Identifying Tractable Quantified Temporal Constraints

Žaneta Semanišinová joint work with Jakub Rydval and Michał Wrona
Institute of Algebra
TU Dresden

Trends in Arithmetic Theories 6 Jul 2024

erc

European Resparch Council
ERC Synergy Grant POCOCOP (GA 101071674)

(Quantified) constraint satisfaction problem

(relational) structure $\mathfrak{B}=\left(B ; R^{\mathfrak{B}}: R \in \tau\right)$; finite signature τ primitive positive (pp) formula: $\exists y_{1}, \ldots, y_{l}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right), \psi_{i}$ atomic

(Quantified) constraint satisfaction problem

(relational) structure $\mathfrak{B}=\left(B ; R^{\mathfrak{B}}: R \in \tau\right)$; finite signature τ primitive positive (pp) formula: $\exists y_{1}, \ldots, y_{l}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right), \psi_{i}$ atomic

Definition (CSP)

Constraint Satisfaction Problem for $\mathfrak{B}(\operatorname{CSP}(\mathfrak{B}))$:
Input: pp-formula Φ over τ
Question: $\quad \mathfrak{B} \models \Phi$?

(Quantified) constraint satisfaction problem

(relational) structure $\mathfrak{B}=\left(B ; R^{\mathfrak{B}}: R \in \tau\right)$; finite signature τ primitive positive (pp) formula: $\exists y_{1}, \ldots, y_{l}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right), \psi_{i}$ atomic

Definition (CSP)

Constraint Satisfaction Problem for $\mathfrak{B}(\operatorname{CSP}(\mathfrak{B}))$:
Input: pp-formula Φ over τ
Question: $\quad \mathfrak{B} \models \Phi$?
quantified primitive positive (qpp) formula: both \forall and \exists are allowed

(Quantified) constraint satisfaction problem

(relational) structure $\mathfrak{B}=\left(B ; R^{\mathfrak{B}}: R \in \tau\right)$; finite signature τ primitive positive (pp) formula: $\exists y_{1}, \ldots, y_{l}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right), \psi_{i}$ atomic

Definition (CSP)

Constraint Satisfaction Problem for $\mathfrak{B}(\operatorname{CSP}(\mathfrak{B}))$:
Input: pp-formula Φ over τ
Question: $\quad \mathfrak{B} \models \Phi$?
quantified primitive positive (qpp) formula: both \forall and \exists are allowed

Definition (QCSP)

Quantified Constraint Satisfaction Problem for $\mathfrak{B}(\operatorname{QCSP}(\mathfrak{B}))$:
Input: qpp-formula Φ over τ
Question: $\quad \mathfrak{B} \models \Phi$?

Quantified constraint satisfaction problem

- QCSP: a game between the universal player (UP) and the existential player (EP) assigning variables x with $\llbracket x \rrbracket \in B$.

Quantified constraint satisfaction problem

- QCSP: a game between the universal player (UP) and the existential player (EP) assigning variables x with $\llbracket x \rrbracket \in B$.
- EP: trying to satisfy all constraints.
- UP: trying to violate some constraint.

Quantified constraint satisfaction problem

- QCSP: a game between the universal player (UP) and the existential player (EP) assigning variables x with $\llbracket x \rrbracket \in B$.
- EP: trying to satisfy all constraints.
- UP: trying to violate some constraint.
- The EP has a winning strategy $\leftrightarrow \mathfrak{B} \models \Phi$.
- The UP has a winning strategy $\leftrightarrow \mathfrak{B} \not \models \Phi$.

Quantified constraint satisfaction problem

- QCSP: a game between the universal player (UP) and the existential player (EP) assigning variables x with $\llbracket x \rrbracket \in B$.
- EP: trying to satisfy all constraints.
- UP: trying to violate some constraint.
- The EP has a winning strategy $\leftrightarrow \mathfrak{B} \models \Phi$.
- The UP has a winning strategy $\leftrightarrow \mathfrak{B} \not \models \Phi$.

Example: $\mathrm{D}=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow y=z\right\}$.

Quantified constraint satisfaction problem

- QCSP: a game between the universal player (UP) and the existential player (EP) assigning variables x with $\llbracket x \rrbracket \in B$.
- EP: trying to satisfy all constraints.
- UP: trying to violate some constraint.
- The EP has a winning strategy $\leftrightarrow \mathfrak{B} \models \Phi$.
- The UP has a winning strategy $\leftrightarrow \mathfrak{B} \not \models \Phi$.

Example: $\mathrm{D}=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow y=z\right\}$.

- $\operatorname{CSP}(\mathbb{Q} ; \mathrm{D})$ is trivial: $\llbracket x \rrbracket:=0$ for all x satisfies all constraints.

Quantified constraint satisfaction problem

- QCSP: a game between the universal player (UP) and the existential player (EP) assigning variables x with $\llbracket x \rrbracket \in B$.
- EP: trying to satisfy all constraints.
- UP: trying to violate some constraint.
- The EP has a winning strategy $\leftrightarrow \mathfrak{B} \models \Phi$.
- The UP has a winning strategy $\leftrightarrow \mathfrak{B} \not \models \Phi$.

Example: $\mathrm{D}=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow y=z\right\}$.

- $\operatorname{CSP}(\mathbb{Q} ; \mathrm{D})$ is trivial: $\llbracket x \rrbracket:=0$ for all x satisfies all constraints.
- $\operatorname{QCSP}(\mathbb{Q} ; \mathrm{D})$ is PSPACE-complete (Zhuk, Martin, Wrona '23).

Quantified constraint satisfaction problem

- QCSP: a game between the universal player (UP) and the existential player (EP) assigning variables x with $\llbracket x \rrbracket \in B$.
- EP: trying to satisfy all constraints.
- UP: trying to violate some constraint.
- The EP has a winning strategy $\leftrightarrow \mathfrak{B} \models \Phi$.
- The UP has a winning strategy $\leftrightarrow \mathfrak{B} \not \models \Phi$.

Example: $\mathrm{D}=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow y=z\right\}$.

- $\operatorname{CSP}(\mathbb{Q} ; \mathrm{D})$ is trivial: $\llbracket x \rrbracket:=0$ for all x satisfies all constraints.
- $\operatorname{QCSP}(\mathbb{Q} ; \mathrm{D})$ is PSPACE-complete (Zhuk, Martin, Wrona '23). Intuition:
- UP: tries to force $u=v$ for some u, v with $\llbracket u \rrbracket \neq \llbracket v \rrbracket$
- EP: obeys the constraints, does not introduce unnecessary equalities

Overview of results on (Q)CSPs

Finite domains:

- classification of CSPs (Bulatov '17; Zhuk '17)

Overview of results on (Q)CSPs

Finite domains:

- classification of CSPs (Bulatov '17; Zhuk '17)
- classification of QCSPs with all unary relations and 3-element structures with all singleton unary relations (Zhuk, Martin '22)

Overview of results on (Q)CSPs

Finite domains:

- classification of CSPs (Bulatov '17; Zhuk '17)
- classification of QCSPs with all unary relations and 3-element structures with all singleton unary relations (Zhuk, Martin '22)
Equality (Q)CSPs (relations fo-definable in $(\mathbb{Q} ;=)$):
- classification of CSPs (Bodirsky, Kára '08)

Overview of results on (Q)CSPs

Finite domains:

- classification of CSPs (Bulatov '17; Zhuk '17)
- classification of QCSPs with all unary relations and 3-element structures with all singleton unary relations (Zhuk, Martin '22)
Equality (Q)CSPs (relations fo-definable in ($\mathbb{Q} ;=)$):
- classification of CSPs (Bodirsky, Kára '08)
- partial classification of QCSPs (Bodirsky, Chen '10) - only complexity of $\operatorname{QCSP}(\mathbb{Q} ; \mathrm{D})$ missing

Overview of results on (Q)CSPs

Finite domains:

- classification of CSPs (Bulatov '17; Zhuk '17)
- classification of QCSPs with all unary relations and 3-element structures with all singleton unary relations (Zhuk, Martin '22)
Equality (Q)CSPs (relations fo-definable in $(\mathbb{Q} ;=)$):
- classification of CSPs (Bodirsky, Kára '08)
- partial classification of QCSPs (Bodirsky, Chen '10) - only complexity of $\mathrm{QCSP}(\mathbb{Q} ; \mathrm{D})$ missing
- full classification of QCSPs (Zhuk, Martin, Wrona '23)

Overview of results on (Q)CSPs

Finite domains:

- classification of CSPs (Bulatov '17; Zhuk '17)
- classification of QCSPs with all unary relations and 3-element structures with all singleton unary relations (Zhuk, Martin '22)
Equality (Q)CSPs (relations fo-definable in $(\mathbb{Q} ;=)$):
- classification of CSPs (Bodirsky, Kára '08)
- partial classification of QCSPs (Bodirsky, Chen '10) - only complexity of $\mathrm{QCSP}(\mathbb{Q} ; \mathrm{D})$ missing
- full classification of QCSPs (Zhuk, Martin, Wrona '23)

Temporal (Q)CSPs (relations fo-definable in $(\mathbb{Q} ;<)$):

- classification of CSPs (Bodirsky, Kára '10)

Overview of results on (Q)CSPs

Finite domains:

- classification of CSPs (Bulatov '17; Zhuk '17)
- classification of QCSPs with all unary relations and 3-element structures with all singleton unary relations (Zhuk, Martin '22)
Equality (Q)CSPs (relations fo-definable in $(\mathbb{Q} ;=)$):
- classification of CSPs (Bodirsky, Kára '08)
- partial classification of QCSPs (Bodirsky, Chen '10) - only complexity of QCSP (\mathbb{Q}; D) missing
- full classification of QCSPs (Zhuk, Martin, Wrona '23)

Temporal (Q)CSPs (relations fo-definable in ($\mathbb{Q} ;<$)):

- classification of CSPs (Bodirsky, Kára '10)
- some classification results on QCSPs (Charatonik, Wrona '08; Chen, Wrona '12; Bodirsky, Chen, Wrona '14; Wrona '14)

Ord-Horn constraints

Ord-Horn (OH) fragment: temporal structures whose relations are definable by an OH formula, i.e., a conjunction of clauses of the form

$$
\left(x_{1} \neq y_{1} \vee \cdots \vee x_{k} \neq y_{k} \vee x_{k+1} \geq y_{k+1}\right) \text { (last disjunct is optional). }
$$

Ord-Horn constraints

Ord-Horn (OH) fragment: temporal structures whose relations are definable by an OH formula, i.e., a conjunction of clauses of the form

$$
\left(x_{1} \neq y_{1} \vee \cdots \vee x_{k} \neq y_{k} \vee x_{k+1} \geq y_{k+1}\right) \text { (last disjunct is optional). }
$$

Example (complexity within OH): $\operatorname{QCSP}(\mathbb{Q} ; R)$ where R is defined by $\left(x_{1} \neq x_{2} \vee x_{3} \geq x_{4}\right) \wedge \phi$ is:

- in PTIME if $\phi=\left(x_{3} \geq x_{1}\right) \wedge\left(x_{1} \geq x_{3}\right) \wedge\left(x_{3} \neq x_{4}\right)$ (Chen, Wrona '12)

Ord-Horn constraints

Ord-Horn (OH) fragment: temporal structures whose relations are definable by an OH formula, i.e., a conjunction of clauses of the form

$$
\left(x_{1} \neq y_{1} \vee \cdots \vee x_{k} \neq y_{k} \vee x_{k+1} \geq y_{k+1}\right) \text { (last disjunct is optional). }
$$

Example (complexity within OH):
$\operatorname{QCSP}(\mathbb{Q} ; R)$ where R is defined by $\left(x_{1} \neq x_{2} \vee x_{3} \geq x_{4}\right) \wedge \phi$ is:

- in PTIME if $\phi=\left(x_{3} \geq x_{1}\right) \wedge\left(x_{1} \geq x_{3}\right) \wedge\left(x_{3} \neq x_{4}\right)$ (Chen, Wrona '12)
- coNP-complete if $\phi=\left(\bigwedge_{i, j \in\{1,2\}} x_{i} \neq x_{j+2}\right)$ (Zhuk '22, pers. comm.)

Ord-Horn constraints

Ord-Horn (OH) fragment: temporal structures whose relations are definable by an OH formula, i.e., a conjunction of clauses of the form

$$
\left(x_{1} \neq y_{1} \vee \cdots \vee x_{k} \neq y_{k} \vee x_{k+1} \geq y_{k+1}\right) \text { (last disjunct is optional). }
$$

Example (complexity within OH):
$\operatorname{QCSP}(\mathbb{Q} ; R)$ where R is defined by $\left(x_{1} \neq x_{2} \vee x_{3} \geq x_{4}\right) \wedge \phi$ is:

- in PTIME if $\phi=\left(x_{3} \geq x_{1}\right) \wedge\left(x_{1} \geq x_{3}\right) \wedge\left(x_{3} \neq x_{4}\right)$ (Chen, Wrona '12)
- coNP-complete if $\phi=\left(\bigwedge_{i, j \in\{1,2\}} x_{i} \neq x_{j+2}\right)$ (Zhuk '22, pers. comm.)
- PSPACE-complete if ϕ is empty (Zhuk, Martin, Wrona '23)

Three cases for Ord-Horn constraints

Theorem (Wrona '14)
Let \mathfrak{B} be an OH structure. Then one of the following holds:

- \mathfrak{B} is guarded OH .
- QCSP(\mathfrak{B}) is coNP-hard.
- \mathfrak{B} pp-defines M^{+}or M^{-}.

Three cases for Ord-Horn constraints

Theorem (Wrona '14)

Let \mathfrak{B} be an OH structure. Then one of the following holds:

- \mathfrak{B} is guarded OH .
- QCSP(\mathfrak{B}) is coNP-hard.
- \mathfrak{B} pp-defines M^{+}or M^{-}.

$$
\begin{aligned}
& \mathrm{M}^{+}:=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow x \geq z\right\} \\
& \mathrm{M}^{-}:=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow x \leq z\right\}
\end{aligned}
$$

Complexity of Ord-Horn constraints

Theorem (Chen, Wrona '12)

Let \mathfrak{B} be a guarded $O H$ structure. Then $\operatorname{QCSP}(\mathfrak{B})$ is in PTIME.

Complexity of Ord-Horn constraints

Theorem (Chen, Wrona '12)

Let \mathfrak{B} be a guarded $O H$ structure. Then $\operatorname{QCSP}(\mathfrak{B})$ is in PTIME.

Proposition (Bodirsky, Chen '10)

Let $\mathfrak{A}, \mathfrak{B}$ be structures with the same domain. If every relation of \mathfrak{B} is qpp-definable in \mathfrak{A}, then $\operatorname{QCSP}(\mathfrak{B})$ reduces to $\operatorname{QCSP}(\mathfrak{A})$ in PTIME.

Complexity of Ord-Horn constraints

Theorem (Chen, Wrona '12)

Let \mathfrak{B} be a guarded $O H$ structure. Then $\operatorname{QCSP}(\mathfrak{B})$ is in PTIME.

Proposition (Bodirsky, Chen '10)

Let $\mathfrak{A}, \mathfrak{B}$ be structures with the same domain. If every relation of \mathfrak{B} is qpp-definable in \mathfrak{A}, then $\operatorname{QCSP}(\mathfrak{B})$ reduces to $\operatorname{QCSP}(\mathfrak{A})$ in PTIME.
\sim need to understand $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)\left(\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{-}\right)\right.$is the dual problem $)$

Complexity of Ord-Horn constraints

Theorem (Chen, Wrona '12)

Let \mathfrak{B} be a guarded $O H$ structure. Then $\operatorname{QCSP}(\mathfrak{B})$ is in PTIME.

Proposition (Bodirsky, Chen '10)

Let $\mathfrak{A}, \mathfrak{B}$ be structures with the same domain. If every relation of \mathfrak{B} is qpp-definable in \mathfrak{A}, then $\operatorname{QCSP}(\mathfrak{B})$ reduces to $\operatorname{QCSP}(\mathfrak{A})$ in PTIME.
\sim need to understand $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)\left(\mathrm{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{-}\right)\right.$is the dual problem $)$
Complexity of $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$: left open in [Bodirsky, Chen, Wrona '14] \hookrightarrow could have been anywhere between PTIME and PSPACE

Example instance of QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}\right)$

$$
\begin{aligned}
\Phi=\exists x_{1} \forall y_{1} \exists x_{2} \forall y_{2} \exists x_{3} & \left(\left(x_{1}=y_{1} \Rightarrow x_{1} \geq x_{2}\right) \wedge\left(x_{2}=x_{1} \Rightarrow x_{2} \geq x_{3}\right)\right. \\
& \left.\wedge\left(x_{3}=y_{1} \Rightarrow x_{3} \geq y_{2}\right) \wedge\left(x_{3} \geq x_{2}\right) \wedge\left(x_{2} \geq x_{1}\right)\right) .
\end{aligned}
$$

Example instance of QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}\right)$

$$
\begin{aligned}
\Phi=\exists x_{1} \forall y_{1} \exists x_{2} \forall y_{2} \exists x_{3} & \left(\left(x_{1}=y_{1} \Rightarrow x_{1} \geq x_{2}\right) \wedge\left(x_{2}=x_{1} \Rightarrow x_{2} \geq x_{3}\right)\right. \\
& \left.\wedge\left(x_{3}=y_{1} \Rightarrow x_{3} \geq y_{2}\right) \wedge\left(x_{3} \geq x_{2}\right) \wedge\left(x_{2} \geq x_{1}\right)\right) .
\end{aligned}
$$

- the EP plays $\llbracket x_{1} \rrbracket=0$

Example instance of QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}\right)$

$$
\begin{aligned}
\Phi=\exists x_{1} \forall y_{1} \exists x_{2} \forall y_{2} \exists x_{3}\left(\left(x_{1}=y_{1} \Rightarrow x_{1} \geq x_{2}\right) \wedge\left(x_{2}=x_{1} \Rightarrow x_{2} \geq x_{3}\right)\right. \\
\left.\wedge\left(x_{3}=y_{1} \Rightarrow x_{3} \geq y_{2}\right) \wedge\left(x_{3} \geq x_{2}\right) \wedge\left(x_{2} \geq x_{1}\right)\right) .
\end{aligned}
$$

- the EP plays $\llbracket x_{1} \rrbracket=0$
- the UP plays $\llbracket y_{1} \rrbracket=0$, triggering the constraint $x_{1} \geq x_{2}$

Example instance of QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}\right)$

$$
\begin{aligned}
& \Phi=\exists x_{1} \forall y_{1} \exists x_{2} \forall y_{2} \exists x_{3}\left(\left(x_{1}=y_{1} \Rightarrow x_{1} \geq x_{2}\right) \wedge\left(x_{2}=x_{1} \Rightarrow x_{2} \geq x_{3}\right)\right. \\
&\left.\wedge\left(x_{3}=y_{1} \Rightarrow x_{3} \geq y_{2}\right) \wedge\left(x_{3} \geq x_{2}\right) \wedge\left(x_{2} \geq x_{1}\right)\right) .
\end{aligned}
$$

- the EP plays $\llbracket x_{1} \rrbracket=0$
- the UP plays $\llbracket y_{1} \rrbracket=0$, triggering the constraint $x_{1} \geq x_{2}$
- the EP plays $\llbracket x_{2} \rrbracket=0$, obeying $x_{1} \geq x_{2}$ and $x_{2} \geq x_{1}$

Example instance of QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}\right)$

$$
\begin{aligned}
& \Phi=\exists x_{1} \forall y_{1} \exists x_{2} \forall y_{2} \exists x_{3}\left(\left(x_{1}=y_{1} \Rightarrow x_{1} \geq x_{2}\right) \wedge\left(x_{2}=x_{1} \Rightarrow x_{2} \geq x_{3}\right)\right. \\
&\left.\wedge\left(x_{3}=y_{1} \Rightarrow x_{3} \geq y_{2}\right) \wedge\left(x_{3} \geq x_{2}\right) \wedge\left(x_{2} \geq x_{1}\right)\right) .
\end{aligned}
$$

- the EP plays $\llbracket x_{1} \rrbracket=0$
- the UP plays $\llbracket y_{1} \rrbracket=0$, triggering the constraint $x_{1} \geq x_{2}$
- the EP plays $\llbracket x_{2} \rrbracket=0$, obeying $x_{1} \geq x_{2}$ and $x_{2} \geq x_{1}$
- this triggers the constraint $x_{2} \geq x_{3}$

Example instance of QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}\right)$

$$
\begin{aligned}
& \Phi=\exists x_{1} \forall y_{1} \exists x_{2} \forall y_{2} \exists x_{3}\left(\left(x_{1}=y_{1} \Rightarrow x_{1} \geq x_{2}\right) \wedge\left(x_{2}=x_{1} \Rightarrow x_{2} \geq x_{3}\right)\right. \\
&\left.\wedge\left(x_{3}=y_{1} \Rightarrow x_{3} \geq y_{2}\right) \wedge\left(x_{3} \geq x_{2}\right) \wedge\left(x_{2} \geq x_{1}\right)\right) .
\end{aligned}
$$

- the EP plays $\llbracket x_{1} \rrbracket=0$
- the UP plays $\llbracket y_{1} \rrbracket=0$, triggering the constraint $x_{1} \geq x_{2}$
- the EP plays $\llbracket x_{2} \rrbracket=0$, obeying $x_{1} \geq x_{2}$ and $x_{2} \geq x_{1}$
- this triggers the constraint $x_{2} \geq x_{3}$
- the UP plays $\llbracket y_{2} \rrbracket=1$

Example instance of QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}\right)$

$$
\begin{aligned}
& \Phi=\exists x_{1} \forall y_{1} \exists x_{2} \forall y_{2} \exists x_{3}\left(\left(x_{1}=y_{1} \Rightarrow x_{1} \geq x_{2}\right) \wedge\left(x_{2}=x_{1} \Rightarrow x_{2} \geq x_{3}\right)\right. \\
&\left.\wedge\left(x_{3}=y_{1} \Rightarrow x_{3} \geq y_{2}\right) \wedge\left(x_{3} \geq x_{2}\right) \wedge\left(x_{2} \geq x_{1}\right)\right) .
\end{aligned}
$$

- the EP plays $\llbracket x_{1} \rrbracket=0$
- the UP plays $\llbracket y_{1} \rrbracket=0$, triggering the constraint $x_{1} \geq x_{2}$
- the EP plays $\llbracket x_{2} \rrbracket=0$, obeying $x_{1} \geq x_{2}$ and $x_{2} \geq x_{1}$
- this triggers the constraint $x_{2} \geq x_{3}$
- the UP plays $\llbracket y_{2} \rrbracket=1$
- the EP has to choose $\llbracket x_{3} \rrbracket=0$, because of $x_{2} \geq x_{3}$ and $x_{3} \geq x_{2}$

Example instance of QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}\right)$

$$
\begin{gathered}
\Phi=\exists x_{1} \forall y_{1} \exists x_{2} \forall y_{2} \exists x_{3}\left(\left(x_{1}=y_{1} \Rightarrow x_{1} \geq x_{2}\right) \wedge\left(x_{2}=x_{1} \Rightarrow x_{2} \geq x_{3}\right)\right. \\
\left.\wedge\left(x_{3}=y_{1} \Rightarrow x_{3} \geq y_{2}\right) \wedge\left(x_{3} \geq x_{2}\right) \wedge\left(x_{2} \geq x_{1}\right)\right) .
\end{gathered}
$$

- the EP plays $\llbracket x_{1} \rrbracket=0$
- the UP plays $\llbracket y_{1} \rrbracket=0$, triggering the constraint $x_{1} \geq x_{2}$
- the EP plays $\llbracket x_{2} \rrbracket=0$, obeying $x_{1} \geq x_{2}$ and $x_{2} \geq x_{1}$
- this triggers the constraint $x_{2} \geq x_{3}$
- the UP plays $\llbracket y_{2} \rrbracket=1$
- the EP has to choose $\llbracket x_{3} \rrbracket=0$, because of $x_{2} \geq x_{3}$ and $x_{3} \geq x_{2}$
- $\left(x_{3}=y_{1} \Rightarrow x_{3} \geq y_{2}\right)$ is now falsified

Example instance of QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}\right)$

$$
\begin{gathered}
\Phi=\exists x_{1} \forall y_{1} \exists x_{2} \forall y_{2} \exists x_{3}\left(\left(x_{1}=y_{1} \Rightarrow x_{1} \geq x_{2}\right) \wedge\left(x_{2}=x_{1} \Rightarrow x_{2} \geq x_{3}\right)\right. \\
\left.\wedge\left(x_{3}=y_{1} \Rightarrow x_{3} \geq y_{2}\right) \wedge\left(x_{3} \geq x_{2}\right) \wedge\left(x_{2} \geq x_{1}\right)\right) .
\end{gathered}
$$

- the EP plays $\llbracket x_{1} \rrbracket=0$
- the UP plays $\llbracket y_{1} \rrbracket=0$, triggering the constraint $x_{1} \geq x_{2}$
- the EP plays $\llbracket x_{2} \rrbracket=0$, obeying $x_{1} \geq x_{2}$ and $x_{2} \geq x_{1}$
- this triggers the constraint $x_{2} \geq x_{3}$
- the UP plays $\llbracket y_{2} \rrbracket=1$
- the EP has to choose $\llbracket x_{3} \rrbracket=0$, because of $x_{2} \geq x_{3}$ and $x_{3} \geq x_{2}$
- $\left(x_{3}=y_{1} \Rightarrow x_{3} \geq y_{2}\right)$ is now falsified
- the UP has a winning strategy on this instance $\Rightarrow \Phi$ is false

The setup

Wanted: PTIME-algorithm for $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$
$\mathrm{M}^{+}=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow x \geq z\right\}$

The setup

Wanted: PTIME-algorithm for $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$
$\mathrm{M}^{+}=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow x \geq z\right\}$

- fix instance Φ of $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$over variables $\mathrm{V}=\mathrm{V}_{\exists} \cup \mathrm{V}_{\forall}$

The setup

Wanted: PTIME-algorithm for $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$
$\mathrm{M}^{+}=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow x \geq z\right\}$

- fix instance Φ of $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$over variables $\mathrm{V}=\mathrm{V}_{\exists} \cup \mathrm{V}_{\forall}$
- $\phi:=$ quantifier-free part of Φ

The setup

Wanted: PTIME-algorithm for $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$
$\mathrm{M}^{+}=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow x \geq z\right\}$

- fix instance Φ of $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$over variables $\mathrm{V}=\mathrm{V}_{\exists} \cup \mathrm{V}_{\forall}$
- $\phi:=$ quantifier-free part of Φ
- $\prec:=$ linear order on V from the order in the quantifier prefix of Φ

The setup

Wanted: PTIME-algorithm for $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$
$\mathrm{M}^{+}=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow x \geq z\right\}$

- fix instance Φ of $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$over variables $\mathrm{V}=\mathrm{V}_{\exists} \cup \mathrm{V}_{\forall}$
- $\phi:=$ quantifier-free part of Φ
- $\prec:=$ linear order on V from the order in the quantifier prefix of Φ
- we write $A \prec B$ meaning $x \prec y, \forall x \in A, y \in B$

The setup

Wanted: PTIME-algorithm for $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$
$\mathrm{M}^{+}=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow x \geq z\right\}$

- fix instance Φ of $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$over variables $\mathrm{V}=\mathrm{V}_{\exists} \cup \mathrm{V}_{\forall}$
- $\phi:=$ quantifier-free part of Φ
- $\prec:=$ linear order on V from the order in the quantifier prefix of Φ
- we write $A \prec B$ meaning $x \prec y, \forall x \in A, y \in B$

Fact: It is possible to pp-define from M^{+}constraints of the form

$$
\left(\bigwedge_{v \in A} x=v\right) \Rightarrow x \geq z
$$

by definitions of linear length.

$x-z-c u t$

For $x, z \in \mathrm{~V}$:

$$
x \text {-z-cut }:=\left\{u \in \mathrm{~V}_{\forall} \mid\left(\mathrm{V}_{\exists} \cap\{x, z\}\right) \prec u\right\} \backslash\{z\}
$$

- x-z-cut comprises variables that the UP can play equal to x to trigger the constraint $x \geq z$
- z is removed so that the constraint does not become trivial

$x-z-c u t$

For $x, z \in \mathrm{~V}$:

$$
x \text {-z-cut }:=\left\{u \in \mathrm{~V}_{\forall} \mid\left(\mathrm{V}_{\exists} \cap\{x, z\}\right) \prec u\right\} \backslash\{z\}
$$

- x-z-cut comprises variables that the UP can play equal to x to trigger the constraint $x \geq z$
- z is removed so that the constraint does not become trivial

Example: $\Phi:=\exists u \forall v \exists w \forall x \forall y \phi(u, v, w, x, y)$

- u-w-cut $=\{x, y\}$
- u-x-cut $=\{v, y\}$
- v - x-cut $=\{v, y\}$

Sketch of the algorithm

- expand ϕ by constraints ψ of the form

$$
\left(\bigwedge_{v \in A \backslash x-z-\mathrm{cut}} x=v\right) \Rightarrow x \geq z
$$

if $\phi \wedge\left(\bigwedge_{v \in A} x=v\right) \wedge(x<z)$ is unsatisfiable

Sketch of the algorithm

- expand ϕ by constraints ψ of the form

$$
\left(\bigwedge_{v \in A \backslash x-z-\mathrm{cut}} x=v\right) \Rightarrow x \geq z
$$

if $\phi \wedge\left(\bigwedge_{v \in A} x=v\right) \wedge(x<z)$ is unsatisfiable

- $A \subseteq \mathrm{~V}_{\forall}$ is of the form

$$
\uparrow_{u} \backslash\{x, z\} \quad \text { for } x, z, u \in \mathrm{~V}
$$

Sketch of the algorithm

- expand ϕ by constraints ψ of the form

$$
\left(\bigwedge_{v \in A \backslash x-z-\mathrm{cut}} x=v\right) \Rightarrow x \geq z
$$

if $\phi \wedge\left(\bigwedge_{v \in A} x=v\right) \wedge(x<z)$ is unsatisfiable

- $A \subseteq \mathrm{~V}_{\forall}$ is of the form

$$
\uparrow_{u} \backslash\{x, z\} \quad \text { for } x, z, u \in \mathrm{~V},
$$

where $\uparrow_{u}:=\left\{y \in V_{V} \mid u \preceq y\right\}$

Sketch of the algorithm

- expand ϕ by constraints ψ of the form

$$
\left(\bigwedge_{v \in A \backslash x-z-\mathrm{cut}} x=v\right) \Rightarrow x \geq z
$$

if $\phi \wedge\left(\bigwedge_{v \in A} x=v\right) \wedge(x<z)$ is unsatisfiable

- $A \subseteq \mathrm{~V}_{\forall}$ is of the form

$$
\uparrow_{u} \backslash\{x, z\} \quad \text { for } x, z, u \in \mathrm{~V},
$$

where $\uparrow_{u}:=\left\{y \in V_{V} \mid u \preceq y\right\}$
\hookrightarrow polynomially many such sets

Sketch of the algorithm

- expand ϕ by constraints ψ of the form

$$
\left(\bigwedge_{v \in A \backslash x-z-\mathrm{cut}} x=v\right) \Rightarrow x \geq z
$$

if $\phi \wedge\left(\bigwedge_{v \in A} x=v\right) \wedge(x<z)$ is unsatisfiable

- $A \subseteq \mathrm{~V}_{\forall}$ is of the form

$$
\uparrow_{u} \backslash\{x, z\} \quad \text { for } x, z, u \in \mathrm{~V},
$$

where $\uparrow_{u}:=\left\{y \in V_{V} \mid u \preceq y\right\}$
\hookrightarrow polynomially many such sets

- reject if $(x \geq z)$ or $(z \geq x)$ is derived where $x \prec z, z \in V_{\forall}$

Sketch of the algorithm

- expand ϕ by constraints ψ of the form

$$
\left(\bigwedge_{v \in A \backslash x-z-\mathrm{cut}} x=v\right) \Rightarrow x \geq z
$$

if $\phi \wedge\left(\bigwedge_{v \in A} x=v\right) \wedge(x<z)$ is unsatisfiable

- $A \subseteq \mathrm{~V}_{\forall}$ is of the form

$$
\uparrow_{u} \backslash\{x, z\} \quad \text { for } x, z, u \in \mathrm{~V},
$$

where $\uparrow_{u}:=\left\{y \in V_{V} \mid u \preceq y\right\}$
\hookrightarrow polynomially many such sets

- reject if $(x \geq z)$ or $(z \geq x)$ is derived where $x \prec z, z \in V_{\forall}$
- accept if no new constraints can be derived

Algorithm for QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}\right)$

Input: an instance Φ of $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$with the quantifier-free part ϕ Output: true or false while ϕ changes do
for $x, z, u \in \mathrm{~V}$ do
if ϕ contains the clause $(x \geq z)$ or $(z \geq x)$, where $x \prec z$ and $z \in V_{\forall}$ then return false;
if $\phi \wedge\left(\bigwedge_{v \in \uparrow_{\mu} \backslash\{x, z\}} x=v\right) \wedge(x<z)$ is unsatisfiable then expand ϕ by the clause

$$
\left(\left(\bigwedge_{v \in \uparrow_{u} \backslash(\{x, z\} \cup x-z-\mathrm{cut})} x=v\right) \Rightarrow x \geq z\right)
$$

return true;

Algorithm for QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}\right)$

Input: an instance Φ of $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$with the quantifier-free part ϕ Output: true or false while ϕ changes do
for $x, z, u \in \mathrm{~V}$ do
if ϕ contains the clause $(x \geq z)$ or $(z \geq x)$, where $x \prec z$ and $z \in V_{\forall}$ then return false;
if $\phi \wedge\left(\bigwedge_{v \in \uparrow_{u} \backslash\{x, z\}} x=v\right) \wedge(x<z)$ is unsatisfiable then expand ϕ by the clause

$$
\left(\left(\bigwedge_{v \in \uparrow_{u} \backslash(\{x, z\} \cup x-z-\mathrm{cut})} x=v\right) \Rightarrow x \geq z\right)
$$

return true;
$\hookrightarrow \operatorname{CSP}\left(\mathbb{Q} ;<, \mathrm{M}^{+}\right)$is in PTIME \Rightarrow the satisfiability test runs in PTIME

Algorithm for QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}\right)$

Input: an instance Φ of $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$with the quantifier-free part ϕ Output: true or false while ϕ changes do
for $x, z, u \in \mathrm{~V}$ do
if ϕ contains the clause $(x \geq z)$ or $(z \geq x)$, where $x \prec z$ and $z \in V_{\forall}$ then return false;
if $\phi \wedge\left(\bigwedge_{v \in \uparrow_{u} \backslash\{x, z\}} x=v\right) \wedge(x<z)$ is unsatisfiable then expand ϕ by the clause

$$
\left(\left(\bigwedge_{v \in \uparrow_{u} \backslash(\{x, z\} \cup x-z-\mathrm{cut})} x=v\right) \Rightarrow x \geq z\right)
$$

return true;
$\hookrightarrow \operatorname{CSP}\left(\mathbb{Q} ;<, \mathrm{M}^{+}\right)$is in PTIME \Rightarrow the satisfiability test runs in PTIME
\hookrightarrow the algorithm runs in PTIME

Example of the run of the algorithm

$$
\begin{aligned}
\Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right) .
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

Example of the run of the algorithm

$$
\begin{aligned}
\Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right)
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

- $\phi \wedge\left(x_{1}=x_{2}\right) \wedge\left(x_{1}=x_{4}\right)$ implies $x_{1}=x_{2}=x_{4}=x_{5}=x_{3}$.

Example of the run of the algorithm

$$
\begin{aligned}
\Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right) .
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

- $\phi \wedge\left(x_{1}=x_{2}\right) \wedge\left(x_{1}=x_{4}\right)$ implies $x_{1}=x_{2}=x_{4}=x_{5}=x_{3}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{3}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{3}\right)$ is not satisfiable.

Example of the run of the algorithm

$$
\begin{aligned}
\Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right) .
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

- $\phi \wedge\left(x_{1}=x_{2}\right) \wedge\left(x_{1}=x_{4}\right)$ implies $x_{1}=x_{2}=x_{4}=x_{5}=x_{3}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{3}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{3}\right)$ is not satisfiable.
- $x_{1}-x_{3}$-cut $=\left\{x_{4}\right\} \sim \uparrow_{x_{2}} \backslash\left(\left\{x_{1}, x_{3}\right\} \cup x_{1}-x_{3}\right.$-cut $)=\left\{x_{2}\right\}$

Example of the run of the algorithm

$$
\begin{aligned}
\Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right)
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

- $\phi \wedge\left(x_{1}=x_{2}\right) \wedge\left(x_{1}=x_{4}\right)$ implies $x_{1}=x_{2}=x_{4}=x_{5}=x_{3}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{3}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{3}\right)$ is not satisfiable.
- x_{1} - x_{3}-cut $=\left\{x_{4}\right\} \sim \uparrow_{x_{2}} \backslash\left(\left\{x_{1}, x_{3}\right\} \cup x_{1}-x_{3}\right.$-cut $)=\left\{x_{2}\right\}$
- Hence, the algorithm expands ϕ by $\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{3}\right)$.

Example of the run of the algorithm

$$
\begin{aligned}
\Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right) .
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

- $\phi \wedge\left(x_{1}=x_{2}\right) \wedge\left(x_{1}=x_{4}\right)$ implies $x_{1}=x_{2}=x_{4}=x_{5}=x_{3}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{3}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{3}\right)$ is not satisfiable.
- x_{1} - x_{3}-cut $=\left\{x_{4}\right\} \sim \uparrow_{x_{2}} \backslash\left(\left\{x_{1}, x_{3}\right\} \cup x_{1}-x_{3}\right.$-cut $)=\left\{x_{2}\right\}$
- Hence, the algorithm expands ϕ by $\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{3}\right)$.
- Now $\phi \wedge\left(x_{1}=x_{2}\right)$ implies $x_{1}=x_{2}=x_{3} \geq x_{4}$.

Example of the run of the algorithm

$$
\begin{aligned}
\Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists & x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
& \left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right)
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

- $\phi \wedge\left(x_{1}=x_{2}\right) \wedge\left(x_{1}=x_{4}\right)$ implies $x_{1}=x_{2}=x_{4}=x_{5}=x_{3}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{3}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{3}\right)$ is not satisfiable.
- x_{1} - x_{3}-cut $=\left\{x_{4}\right\} \sim \uparrow_{x_{2}} \backslash\left(\left\{x_{1}, x_{3}\right\} \cup x_{1}-x_{3}\right.$-cut $)=\left\{x_{2}\right\}$
- Hence, the algorithm expands ϕ by $\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{3}\right)$.
- Now $\phi \wedge\left(x_{1}=x_{2}\right)$ implies $x_{1}=x_{2}=x_{3} \geq x_{4}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{4}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{4}\right)$ is not satisfiable.

Example of the run of the algorithm

$$
\begin{aligned}
\Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right)
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

- $\phi \wedge\left(x_{1}=x_{2}\right) \wedge\left(x_{1}=x_{4}\right)$ implies $x_{1}=x_{2}=x_{4}=x_{5}=x_{3}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{3}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{3}\right)$ is not satisfiable.
- x_{1} - x_{3}-cut $=\left\{x_{4}\right\} \sim \uparrow_{x_{2}} \backslash\left(\left\{x_{1}, x_{3}\right\} \cup x_{1}-x_{3}\right.$-cut $)=\left\{x_{2}\right\}$
- Hence, the algorithm expands ϕ by $\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{3}\right)$.
- Now $\phi \wedge\left(x_{1}=x_{2}\right)$ implies $x_{1}=x_{2}=x_{3} \geq x_{4}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{4}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{4}\right)$ is not satisfiable.
- x_{1} - x_{4}-cut $=\left\{x_{2}\right\} \sim \uparrow_{x_{2}} \backslash\left(\left\{x_{1}, x_{4}\right\} \cup x_{1}-x_{4}\right.$-cut $)=\emptyset$

Example of the run of the algorithm

$$
\begin{aligned}
\Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right)
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

- $\phi \wedge\left(x_{1}=x_{2}\right) \wedge\left(x_{1}=x_{4}\right)$ implies $x_{1}=x_{2}=x_{4}=x_{5}=x_{3}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{3}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{3}\right)$ is not satisfiable.
- x_{1} - x_{3}-cut $=\left\{x_{4}\right\} \sim \uparrow_{x_{2}} \backslash\left(\left\{x_{1}, x_{3}\right\} \cup x_{1}-x_{3}\right.$-cut $)=\left\{x_{2}\right\}$
- Hence, the algorithm expands ϕ by $\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{3}\right)$.
- Now $\phi \wedge\left(x_{1}=x_{2}\right)$ implies $x_{1}=x_{2}=x_{3} \geq x_{4}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{4}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{4}\right)$ is not satisfiable.
- $x_{1}-x_{4}$-cut $=\left\{x_{2}\right\} \sim \uparrow_{x_{2}} \backslash\left(\left\{x_{1}, x_{4}\right\} \cup x_{1}-x_{4}\right.$-cut $)=\emptyset$
- Hence, the algorithm expands ϕ by $\left(x_{1} \geq x_{4}\right)$.

The algorithm on false instances

Lemma (Rydval, S., Wrona '24)

If the algorithm derives from Φ a constraint ψ, then Φ is true iff Φ expanded by ψ is true.

The algorithm on false instances

```
Lemma (Rydval, S., Wrona '24)
If the algorithm derives from $ a constraint \psi, then }\Phi\mathrm{ is true iff } expanded by \(\psi\) is true.
```

Proof: (almost) straightforward induction

The algorithm on false instances

Lemma (Rydval, S., Wrona '24)

If the algorithm derives from Φ a constraint ψ, then Φ is true iff Φ expanded by ψ is true.

Proof: (almost) straightforward induction
Whenever the algorithm rejects, it derived

$$
x \geq z \text { or } z \geq x \text { where } x \prec z, z \in V_{\forall}
$$

Lemma $\Rightarrow \Phi$ is false \Rightarrow the algorithm rejects false instances

The algorithm on true instances

Proof system \mathcal{P} :

The algorithm on true instances

Proof system \mathcal{P} :

- \mathcal{P} derives predicates of the form $\mathcal{P}(x, z ; A), x, z \in \mathrm{~V}, A \subseteq \mathrm{~V}_{\forall}$.

The algorithm on true instances

Proof system \mathcal{P} :

- \mathcal{P} derives predicates of the form $\mathcal{P}(x, z ; A), x, z \in \mathrm{~V}, A \subseteq \mathrm{~V}_{\forall}$.
- Intuitive interpretation: $\left(\bigwedge_{v \in A} x=v\right) \Rightarrow x \geq z$.

The algorithm on true instances

Proof system \mathcal{P} :

- \mathcal{P} derives predicates of the form $\mathcal{P}(x, z ; A), x, z \in \mathrm{~V}, A \subseteq \mathrm{~V}_{\forall}$.
- Intuitive interpretation: $\left(\bigwedge_{v \in A} x=v\right) \Rightarrow x \geq z$.

Lemma (Rydval, S., Wrona '24)

- If $\mathcal{P}(x, z ; A)$ is derived and $z \notin A$, then the algorithm expands ϕ by

$$
\left(\left(\bigwedge_{v \in \uparrow_{A} \backslash(\{x, z\} \cup x-z-c u t)} x=v\right) \Rightarrow x \geq z\right)
$$

The algorithm on true instances

Proof system \mathcal{P} :

- \mathcal{P} derives predicates of the form $\mathcal{P}(x, z ; A), x, z \in \mathrm{~V}, A \subseteq \mathrm{~V}_{\forall}$.
- Intuitive interpretation: $\left(\bigwedge_{v \in A} x=v\right) \Rightarrow x \geq z$.

Lemma (Rydval, S., Wrona '24)

- If $\mathcal{P}(x, z ; A)$ is derived and $z \notin A$, then the algorithm expands ϕ by

$$
\left(\left(\bigwedge_{v \in \uparrow_{A} \backslash(\{x, z\} \cup x-z-c u t)} x=v\right) \Rightarrow x \geq z\right)
$$

- In particular, it expands ϕ by $(x \geq z)$ for every $\mathcal{P}(x, z ; \emptyset)$.

The algorithm on true instances

Proof system \mathcal{P} :

- \mathcal{P} derives predicates of the form $\mathcal{P}(x, z ; A), x, z \in \mathrm{~V}, A \subseteq \mathrm{~V}_{\forall}$.
- Intuitive interpretation: $\left(\bigwedge_{v \in A} x=v\right) \Rightarrow x \geq z$.

Lemma (Rydval, S., Wrona '24)

- If $\mathcal{P}(x, z ; A)$ is derived and $z \notin A$, then the algorithm expands ϕ by

$$
\left(\left(\bigwedge_{v \in \uparrow_{A} \backslash(\{x, z\} \cup x-z-c u t)} x=v\right) \Rightarrow x \geq z\right)
$$

- In particular, it expands ϕ by $(x \geq z)$ for every $\mathcal{P}(x, z ; \emptyset)$.
- If the proof system does not derive $\mathcal{P}(x, z ; \emptyset)$ or $\mathcal{P}(z, x ; \emptyset)$ for $x \prec z$, $z \in \mathrm{~V}_{\forall}$, then Φ is true.
\sim the algorithm accepts correctly

The algorithm on true instances

Proof system \mathcal{P} :

- \mathcal{P} derives predicates of the form $\mathcal{P}(x, z ; A), x, z \in \mathrm{~V}, A \subseteq \mathrm{~V}_{\forall}$.
- Intuitive interpretation: $\left(\bigwedge_{v \in A} x=v\right) \Rightarrow x \geq z$.

Lemma (Rydval, S., Wrona '24)

- If $\mathcal{P}(x, z ; A)$ is derived and $z \notin A$, then the algorithm expands ϕ by

$$
\left(\left(\bigwedge_{v \in \uparrow_{A} \backslash(\{x, z\} \cup x-z-c u t)} x=v\right) \Rightarrow x \geq z\right)
$$

- In particular, it expands ϕ by $(x \geq z)$ for every $\mathcal{P}(x, z ; \emptyset)$.
- If the proof system does not derive $\mathcal{P}(x, z ; \emptyset)$ or $\mathcal{P}(z, x ; \emptyset)$ for $x \prec z$, $z \in \mathrm{~V}_{\forall}$, then Φ is true.
\hookrightarrow conditional constraints are necessary for this to be true

The proof system \mathcal{P}

"Trial version" of \mathcal{P}

Initialize	$\mathcal{P}(x, x ; \emptyset):-x \in V$
Simplify	$\mathcal{P}(x, z ; A \backslash x-z-c u t):-\mathcal{P}(x, z ; A)$
Transitivity	$\mathcal{P}(x, z ; A):-\mathcal{P}(x, y ; A) \wedge \mathcal{P}(y, z ; \emptyset)$
Constraint	$\mathcal{P}(x, z ; y):-(x=y \Rightarrow x \geq z) \wedge y \in \mathrm{~V}_{\forall}$

The proof system \mathcal{P}

"Trial version" of \mathcal{P}

Initialize	$\mathcal{P}(x, x ; \emptyset):-x \in V$
Simplify	$\mathcal{P}(x, z ; A \backslash x-z-\mathrm{cut}):-\mathcal{P}(x, z ; A)$
Transitivity	$\mathcal{P}(x, z ; A):-\mathcal{P}(x, y ; A) \wedge \mathcal{P}(y, z ; \emptyset)$
Constraint	$\mathcal{P}(x, z ; y):-(x=y \Rightarrow x \geq z) \wedge y \in \mathrm{~V}_{\forall}$

Example (transitivity): $\mathcal{P}(x, z ; A):-\mathcal{P}(x, y ; A) \wedge \mathcal{P}(y, z ; \emptyset)$

$$
\begin{aligned}
& \left(\left(\bigwedge_{v \in A} x=v\right) \Rightarrow x \geq y\right) \wedge(y \geq z) \\
\sim & \left(\bigwedge_{v \in A} x=v\right) \Rightarrow x \geq z
\end{aligned}
$$

\mathcal{P} does not give a PTIME-algorithm

Example: $\Phi=\exists x_{1} \forall y_{1}^{0} \forall y_{1}^{1} \exists x_{2} \forall y_{2}^{0} \forall y_{2}^{1} \cdots \exists x_{n-1} \forall y_{n-1}^{0} \forall y_{n-1}^{1} \exists x_{n} \forall y_{n}$

\mathcal{P} does not give a PTIME-algorithm

Example: $\Phi=\exists x_{1} \forall y_{1}^{0} \forall y_{1}^{1} \exists x_{2} \forall y_{2}^{0} \forall y_{2}^{1} \cdots \exists x_{n-1} \forall y_{n-1}^{0} \forall y_{n-1}^{1} \exists x_{n} \forall y_{n}$

- \mathcal{P} follows shortest derivation sequences

\mathcal{P} does not give a PTIME-algorithm

Example: $\Phi=\exists x_{1} \forall y_{1}^{0} \forall y_{1}^{1} \exists x_{2} \forall y_{2}^{0} \forall y_{2}^{1} \cdots \exists x_{n-1} \forall y_{n-1}^{0} \forall y_{n-1}^{1} \exists x_{n} \forall y_{n}$

- \mathcal{P} follows shortest derivation sequences
- \mathcal{P} derives $\mathcal{P}\left(x_{1}, x_{n} ;\left\{y_{1}^{i_{1}}, \ldots, y_{n-1}^{i_{n-1}}\right\}\right)$ for all $i_{1}, \ldots, i_{n-1} \in\{0,1\}$

\mathcal{P} does not give a PTIME-algorithm

Example: $\Phi=\exists x_{1} \forall y_{1}^{0} \forall y_{1}^{1} \exists x_{2} \forall y_{2}^{0} \forall y_{2}^{1} \cdots \exists x_{n-1} \forall y_{n-1}^{0} \forall y_{n-1}^{1} \exists x_{n} \forall y_{n}$

- \mathcal{P} follows shortest derivation sequences
- \mathcal{P} derives $\mathcal{P}\left(x_{1}, x_{n} ;\left\{y_{1}^{i_{1}}, \ldots, y_{n-1}^{i_{n-1}}\right\}\right)$ for all $i_{1}, \ldots, i_{n-1} \in\{0,1\}$
- the algorithm derives $\left(x_{n-1} \geq x_{1}\right), \ldots,\left(x_{2} \geq x_{1}\right),\left(x_{1} \geq y_{n}\right)$

\mathcal{P} does not give a PTIME-algorithm

Example: $\Phi=\exists x_{1} \forall y_{1}^{0} \forall y_{1}^{1} \exists x_{2} \forall y_{2}^{0} \forall y_{2}^{1} \cdots \exists x_{n-1} \forall y_{n-1}^{0} \forall y_{n-1}^{1} \exists x_{n} \forall y_{n}$

- \mathcal{P} follows shortest derivation sequences
- \mathcal{P} derives $\mathcal{P}\left(x_{1}, x_{n} ;\left\{y_{1}^{i_{1}}, \ldots, y_{n-1}^{i_{n-1}}\right\}\right)$ for all $i_{1}, \ldots, i_{n-1} \in\{0,1\}$
- the algorithm derives $\left(x_{n-1} \geq x_{1}\right), \ldots,\left(x_{2} \geq x_{1}\right),\left(x_{1} \geq y_{n}\right)$
- the algorithm rejects because of $\left(x_{1} \geq y_{n}\right)$

\mathcal{P} does not give a PTIME-algorithm

Example: $\Phi=\exists x_{1} \forall y_{1}^{0} \forall y_{1}^{1} \exists x_{2} \forall y_{2}^{0} \forall y_{2}^{1} \cdots \exists x_{n-1} \forall y_{n-1}^{0} \forall y_{n-1}^{1} \exists x_{n} \forall y_{n}$

- \mathcal{P} follows shortest derivation sequences
- \mathcal{P} derives $\mathcal{P}\left(x_{1}, x_{n} ;\left\{y_{1}^{i_{1}}, \ldots, y_{n-1}^{i_{n-1}}\right\}\right)$ for all $i_{1}, \ldots, i_{n-1} \in\{0,1\}$
- the algorithm derives $\left(x_{n-1} \geq x_{1}\right), \ldots,\left(x_{2} \geq x_{1}\right),\left(x_{1} \geq y_{n}\right)$
- the algorithm rejects because of $\left(x_{1} \geq y_{n}\right)$
\mathcal{P} may derive exponentially many predicates
\Rightarrow does not give a PTIME-algorithm

Tractability consequences

Theorem (Rydval, S., Wrona '24) QCSP $\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$is in PTIME.

Tractability consequences

Theorem (Rydval, S., Wrona '24) $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$is in PTIME.

Corollary

$\operatorname{QCSP}(\mathfrak{B})$ is in PTIME if \mathfrak{B} is a structure whose relations are definable by a conjunction of clauses of the form

$$
\left(x \neq y_{1} \vee \cdots \vee x \neq y_{k} \vee x \geq z\right)
$$

for $k \geq 0$ and where the last disjunct $(x \geq z)$ may be omitted.

Tractability consequences

Theorem (Rydval, S., Wrona '24)
 $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$is in PTIME.

Corollary

$\operatorname{QCSP}(\mathfrak{B})$ is in PTIME if \mathfrak{B} is a structure whose relations are definable by a conjunction of clauses of the form

$$
\left(x \neq y_{1} \vee \cdots \vee x \neq y_{k} \vee x \geq z\right)
$$

for $k \geq 0$ and where the last disjunct $(x \geq z)$ may be omitted.

Equivalently: structures \mathfrak{B} whose relations lie both in the OH fragment and the $\pi \pi$ fragment (pp fragment from [Bodirsky, Kára '09]).

Complexity dichotomy for Ord-Horn constraints

Lemma (Rydval, S., Wrona '24)

Let \mathfrak{B} be an OH structure that is not contained in the $\pi \pi$ fragment and pp-defines M^{+}. Then $\operatorname{QCSP}(\mathfrak{B})$ is coNP-hard.

Complexity dichotomy for Ord-Horn constraints

Lemma (Rydval, S., Wrona '24)

Let \mathfrak{B} be an OH structure that is not contained in the $\pi \pi$ fragment and pp-defines M^{+}. Then $\operatorname{QCSP}(\mathfrak{B})$ is coNP-hard.

Theorem (Rydval, S., Wrona '24)

Let \mathfrak{B} be an OH structure. Then $\operatorname{QCSP}(\mathfrak{B})$ is in PTIME if \mathfrak{B} is guarded OH , contained in the $\pi \pi$ fragment, or in the dual $\pi \pi$ fragment. Otherwise, QCSP(\mathfrak{B}) is coNP-hard.

Complexity dichotomy for Ord-Horn constraints

Lemma (Rydval, S., Wrona '24)

Let \mathfrak{B} be an OH structure that is not contained in the $\pi \pi$ fragment and pp-defines M^{+}. Then $\operatorname{QCSP}(\mathfrak{B})$ is coNP-hard.

Theorem (Rydval, S., Wrona '24)

Let \mathfrak{B} be an OH structure. Then $\operatorname{QCSP}(\mathfrak{B})$ is in PTIME if \mathfrak{B} is guarded OH , contained in the $\pi \pi$ fragment, or in the dual $\pi \pi$ fragment. Otherwise, QCSP(\mathfrak{B}) is coNP-hard.

Proof idea (lemma):

- \mathfrak{B} pp-defines R of arity ≤ 4 outside of the $\pi \pi$ fragment.

Complexity dichotomy for Ord-Horn constraints

Lemma (Rydval, S., Wrona '24)

Let \mathfrak{B} be an OH structure that is not contained in the $\pi \pi$ fragment and pp-defines M^{+}. Then $\mathrm{QCSP}(\mathfrak{B})$ is coNP-hard.

Theorem (Rydval, S., Wrona '24)

Let \mathfrak{B} be an OH structure. Then $\operatorname{QCSP}(\mathfrak{B})$ is in PTIME if \mathfrak{B} is guarded OH , contained in the $\pi \pi$ fragment, or in the dual $\pi \pi$ fragment. Otherwise, QCSP(\mathfrak{B}) is coNP-hard.

Proof idea (lemma):

- \mathfrak{B} pp-defines R of arity ≤ 4 outside of the $\pi \pi$ fragment.
- R qpp-defines $\mathrm{D}(\Rightarrow$ PSPACE-hardness) or a certain relation Ž.

Complexity dichotomy for Ord-Horn constraints

Lemma (Rydval, S., Wrona '24)

Let \mathfrak{B} be an OH structure that is not contained in the $\pi \pi$ fragment and pp-defines M^{+}. Then $\mathrm{QCSP}(\mathfrak{B})$ is coNP-hard.

Theorem (Rydval, S., Wrona '24)

Let \mathfrak{B} be an OH structure. Then $\operatorname{QCSP}(\mathfrak{B})$ is in PTIME if \mathfrak{B} is guarded OH , contained in the $\pi \pi$ fragment, or in the dual $\pi \pi$ fragment. Otherwise, QCSP (\mathfrak{B}) is coNP-hard.

Proof idea (lemma):

- \mathfrak{B} pp-defines R of arity ≤ 4 outside of the $\pi \pi$ fragment.
- R qpp-defines $\mathrm{D}(\Rightarrow$ PSPACE-hardness) or a certain relation ŽZ.
- QCSP $\left(\mathbb{Q} ; \mathrm{M}^{+}, \mathrm{Z}\right)$ is coNP-hard.

coNP-hardness of QCSP(Q; M $\left.{ }^{+}, \check{Z}\right)$

$$
\check{Z}:=\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \in \mathbb{Q}^{4} \mid\left(x_{1} \neq y_{1} \vee x_{2} \neq y_{2}\right) \wedge\left(y_{1}<y_{2}\right)\right\},
$$

Lemma

QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}, \check{\mathrm{Z}}\right)$ is coNP-hard.

coNP-hardness of QCSP($\mathbb{Q} ;$ M $\left.^{+}, \check{\mathrm{Z}}\right)$

$$
\check{Z}:=\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \in \mathbb{Q}^{4} \mid\left(x_{1} \neq y_{1} \vee x_{2} \neq y_{2}\right) \wedge\left(y_{1}<y_{2}\right)\right\},
$$

Lemma

QCSP $\left(\mathbb{Q} ; \mathrm{M}^{+}, \check{\mathrm{Z}}\right)$ is coNP-hard.

Proof idea:

- build a similar gadget as for $(\mathbb{Q} ; \mathrm{D})$ using constraints of the form $\mathrm{M}^{+}(x, y, z) \wedge \mathrm{M}^{+}(z, z, x)$ instead of $\mathrm{D}(x, y, z)$, that is,

$$
(x=y \Rightarrow x \geq z) \wedge(z \geq x) \text { instead of } x=y \Rightarrow x=z
$$

coNP-hardness of QCSP($\mathbb{Q} ;$ M $\left.^{+}, \check{Z}\right)$

$$
\check{Z}:=\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \in \mathbb{Q}^{4} \mid\left(x_{1} \neq y_{1} \vee x_{2} \neq y_{2}\right) \wedge\left(y_{1}<y_{2}\right)\right\},
$$

Lemma

QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}, \check{\mathrm{Z}}\right)$ is coNP-hard.

Proof idea:

- build a similar gadget as for $(\mathbb{Q} ; \mathrm{D})$ using constraints of the form $\mathrm{M}^{+}(x, y, z) \wedge \mathrm{M}^{+}(z, z, x)$ instead of $\mathrm{D}(x, y, z)$, that is,

$$
(x=y \Rightarrow x \geq z) \wedge(z \geq x) \text { instead of } x=y \Rightarrow x=z
$$

- use a Z̆-constraint as a control mechanism for the choices of the EP

coNP-hardness of QCSP $\left(\mathbb{Q} ;\right.$ M $\left.^{+}, \check{Z}\right)$

$$
\check{Z}:=\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \in \mathbb{Q}^{4} \mid\left(x_{1} \neq y_{1} \vee x_{2} \neq y_{2}\right) \wedge\left(y_{1}<y_{2}\right)\right\},
$$

Lemma

QCSP $\left(\mathbb{Q} ; \mathrm{M}^{+}, \check{\mathrm{Z}}\right)$ is coNP-hard.

Proof idea:

- build a similar gadget as for $(\mathbb{Q} ; \mathrm{D})$ using constraints of the form $\mathrm{M}^{+}(x, y, z) \wedge \mathrm{M}^{+}(z, z, x)$ instead of $\mathrm{D}(x, y, z)$, that is,

$$
(x=y \Rightarrow x \geq z) \wedge(z \geq x) \text { instead of } x=y \Rightarrow x=z
$$

- use a Ž-constraint as a control mechanism for the choices of the EP Remark: the constraints $\mathrm{M}^{+}(z, z, x)$ give unconditional constraints $z \geq x$

coNP-hardness of QCSP $\left(\mathbb{Q} ;\right.$ M $\left.^{+}, \check{\mathrm{Z}}\right)$

$$
\check{Z}:=\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \in \mathbb{Q}^{4} \mid\left(x_{1} \neq y_{1} \vee x_{2} \neq y_{2}\right) \wedge\left(y_{1}<y_{2}\right)\right\},
$$

Lemma

QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}, \check{\mathrm{Z}}\right)$ is coNP-hard.

Proof idea:

- build a similar gadget as for $(\mathbb{Q} ; \mathrm{D})$ using constraints of the form $\mathrm{M}^{+}(x, y, z) \wedge \mathrm{M}^{+}(z, z, x)$ instead of $\mathrm{D}(x, y, z)$, that is,

$$
(x=y \Rightarrow x \geq z) \wedge(z \geq x) \text { instead of } x=y \Rightarrow x=z
$$

- use a Ž-constraint as a control mechanism for the choices of the EP

Remark: the constraints $\mathrm{M}^{+}(z, z, x)$ give unconditional constraints $z \geq x$ \sim we can prove only coNP-hardness

Open questions

Question 1: Do Ord-Horn QCSPs exhibit a dichotomy between coNPand PSPACE-hardness?

Open questions

Question 1: Do Ord-Horn QCSPs exhibit a dichotomy between coNPand PSPACE-hardness?

Question 2: Is $\operatorname{QCSP}\left(\mathbb{Q} ; x \neq y \vee x \geq z_{1} \vee x \geq z_{2}\right)$ in NP?
Answer 'yes' to Question $2 \Rightarrow$ membership in NP for $\operatorname{QCSP}(\mathfrak{B})$ for all \mathfrak{B} contained in the $\pi \pi$ fragment

Open questions

Question 1: Do Ord-Horn QCSPs exhibit a dichotomy between coNPand PSPACE-hardness?

Question 2: Is $\operatorname{QCSP}\left(\mathbb{Q} ; x \neq y \vee x \geq z_{1} \vee x \geq z_{2}\right)$ in NP?
Answer 'yes' to Question $2 \Rightarrow$ membership in NP for $\operatorname{QCSP}(\mathfrak{B})$ for all \mathfrak{B} contained in the $\pi \pi$ fragment

Question 3: Is $\operatorname{QCSP}(\mathbb{Q} ; x \neq y \vee x \geq z \vee x>w)$ in PTIME?
Answer 'yes' to Question $3 \Rightarrow$ tractability for $\operatorname{QCSP}(\mathfrak{B})$ for all \mathfrak{B} contained in the mi fragment [Bodirsky, Kára '09]

Open questions

Question 1: Do Ord-Horn QCSPs exhibit a dichotomy between coNPand PSPACE-hardness?

Question 2: Is $\operatorname{QCSP}\left(\mathbb{Q} ; x \neq y \vee x \geq z_{1} \vee x \geq z_{2}\right)$ in NP?
Answer 'yes' to Question $2 \Rightarrow$ membership in NP for $\operatorname{QCSP}(\mathfrak{B})$ for all \mathfrak{B} contained in the $\pi \pi$ fragment

Question 3: Is $\operatorname{QCSP}(\mathbb{Q} ; x \neq y \vee x \geq z \vee x>w)$ in PTIME?
Answer 'yes' to Question $3 \Rightarrow$ tractability for $\operatorname{QCSP}(\mathfrak{B})$ for all \mathfrak{B}
contained in the mi fragment [Bodirsky, Kára '09]
\hookrightarrow a maximal tractable fragment for CSPs
\hookrightarrow the last such fragment where it is unknown whether it is a maximal tractable fragment for QCSPs

Thank you for your attention

Funding statement: Funded by the European Union (ERC, POCOCOP, 101071674).
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

