problem
There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satisfied

▶ Weak version is not satisfied

Example 2 ((K , L)-colorability)

Given a graph G. Distinguish between two cases
▶ the graph is K -colorable;
▶ the graph is not even L-colorable;

Open questions

▶ What is the complexity of (3,6)-colorability?

▶ What is the complexity of (3,1000000000)-colorability?

Promise Constraint Satisfaction Problem
There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satisfied

▶ Weak version is not satisfied

Example 2 ((K , L)-colorability)

Given a graph G.

Distinguish between two cases
▶ the graph is K -colorable;
▶ the graph is not even L-colorable;

Open questions

▶ What is the complexity of (3,6)-colorability?

▶ What is the complexity of (3,1000000000)-colorability?

Promise Constraint Satisfaction Problem
There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satisfied

▶ Weak version is not satisfied

Example 2 ((K , L)-colorability)

Given a graph G. Distinguish between two cases
▶ the graph is K -colorable;
▶ the graph is not even L-colorable;

Open questions

▶ What is the complexity of (3,6)-colorability?

▶ What is the complexity of (3,1000000000)-colorability?

Promise Constraint Satisfaction Problem
There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satisfied

▶ Weak version is not satisfied

Example 2 ((K , L)-colorability)

Given a graph G. Distinguish between two cases
▶ the graph is K -colorable;
▶ the graph is not even L-colorable;

Open questions

▶ What is the complexity of (3,6)-colorability?

▶ What is the complexity of (3,1000000000)-colorability?

Promise Constraint Satisfaction Problem
There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satisfied

▶ Weak version is not satisfied

Example 2 ((K , L)-colorability)

Given a graph G. Distinguish between two cases
▶ the graph is K -colorable;
▶ the graph is not even L-colorable;

Open questions

▶ What is the complexity of (3,6)-colorability?

▶ What is the complexity of (3,1000000000)-colorability?

Quantified Valued Promise

Counting Approxim.

CSP CSP CSP CSP

CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise

Counting Approxim.

CSP CSP CSP CSP

CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Counting Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

Counting-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Find the number of solutions.

Theorem [Bulatov, 2008]
A classification of the complexity of Counting-CSP(Γ) for every Γ.

Counting Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

Counting-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Find the number of solutions.

Theorem [Bulatov, 2008]
A classification of the complexity of Counting-CSP(Γ) for every Γ.

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global

balanced

Constraint

cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global

balanced

Constraint

cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example
A = {0,1,2}, Γ = {x ≤ y}. Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4, x1 = 0, x2 = 1, x3 = x4 = 2.
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, No surjective solutions

Question
What is the complexity of the SCSP(Γ)?

Surjective Constraint Satisfaction Problem
Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example
A = {0,1,2}, Γ = {x ≤ y}. Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4, x1 = 0, x2 = 1, x3 = x4 = 2.
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, No surjective solutions

Question
What is the complexity of the SCSP(Γ)?

Surjective Constraint Satisfaction Problem
Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example
A = {0,1,2}, Γ = {x ≤ y}.

Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4, x1 = 0, x2 = 1, x3 = x4 = 2.
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, No surjective solutions

Question
What is the complexity of the SCSP(Γ)?

Surjective Constraint Satisfaction Problem
Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example
A = {0,1,2}, Γ = {x ≤ y}. Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4,

x1 = 0, x2 = 1, x3 = x4 = 2.
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, No surjective solutions

Question
What is the complexity of the SCSP(Γ)?

Surjective Constraint Satisfaction Problem
Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example
A = {0,1,2}, Γ = {x ≤ y}. Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4, x1 = 0, x2 = 1, x3 = x4 = 2.

x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, No surjective solutions

Question
What is the complexity of the SCSP(Γ)?

Surjective Constraint Satisfaction Problem
Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example
A = {0,1,2}, Γ = {x ≤ y}. Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4, x1 = 0, x2 = 1, x3 = x4 = 2.
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1,

No surjective solutions

Question
What is the complexity of the SCSP(Γ)?

Surjective Constraint Satisfaction Problem
Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example
A = {0,1,2}, Γ = {x ≤ y}. Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4, x1 = 0, x2 = 1, x3 = x4 = 2.
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, No surjective solutions

Question
What is the complexity of the SCSP(Γ)?

Surjective Constraint Satisfaction Problem
Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example
A = {0,1,2}, Γ = {x ≤ y}. Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4, x1 = 0, x2 = 1, x3 = x4 = 2.
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, No surjective solutions

Question
What is the complexity of the SCSP(Γ)?

Surjective Graph Homomorphism Problem

Let H be a finite graph.

SurjHom(H):
Given: a graph G.
Decide: whether there exists a surjective homomorphism from G to H.

Graph G Graph H

x1

x2

x3

x4

x6

x5 0

1 2

SurjHom(H) is equivalent to SCSP({x + y ̸= 0 mod 3}).

Surjective Graph Homomorphism Problem

Let H be a finite graph.

SurjHom(H):
Given: a graph G.
Decide: whether there exists a surjective homomorphism from G to H.

Graph G Graph H

x1

x2

x3

x4

x6

x5 0

1 2

SurjHom(H) is equivalent to SCSP({x + y ̸= 0 mod 3}).

Surjective Graph Homomorphism Problem

Let H be a finite graph.

SurjHom(H):
Given: a graph G.
Decide: whether there exists a surjective homomorphism from G to H.

Graph G Graph H

x1

x2

x3

x4

x6

x5 0

1 2

SurjHom(H) is equivalent to SCSP({x + y ̸= 0 mod 3}).

Surjective Graph Homomorphism Problem

Let H be a finite graph.

SurjHom(H):
Given: a graph G.
Decide: whether there exists a surjective homomorphism from G to H.

Graph G Graph H

x1

x2

x3

x4

x6

x5 0

1 2

SurjHom(H) is equivalent to SCSP({x + y ̸= 0 mod 3}).

Surjective Graph Homomorphism Problem

Let H be a finite graph.

SurjHom(H):
Given: a graph G.
Decide: whether there exists a surjective homomorphism from G to H.

Graph G Graph H

x1

x2

x3

x4

x6

x5 0

1 2

SurjHom(H) is equivalent to SCSP({x + y ̸= 0 mod 3}).

History

▶ The complexity of SCSP(Γ) was described for every Γ on a
two-element domain [Creignou, N., and Hébrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ The complexity of SurjHom(H) was described for partially
reflexive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]
▶ SurjHom(C6) is NP-complete [Vikas, 2017]
▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]

SCSP({(a,b, c) : |{a,b, c}| < 3}).
▶ The complexity cannot be described in terms of

polymorphisms [Zhuk, 2020]
▶ SurjHom(Cref

n) is NP-complete for n ≥ 7 [Korchagin, 2023]
Cn and Cref

n are non-reflexive and reflexive cycles with n vertices.

History

▶ The complexity of SCSP(Γ) was described for every Γ on a
two-element domain [Creignou, N., and Hébrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ The complexity of SurjHom(H) was described for partially
reflexive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]
▶ SurjHom(C6) is NP-complete [Vikas, 2017]
▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]

SCSP({(a,b, c) : |{a,b, c}| < 3}).
▶ The complexity cannot be described in terms of

polymorphisms [Zhuk, 2020]
▶ SurjHom(Cref

n) is NP-complete for n ≥ 7 [Korchagin, 2023]
Cn and Cref

n are non-reflexive and reflexive cycles with n vertices.

History

▶ The complexity of SCSP(Γ) was described for every Γ on a
two-element domain [Creignou, N., and Hébrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ The complexity of SurjHom(H) was described for partially
reflexive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]
▶ SurjHom(C6) is NP-complete [Vikas, 2017]
▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]

SCSP({(a,b, c) : |{a,b, c}| < 3}).
▶ The complexity cannot be described in terms of

polymorphisms [Zhuk, 2020]
▶ SurjHom(Cref

n) is NP-complete for n ≥ 7 [Korchagin, 2023]

Cn and Cref
n are non-reflexive and reflexive cycles with n vertices.

History

▶ The complexity of SCSP(Γ) was described for every Γ on a
two-element domain [Creignou, N., and Hébrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ The complexity of SurjHom(H) was described for partially
reflexive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]
▶ SurjHom(C6) is NP-complete [Vikas, 2017]
▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]

SCSP({(a,b, c) : |{a,b, c}| < 3}).
▶ The complexity cannot be described in terms of

polymorphisms [Zhuk, 2020]
▶ SurjHom(Cref

n) is NP-complete for n ≥ 7 [Korchagin, 2023]

Cn and Cref
n are non-reflexive and reflexive cycles with n vertices.

History

▶ The complexity of SCSP(Γ) was described for every Γ on a
two-element domain [Creignou, N., and Hébrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ The complexity of SurjHom(H) was described for partially
reflexive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]

▶ SurjHom(C6) is NP-complete [Vikas, 2017]
▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]

SCSP({(a,b, c) : |{a,b, c}| < 3}).
▶ The complexity cannot be described in terms of

polymorphisms [Zhuk, 2020]
▶ SurjHom(Cref

n) is NP-complete for n ≥ 7 [Korchagin, 2023]

Cn and Cref
n are non-reflexive and reflexive cycles with n vertices.

History

▶ The complexity of SCSP(Γ) was described for every Γ on a
two-element domain [Creignou, N., and Hébrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ The complexity of SurjHom(H) was described for partially
reflexive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]
▶ SurjHom(C6) is NP-complete [Vikas, 2017]

▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]
SCSP({(a,b, c) : |{a,b, c}| < 3}).

▶ The complexity cannot be described in terms of
polymorphisms [Zhuk, 2020]

▶ SurjHom(Cref
n) is NP-complete for n ≥ 7 [Korchagin, 2023]

Cn and Cref
n are non-reflexive and reflexive cycles with n vertices.

History

▶ The complexity of SCSP(Γ) was described for every Γ on a
two-element domain [Creignou, N., and Hébrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ The complexity of SurjHom(H) was described for partially
reflexive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]
▶ SurjHom(C6) is NP-complete [Vikas, 2017]
▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]

SCSP({(a,b, c) : |{a,b, c}| < 3}).

▶ The complexity cannot be described in terms of
polymorphisms [Zhuk, 2020]

▶ SurjHom(Cref
n) is NP-complete for n ≥ 7 [Korchagin, 2023]

Cn and Cref
n are non-reflexive and reflexive cycles with n vertices.

History

▶ The complexity of SCSP(Γ) was described for every Γ on a
two-element domain [Creignou, N., and Hébrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ The complexity of SurjHom(H) was described for partially
reflexive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]
▶ SurjHom(C6) is NP-complete [Vikas, 2017]
▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]

SCSP({(a,b, c) : |{a,b, c}| < 3}).
▶ The complexity cannot be described in terms of

polymorphisms [Zhuk, 2020]

▶ SurjHom(Cref
n) is NP-complete for n ≥ 7 [Korchagin, 2023]

Cn and Cref
n are non-reflexive and reflexive cycles with n vertices.

History

▶ The complexity of SCSP(Γ) was described for every Γ on a
two-element domain [Creignou, N., and Hébrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ The complexity of SurjHom(H) was described for partially
reflexive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]
▶ SurjHom(C6) is NP-complete [Vikas, 2017]
▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]

SCSP({(a,b, c) : |{a,b, c}| < 3}).
▶ The complexity cannot be described in terms of

polymorphisms [Zhuk, 2020]
▶ SurjHom(Cref

n) is NP-complete for n ≥ 7 [Korchagin, 2023]
Cn and Cref

n are non-reflexive and reflexive cycles with n vertices.

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global

balanced

Constraint

cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global

balanced

Constraint

cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint

cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Balanced CSP
Γ is a set of relations on a finite set A.

Balanced-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a balanced solution, i.e., a solution with
equal number of every element.

Balanced-CSP(=) on {0,1}

solvable in polynomial time

Given an instance xi1 = xj1 ∧ · · · ∧ xis = xjs . Decide whether it
has a solution with equal number of 0 and 1.

Balanced-CSP(≤) on {0,1}

NP-complete

Given an instance xi1 ≤ xj1 ∧ · · · ∧ xis ≤ xjs . Decide whether it
has a solution with equal number of 0 and 1.

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classification of the complexity of Balanced-CSP(Γ) and
Cardinality-CSP(Γ) for each Γ on {0,1}.

Balanced CSP
Γ is a set of relations on a finite set A.
Balanced-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a balanced solution, i.e., a solution with
equal number of every element.

Balanced-CSP(=) on {0,1}

solvable in polynomial time

Given an instance xi1 = xj1 ∧ · · · ∧ xis = xjs . Decide whether it
has a solution with equal number of 0 and 1.

Balanced-CSP(≤) on {0,1}

NP-complete

Given an instance xi1 ≤ xj1 ∧ · · · ∧ xis ≤ xjs . Decide whether it
has a solution with equal number of 0 and 1.

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classification of the complexity of Balanced-CSP(Γ) and
Cardinality-CSP(Γ) for each Γ on {0,1}.

Balanced CSP
Γ is a set of relations on a finite set A.
Balanced-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a balanced solution, i.e., a solution with
equal number of every element.

Balanced-CSP(=) on {0,1}

solvable in polynomial time

Given an instance xi1 = xj1 ∧ · · · ∧ xis = xjs . Decide whether it
has a solution with equal number of 0 and 1.

Balanced-CSP(≤) on {0,1}

NP-complete

Given an instance xi1 ≤ xj1 ∧ · · · ∧ xis ≤ xjs . Decide whether it
has a solution with equal number of 0 and 1.

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classification of the complexity of Balanced-CSP(Γ) and
Cardinality-CSP(Γ) for each Γ on {0,1}.

Balanced CSP
Γ is a set of relations on a finite set A.
Balanced-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a balanced solution, i.e., a solution with
equal number of every element.

Balanced-CSP(=) on {0,1}

solvable in polynomial time

Given an instance xi1 = xj1 ∧ · · · ∧ xis = xjs . Decide whether it
has a solution with equal number of 0 and 1.

Balanced-CSP(≤) on {0,1}

NP-complete

Given an instance xi1 ≤ xj1 ∧ · · · ∧ xis ≤ xjs . Decide whether it
has a solution with equal number of 0 and 1.

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classification of the complexity of Balanced-CSP(Γ) and
Cardinality-CSP(Γ) for each Γ on {0,1}.

Balanced CSP
Γ is a set of relations on a finite set A.
Balanced-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a balanced solution, i.e., a solution with
equal number of every element.

Balanced-CSP(=) on {0,1} solvable in polynomial time
Given an instance xi1 = xj1 ∧ · · · ∧ xis = xjs . Decide whether it
has a solution with equal number of 0 and 1.

Balanced-CSP(≤) on {0,1}

NP-complete

Given an instance xi1 ≤ xj1 ∧ · · · ∧ xis ≤ xjs . Decide whether it
has a solution with equal number of 0 and 1.

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classification of the complexity of Balanced-CSP(Γ) and
Cardinality-CSP(Γ) for each Γ on {0,1}.

Balanced CSP
Γ is a set of relations on a finite set A.
Balanced-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a balanced solution, i.e., a solution with
equal number of every element.

Balanced-CSP(=) on {0,1} solvable in polynomial time
Given an instance xi1 = xj1 ∧ · · · ∧ xis = xjs . Decide whether it
has a solution with equal number of 0 and 1.

Balanced-CSP(≤) on {0,1} NP-complete
Given an instance xi1 ≤ xj1 ∧ · · · ∧ xis ≤ xjs . Decide whether it
has a solution with equal number of 0 and 1.

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classification of the complexity of Balanced-CSP(Γ) and
Cardinality-CSP(Γ) for each Γ on {0,1}.

Balanced CSP
Γ is a set of relations on a finite set A.
Balanced-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a balanced solution, i.e., a solution with
equal number of every element.

Balanced-CSP(=) on {0,1} solvable in polynomial time
Given an instance xi1 = xj1 ∧ · · · ∧ xis = xjs . Decide whether it
has a solution with equal number of 0 and 1.

Balanced-CSP(≤) on {0,1} NP-complete
Given an instance xi1 ≤ xj1 ∧ · · · ∧ xis ≤ xjs . Decide whether it
has a solution with equal number of 0 and 1.

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classification of the complexity of Balanced-CSP(Γ) and
Cardinality-CSP(Γ) for each Γ on {0,1}.

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint

cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint

cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Global cardinality constraint

Γ is a set of relations on a finite set A.

Cardinality-CSP(Γ)

Given: a mapping π : A → N and a formula
R1(xi1,1 , . . . , xi1,n1

) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns
), where

R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution containing each element a ∈ A
exactly π(a) times.

Cardinality-CSP(Linear Equations in Z2)

NP-complete

Given a system of linear equations in Z2 and k ∈ N.
Decide whether there exists a solution with exactly k 1s.

Theorem [Bulatov, Marx, 2009]
A classification of the complexity of Cardinality-CSP(Γ) for each Γ.

Global cardinality constraint

Γ is a set of relations on a finite set A.

Cardinality-CSP(Γ)

Given: a mapping π : A → N and a formula
R1(xi1,1 , . . . , xi1,n1

) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns
), where

R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution containing each element a ∈ A
exactly π(a) times.

Cardinality-CSP(Linear Equations in Z2)

NP-complete

Given a system of linear equations in Z2 and k ∈ N.
Decide whether there exists a solution with exactly k 1s.

Theorem [Bulatov, Marx, 2009]
A classification of the complexity of Cardinality-CSP(Γ) for each Γ.

Global cardinality constraint

Γ is a set of relations on a finite set A.

Cardinality-CSP(Γ)

Given: a mapping π : A → N and a formula
R1(xi1,1 , . . . , xi1,n1

) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns
), where

R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution containing each element a ∈ A
exactly π(a) times.

Cardinality-CSP(Linear Equations in Z2) NP-complete
Given a system of linear equations in Z2 and k ∈ N.
Decide whether there exists a solution with exactly k 1s.

Theorem [Bulatov, Marx, 2009]
A classification of the complexity of Cardinality-CSP(Γ) for each Γ.

Global cardinality constraint

Γ is a set of relations on a finite set A.

Cardinality-CSP(Γ)

Given: a mapping π : A → N and a formula
R1(xi1,1 , . . . , xi1,n1

) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns
), where

R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution containing each element a ∈ A
exactly π(a) times.

Cardinality-CSP(Linear Equations in Z2) NP-complete
Given a system of linear equations in Z2 and k ∈ N.
Decide whether there exists a solution with exactly k 1s.

Theorem [Bulatov, Marx, 2009]
A classification of the complexity of Cardinality-CSP(Γ) for each Γ.

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Global modular constraint

ModM -CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution satisfying x1 + · · ·+ xn = 0
mod M.

▶ If Γ consists of linear equations on {0, 1} and M = 25 then
ModM -CSP(Γ) is tractable

▶ If Γ consists of linear equations on {0, 1} and M = 15 then
ModM -CSP(Γ) is not tractable

▶ If Γ consists of linear equations on {0, 1} and M = 24 then the
complexity of ModM -CSP(Γ) is not known.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 0 mod 24

Global modular constraint

ModM -CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution satisfying x1 + · · ·+ xn = 0
mod M.

▶ If Γ consists of linear equations on {0, 1} and M = 25 then
ModM -CSP(Γ) is tractable

▶ If Γ consists of linear equations on {0, 1} and M = 15 then
ModM -CSP(Γ) is not tractable

▶ If Γ consists of linear equations on {0, 1} and M = 24 then the
complexity of ModM -CSP(Γ) is not known.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 0 mod 24

Global modular constraint

ModM -CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution satisfying x1 + · · ·+ xn = 0
mod M.

▶ If Γ consists of linear equations on {0, 1} and M = 25 then
ModM -CSP(Γ) is tractable

▶ If Γ consists of linear equations on {0, 1} and M = 15 then
ModM -CSP(Γ) is not tractable

▶ If Γ consists of linear equations on {0, 1} and M = 24 then the
complexity of ModM -CSP(Γ) is not known.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 0 mod 24

Global modular constraint

ModM -CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution satisfying x1 + · · ·+ xn = 0
mod M.

▶ If Γ consists of linear equations on {0, 1} and M = 25 then
ModM -CSP(Γ) is tractable

▶ If Γ consists of linear equations on {0, 1} and M = 15 then
ModM -CSP(Γ) is not tractable

▶ If Γ consists of linear equations on {0, 1} and M = 24 then the
complexity of ModM -CSP(Γ) is not known.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 0 mod 24

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural

edge

Restriction

planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction

planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Edge Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

Edge-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ and every variable appears exactly twice.
Decide: whether it has a solution.

R1

R2

R3

R4

R5

R6
x1 x2

x3

x4

x5

x6

x7

x1

x5

x7

▶ Edge-CSP({1IN2, 1IN3, 1IN4, . . . }) is equivalent to the
Perfect Matching Problem.

Theorem [Kazda, Kolmogorov, Rolinek, 2018]

A classification of the complexity for planar Edge-CSP(Γ) for
every Γ on {0,1}.

Edge Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

Edge-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ and every variable appears exactly twice.
Decide: whether it has a solution.

R1

R2

R3

R4

R5

R6
x1 x2

x3

x4

x5

x6

x7

x1

x5

x7

▶ Edge-CSP({1IN2, 1IN3, 1IN4, . . . }) is equivalent to the
Perfect Matching Problem.

Theorem [Kazda, Kolmogorov, Rolinek, 2018]

A classification of the complexity for planar Edge-CSP(Γ) for
every Γ on {0,1}.

Edge Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

Edge-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ and every variable appears exactly twice.
Decide: whether it has a solution.

R1

R2

R3

R4

R5

R6
x1 x2

x3

x4

x5

x6

x7

x1

x5

x7

▶ Edge-CSP({1IN2, 1IN3, 1IN4, . . . }) is equivalent to the
Perfect Matching Problem.

Theorem [Kazda, Kolmogorov, Rolinek, 2018]

A classification of the complexity for planar Edge-CSP(Γ) for
every Γ on {0,1}.

Edge Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

Edge-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ and every variable appears exactly twice.
Decide: whether it has a solution.

R1

R2

R3

R4

R5

R6
x1 x2

x3

x4

x5

x6

x7

x1

x5

x7

▶ Edge-CSP({1IN2, 1IN3, 1IN4, . . . }) is equivalent to the
Perfect Matching Problem.

Theorem [Kazda, Kolmogorov, Rolinek, 2018]

A classification of the complexity for planar Edge-CSP(Γ) for
every Γ on {0,1}.

Edge Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

Edge-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ and every variable appears exactly twice.
Decide: whether it has a solution.

R1

R2

R3

R4

R5

R6
x1 x2

x3

x4

x5

x6

x7

x1

x5

x7

▶ Edge-CSP({1IN2, 1IN3, 1IN4, . . . }) is equivalent to the
Perfect Matching Problem.

Theorem [Kazda, Kolmogorov, Rolinek, 2018]

A classification of the complexity for planar Edge-CSP(Γ) for
every Γ on {0,1}.

Edge Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

Edge-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ and every variable appears exactly twice.
Decide: whether it has a solution.

R1

R2

R3

R4

R5

R6
x1 x2

x3

x4

x5

x6

x7

x1

x5

x7

▶ Edge-CSP({1IN2, 1IN3, 1IN4, . . . }) is equivalent to the
Perfect Matching Problem.

Theorem [Kazda, Kolmogorov, Rolinek, 2018]

A classification of the complexity for planar Edge-CSP(Γ) for
every Γ on {0,1}.

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction

planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction

planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting

Approxim.

CSP CSP CSP CSP CSP

CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction

planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting Approxim.CSP CSP CSP CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

Quantified Valued Promise Counting Approxim.CSP CSP CSP CSP CSP CSP

Domain finite
infinite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge
Restriction planar

Some results

Some classifications

Classification for 2-element domain

Partial classification (for larger domains)

Full classification

	Example
	What is CSP?
	Formal definition
	Three methods
	Linear case
	Infinite domain CSP
	Quantified CSP
	Missing Monster
	Infinite domain QCSP
	Valued Constraint Satisfaction Problem
	Promise Constraint Satisfaction Problem
	Counting CSP
	Surjective CSP
	Other Global Constraints
	Edge CSP

