Classification Transfer for Constraint Satisfaction Problems

```
Žaneta Semanišinová
with Manuel Bodirsky, Peter Jonsson, Barnaby Martin, Antoine Mottet
Institute of Algebra
    TU Dresden
Women in Logic, 9 July 2024
```



```
                        erc
European Research Council
ERC Synergy Grant POCOCOP (GA 101071674)
```


Constraint Satisfaction Problems

(relational) structure $\mathfrak{B}=\left(B ; R^{\mathfrak{B}}: R \in \tau\right)$; finite signature τ
Definition (CSP)
Constraint Satisfaction Problem for $\mathfrak{B}(\operatorname{CSP}(\mathfrak{B}))$:
Input: conjunction ϕ of atomic formulas
Question: Is ϕ satisfiable in \mathfrak{B} ?

Constraint Satisfaction Problems

(relational) structure $\mathfrak{B}=\left(B ; R^{\mathfrak{B}}: R \in \tau\right)$; finite signature τ

Definition (CSP)

Constraint Satisfaction Problem for $\mathfrak{B}(\operatorname{CSP}(\mathfrak{B}))$:
Input: conjunction ϕ of atomic formulas
Question: Is ϕ satisfiable in \mathfrak{B} ?
Example (3-SAT):
$\mathfrak{B}=\left(\{0,1\} ; R_{000}, R_{001}, R_{011}, R_{111}\right)$, where $R_{i j k}=\{0,1\}^{3} \backslash\{(i, j, k)\}$
Rewrite input $\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots$ as

$$
R_{001}\left(x_{1}, x_{3}, x_{2}\right) \wedge R_{011}\left(x_{4}, x_{3}, x_{2}\right) \wedge \ldots
$$

$\operatorname{CSP}(\mathfrak{B})$ is the same problem as 3-SAT.

Constraint Satisfaction Problems

(relational) structure $\mathfrak{B}=\left(B ; R^{\mathfrak{B}}: R \in \tau\right)$; finite signature τ

Definition (CSP)

Constraint Satisfaction Problem for $\mathfrak{B}(\operatorname{CSP}(\mathfrak{B}))$:
Input: conjunction ϕ of atomic formulas
Question: Is ϕ satisfiable in \mathfrak{B} ?
Example (graph acyclicity):
$\mathfrak{B}=(\mathbb{Q} ;<) \sim \operatorname{digraph}(\mathbb{Q} ; E)$
Write the edges of an input digraph G in a conjunction

$$
E\left(x_{1}, x_{2}\right) \wedge E\left(x_{3}, x_{4}\right) \ldots
$$

The formula is satisfiable in $(\mathbb{Q} ; E)$ iff G has no directed cycle.

Constraint Satisfaction Problems

(relational) structure $\mathfrak{B}=\left(B ; R^{\mathfrak{B}}: R \in \tau\right)$; finite signature τ

Definition (CSP)

Constraint Satisfaction Problem for $\mathfrak{B}(\operatorname{CSP}(\mathfrak{B}))$:
Input: conjunction ϕ of atomic formulas
Question: Is ϕ satisfiable in \mathfrak{B} ?
Example (graph acyclicity):
$\mathfrak{B}=(\mathbb{Q} ;<) \sim \operatorname{digraph}(\mathbb{Q} ; E)$
Write the edges of an input digraph G in a conjunction

$$
E\left(x_{1}, x_{2}\right) \wedge E\left(x_{3}, x_{4}\right) \ldots
$$

The formula is satisfiable in $(\mathbb{Q} ; E)$ iff G has no directed cycle.
Observation: Cannot be modelled over a finite template.

Constraint Satisfaction Problems

(relational) structure $\mathfrak{B}=\left(B ; R^{\mathfrak{B}}: R \in \tau\right)$; finite signature τ

Definition (CSP)

Constraint Satisfaction Problem for $\mathfrak{B}(\operatorname{CSP}(\mathfrak{B}))$:
Input: conjunction ϕ of atomic formulas
Question: Is ϕ satisfiable in \mathfrak{B} ?
Example (graph acyclicity):
$\mathfrak{B}=(\mathbb{Q} ;<) \sim \operatorname{digraph}(\mathbb{Q} ; E)$
Write the edges of an input digraph G in a conjunction

$$
E\left(x_{1}, x_{2}\right) \wedge E\left(x_{3}, x_{4}\right) \ldots
$$

The formula is satisfiable in $(\mathbb{Q} ; E)$ iff G has no directed cycle.
Observation: Cannot be modelled over a finite template.
Goal: Classify the complexity of $\operatorname{CSP}(\mathfrak{B})$ depending on \mathfrak{B}.

CSPs on finite domains

Conjecture (Feder, Vardi '93)
For finite $\mathfrak{B}, \operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

CSPs on finite domains

Conjecture (Feder, Vardi '93)
For finite $\mathfrak{B}, \operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

Verified for:

- 2-element structures (Schaefer '78)

CSPs on finite domains

Conjecture (Feder, Vardi '93)

For finite $\mathfrak{B}, \operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

Verified for:

- 2-element structures (Schaefer '78)
- finite undirected graphs (Hell, Nešetřil '90)

CSPs on finite domains

Conjecture (Feder, Vardi '93)

For finite $\mathfrak{B}, \operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

Verified for:

- 2-element structures (Schaefer '78)
- finite undirected graphs (Hell, Nešetřil '90)
- 3-element structures (Bulatov '08)

CSPs on finite domains

Conjecture (Feder, Vardi '93)

For finite $\mathfrak{B}, \operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

Verified for:

- 2-element structures (Schaefer '78)
- finite undirected graphs (Hell, Nešetřil '90)
- 3-element structures (Bulatov '08)
- ...

CSPs on finite domains

Conjecture (Feder, Vardi '93)

For finite $\mathfrak{B}, \operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

Verified for:

- 2-element structures (Schaefer '78)
- finite undirected graphs (Hell, Nešetřil '90)
- 3-element structures (Bulatov '08)
- all finite structures (Bulatov '17; Zhuk '17)

CSPs on infinite domains

fo-expansion - expansion by first-order definable relations fo-reduct - reduct of a fo-expansion

CSPs on infinite domains

fo-expansion - expansion by first-order definable relations fo-reduct - reduct of a fo-expansion

Conjecture (Bodirsky, Pinsker '11)

For a reduct \mathfrak{B} of a finitely bounded homogeneous structure, $\operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

CSPs on infinite domains

fo-expansion - expansion by first-order definable relations fo-reduct - reduct of a fo-expansion

Conjecture (Bodirsky, Pinsker '11)

For a reduct \mathfrak{B} of a finitely bounded homogeneous structure, $\operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

Verified for:

- fo-reducts of $(\mathbb{Q} ;<)$ (Bodirsky, Kára '10)

CSPs on infinite domains

fo-expansion - expansion by first-order definable relations fo-reduct - reduct of a fo-expansion

Conjecture (Bodirsky, Pinsker '11)

For a reduct \mathfrak{B} of a finitely bounded homogeneous structure, $\operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

Verified for:

- fo-reducts of $(\mathbb{Q} ;<)$ (Bodirsky, Kára '10)
- fo-reducts of unary ω-categorical structures (Bodirsky, Mottet '18)

CSPs on infinite domains

fo-expansion - expansion by first-order definable relations fo-reduct - reduct of a fo-expansion

Conjecture (Bodirsky, Pinsker '11)

For a reduct \mathfrak{B} of a finitely bounded homogeneous structure, $\operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

Verified for:

- fo-reducts of $(\mathbb{Q} ;<)$ (Bodirsky, Kára '10)
- fo-reducts of unary ω-categorical structures (Bodirsky, Mottet '18)
- fo-reducts of random unif. hypergraphs (Mottet, Nagy, Pinsker '24)

CSPs on infinite domains

fo-expansion - expansion by first-order definable relations fo-reduct - reduct of a fo-expansion

Conjecture (Bodirsky, Pinsker '11)

For a reduct \mathfrak{B} of a finitely bounded homogeneous structure, $\operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

Verified for:

- fo-reducts of $(\mathbb{Q} ;<)$ (Bodirsky, Kára '10)
- fo-reducts of unary ω-categorical structures (Bodirsky, Mottet '18)
- fo-reducts of random unif. hypergraphs (Mottet, Nagy, Pinsker '24)
- ... many more

CSPs on infinite domains

fo-expansion - expansion by first-order definable relations fo-reduct - reduct of a fo-expansion

Conjecture (Bodirsky, Pinsker '11)

For a reduct \mathfrak{B} of a finitely bounded homogeneous structure, $\operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

Verified for:

- fo-reducts of $(\mathbb{Q} ;<)$ (Bodirsky, Kára '10)
- fo-reducts of unary ω-categorical structures (Bodirsky, Mottet '18)
- fo-reducts of random unif. hypergraphs (Mottet, Nagy, Pinsker '24)
- ... many more
\hookrightarrow many concrete classes where it is open

Cardinal Direction Calculus

- $\mathfrak{C}=\left(\mathbb{Q}^{2} ; N, E, S, W, N E, S E, S W, N W\right)$ (North, East, etc.)

N	E	S	W	NE	SE	SW	NW
$(=,>)$	$(>,=)$	$(=,<)$	$(<,=)$	$(>,>)$	$(>,<)$	$(<,<)$	$(<,>)$

Cardinal Direction Calculus

- $\mathfrak{C}=\left(\mathbb{Q}^{2} ; N, E, S, W, N E, S E, S W, N W\right)$ (North, East, etc.)

N	E	S	W	NE	SE	SW	NW
$(=,>)$	$(>,=)$	$(=,<)$	$(<,=)$	$(>,>)$	$(>,<)$	$(<,<)$	$(<,>)$

- CDC: relations are unions of the relations above - fo-expansions of \mathfrak{C}

Cardinal Direction Calculus

- $\mathfrak{C}=\left(\mathbb{Q}^{2} ; N, E, S, W, N E, S E, S W, N W\right)$ (North, East, etc.)

N	E	S	W	NE	SE	SW	NW
$(=,>)$	$(>,=)$	$(=,<)$	$(<,=)$	$(>,>)$	$(>,<)$	$(<,<)$	$(<,>)$

- CDC: relations are unions of the relations above - fo-expansions of \mathfrak{C}
- natural generalization: $C D C_{n}$ with the domain \mathbb{Q}^{n}

Cardinal Direction Calculus

- $\mathfrak{C}=\left(\mathbb{Q}^{2} ; N, E, S, W, N E, S E, S W, N W\right)$ (North, East, etc.)

N	E	S	W	NE	SE	SW	NW
$(=,>)$	$(>,=)$	$(=,<)$	$(<,=)$	$(>,>)$	$(>,<)$	$(<,<)$	$(<,>)$

- CDC: relations are unions of the relations above - fo-expansions of \mathfrak{C}
- natural generalization: CDC_{n} with the domain \mathbb{Q}^{n}

Open problem (Balbiani, Condotta '02): complexity classification of the CSPs of reducts \mathfrak{B} of CDC_{n}

Cardinal Direction Calculus

- $\mathfrak{C}=\left(\mathbb{Q}^{2} ; N, E, S, W, N E, S E, S W, N W\right)$ (North, East, etc.)

N	E	S	W	NE	SE	SW	NW
$(=,>)$	$(>,=)$	$(=,<)$	$(<,=)$	$(>,>)$	$(>,<)$	$(<,<)$	$(<,>)$

- CDC: relations are unions of the relations above - fo-expansions of \mathfrak{C}
- natural generalization: CDC_{n} with the domain \mathbb{Q}^{n}

Open problem (Balbiani, Condotta '02): complexity classification of the CSPs of reducts \mathfrak{B} of CDC_{n}
Conjecture: $\operatorname{CSP}(\mathfrak{B})$ is in P iff all relations of \mathfrak{B} are definable by an Ord-Horn formula, i.e., a conjunction of clauses of the form

$$
\left(x_{1} \neq y_{1} \vee \cdots \vee x_{k} \neq y_{k} \vee x_{k+1} \geq y_{k+1}\right) \quad \text { (last disjunct is optional). }
$$

Allen's Interval Algebra

- $\mathbb{I}=\left\{(a, b) \in \mathbb{Q}^{2} \mid a<b\right\}$ - closed intervals

Allen's Interval Algebra

- $\mathbb{I}=\left\{(a, b) \in \mathbb{Q}^{2} \mid a<b\right\}$ - closed intervals
- 13 basic relations correspond to relative positions of intervals, e.g.:

$s(X, Y):$	XXX	$f(X, Y):$	XXX	$m(X, Y):$	XXXX
starts	YYYYYY	finishes	YYYYYY	meets	YYYY

Allen's Interval Algebra

- $\mathbb{I}=\left\{(a, b) \in \mathbb{Q}^{2} \mid a<b\right\}$ - closed intervals
- 13 basic relations correspond to relative positions of intervals, e.g.:

$s(X, Y):$	XXX	$f(X, Y):$	XXX	$m(X, Y):$	XXXX
starts	YYYYYY	finishes	YYYYYY	meets	YYYY

- all relations: unions of basic relations

Block Algebra

- domain: \mathbb{I}^{n}
- basic relations: n-tuples of Allen's basic relations
- all relations: unions of basic relations

Block Algebra

- domain: \mathbb{I}^{n}
- basic relations: n-tuples of Allen's basic relations
- all relations: unions of basic relations

Open problem (Balbiani, Condotta, del Cerro '99 $(n=2)$ and '02 $(n \geq 2)$): complexity classification of the CSPs of reducts \mathfrak{B} of the n-dim. Block Algebra

Block Algebra

- domain: \mathbb{I}^{n}
- basic relations: n-tuples of Allen's basic relations
- all relations: unions of basic relations

Open problem (Balbiani, Condotta, del Cerro '99 $(n=2)$ and '02 $(n \geq 2)$): complexity classification of the CSPs of reducts \mathfrak{B} of the n-dim. Block Algebra
Conjecture: $\operatorname{CSP}(\mathfrak{B})$ is in P iff all relations of \mathfrak{B} are definable by an Ord-Horn formula.

Algebraic products of $(\mathbb{Q} ;<)$

Consider structures $\left(\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},={ }_{n}\right)$, where

$$
\begin{aligned}
& \left(a_{1}, \ldots a_{n}\right)<_{i}\left(b_{1}, \ldots, b_{n}\right) \text { iff } a_{i}<b_{i} \text { and } \\
& \left(a_{1}, \ldots a_{n}\right)=_{i}\left(b_{1}, \ldots, b_{n}\right) \text { iff } a_{i}=b_{i} .
\end{aligned}
$$

Algebraic products of $(\mathbb{Q} ;<)$

Consider structures $\left(\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},={ }_{n}\right)$, where

$$
\begin{aligned}
& \left(a_{1}, \ldots a_{n}\right)<_{i}\left(b_{1}, \ldots, b_{n}\right) \text { iff } a_{i}<b_{i} \text { and } \\
& \left(a_{1}, \ldots a_{n}\right)=_{i}\left(b_{1}, \ldots, b_{n}\right) \text { iff } a_{i}=b_{i} .
\end{aligned}
$$

Example: $n=2$

$$
(1,3)=2(4,3) \cdot(1,3) \quad(4,3)
$$

Plan of attack

- classify the complexity of $\operatorname{CSP}(\mathfrak{D})$ where \mathfrak{D} is a fo-expansion of $\left(\mathbb{Q}^{n} ;<_{1},==_{1}, \ldots,<_{n},={ }_{n}\right)$ using the results for fo-expansions of $(\mathbb{Q} ;<)$

Plan of attack

- classify the complexity of $\operatorname{CSP}(\mathfrak{D})$ where \mathfrak{D} is a fo-expansion of $\left(\mathbb{Q}^{n} ;<_{1},=1, \ldots,<_{n},={ }_{n}\right)$ using the results for fo-expansions of $(\mathbb{Q} ;<)$
- view reducts of $C D C_{n}$ and the Block Algebra as (almost) fo-expansions of ($\left.\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},={ }_{n}\right)$

Plan of attack

- classify the complexity of $\operatorname{CSP}(\mathfrak{D})$ where \mathfrak{D} is a fo-expansion of $\left(\mathbb{Q}^{n} ;<_{1},=1, \ldots,<_{n},={ }_{n}\right)$ using the results for fo-expansions of $(\mathbb{Q} ;<)$
- view reducts of CDC_{n} and the Block Algebra as (almost) fo-expansions of ($\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},={ }_{n}$)
- transfer the complexity using a result from [Bodirsky '21]

Plan of attack

- classify the complexity of $\operatorname{CSP}(\mathfrak{D})$ where \mathfrak{D} is a fo-expansion of $\left(\mathbb{Q}^{n} ;<_{1},=1, \ldots,<_{n},={ }_{n}\right)$ using the results for fo-expansions of $(\mathbb{Q} ;<)$
- view reducts of CDC_{n} and the Block Algebra as (almost) fo-expansions of ($\left.\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},={ }_{n}\right)$
- transfer the complexity using a result from [Bodirsky '21]

Example $(C D C): \mathfrak{B}=\left(\mathbb{Q}^{2} ; N \cup S\right)$

$$
((a, b),(c, d)) \in \mathrm{N} \cup S \text { iff }(a=c \wedge b>d) \vee(a=c \wedge b<d)
$$

Plan of attack

- classify the complexity of $\operatorname{CSP}(\mathfrak{D})$ where \mathfrak{D} is a fo-expansion of $\left(\mathbb{Q}^{n} ;<_{1},=1, \ldots,<_{n},={ }_{n}\right)$ using the results for fo-expansions of $(\mathbb{Q} ;<)$
- view reducts of CDC_{n} and the Block Algebra as (almost) fo-expansions of ($\left.\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},={ }_{n}\right)$
- transfer the complexity using a result from [Bodirsky '21]

Example $(C D C): \mathfrak{B}=\left(\mathbb{Q}^{2} ; N \cup S\right)$

$$
((a, b),(c, d)) \in \mathrm{N} \cup S \text { iff }(a=c \wedge b>d) \vee(a=c \wedge b<d)
$$

Example (Interval Algebra): $\mathfrak{B}=(\mathbb{I} ; s \cup f)$

$$
\begin{gathered}
(a, b) \in \mathbb{I} \text { iff } a<b \\
((a, b),(c, d)) \in s \cup \mathrm{f} \text { iff }(a=c \wedge b<d) \vee(a>c \vee b=d)
\end{gathered}
$$

Classification

Theorem (Bodirsky, Jonsson, Martin, Mottet, S. ('24))
Let \mathfrak{D} be a fo-expansion of $\left(\mathbb{Q}^{n} ;<_{1},=1, \ldots,<_{n},==_{n}\right)$. Then $\operatorname{CSP}(\mathfrak{D})$ is in Por NP-complete.

Classification

Theorem (Bodirsky, Jonsson, Martin, Mottet, S. ('24))
Let \mathfrak{D} be a fo-expansion of $\left(\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},==_{n}\right)$. Then $\operatorname{CSP}(\mathfrak{D})$ is in P or NP-complete. If all relations of \mathfrak{D} are binary, then the cases in P correspond to all relations of \mathfrak{D} being definable by an Ord-Horn formula.

Classification

Theorem (Bodirsky, Jonsson, Martin, Mottet, S. ('24))
Let \mathfrak{D} be a fo-expansion of $\left(\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},=n_{n}\right)$. Then $\operatorname{CSP}(\mathfrak{D})$ is in P or NP-complete. If all relations of \mathfrak{D} are binary, then the cases in P correspond to all relations of \mathfrak{D} being definable by an Ord-Horn formula.

Remarks:

- there is an algebraic condition that makes the two cases mutually exclusive without assuming $P \neq N P$

Classification

Theorem (Bodirsky, Jonsson, Martin, Mottet, S. ('24))
Let \mathfrak{D} be a fo-expansion of $\left(\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},=n_{n}\right)$. Then $\operatorname{CSP}(\mathfrak{D})$ is in P or NP-complete. If all relations of \mathfrak{D} are binary, then the cases in P correspond to all relations of \mathfrak{D} being definable by an Ord-Horn formula.

Remarks:

- there is an algebraic condition that makes the two cases mutually exclusive without assuming $\mathrm{P} \neq \mathrm{NP}$
- tractability \leftrightarrow 'the CSP over \mathbb{Q} in each coordinate is tractable'

Classification

Theorem (Bodirsky, Jonsson, Martin, Mottet, S. ('24))

Let \mathfrak{D} be a fo-expansion of $\left(\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},=n_{n}\right)$. Then $\operatorname{CSP}(\mathfrak{D})$ is in
P or NP-complete.
If all relations of \mathfrak{D} are binary, then the cases in P correspond to all relations of \mathfrak{D} being definable by an Ord-Horn formula.

Remarks:

- there is an algebraic condition that makes the two cases mutually exclusive without assuming $\mathrm{P} \neq \mathrm{NP}$
- tractability \leftrightarrow 'the CSP over \mathbb{Q} in each coordinate is tractable'

Consequences:

- complexity classification for CDC_{n} and the Block Algebra
- tractable cases are definable by Ord-Horn formulas
- solves the open problems from '99 and '02

Future goals

Verify the infinite-domain CSP dichotomy conjecture for:

- more structures with a product structure, e.g. finite structures with $(\mathbb{Q} ;<)$

Future goals

Verify the infinite-domain CSP dichotomy conjecture for:

- more structures with a product structure, e.g. finite structures with ($\mathbb{Q} ;<$)
- structures fo-interpretable over $(\mathbb{Q} ;<)$

Thank you for your attention

Funding statement: Funded by the European Union (ERC, POCOCOP, 101071674).
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

