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(Quantified) constraint satisfaction problem

(relational) structure B = (B;RB : R ∈ τ); finite signature τ
primitive positive (pp) formula: ∃y1, . . . , yl(ψ1 ∧ · · · ∧ ψm), ψi atomic

Definition (CSP)

Constraint Satisfaction Problem for B (CSP(B)):
Input: pp-formula Φ over τ

Question: B |= Φ?

quantified primitive positive (qpp) formula: both ∀ and ∃ are allowed

Definition (QCSP)

Quantified Constraint Satisfaction Problem for B (QCSP(B)):
Input: qpp-formula Φ over τ

Question: B |= Φ?
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Quantified constraint satisfaction problem

QCSP: a game between the universal player (UP) and the existential
player (EP) assigning variables x with JxK ∈ B.

EP: trying to satisfy all constraints.

UP: trying to violate some constraint.

The EP has a winning strategy ↔ B |= Φ.

The UP has a winning strategy ↔ B ̸|= Φ.

Example: D = {(x , y , z) ∈ Q3 | x = y ⇒ y = z}.

CSP(Q;D) is trivial: JxK := 0 for all x satisfies all constraints.

QCSP(Q;D) is PSPACE-complete (Zhuk, Martin, Wrona ’23).

Intuition:

UP: tries to force u = v for some u, v with JuK ̸= JvK
EP: obeys the constraints, does not introduce unnecessary equalities
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Žaneta Semanǐsinová (TU Dresden) Quantified Temporal Constraints TAT, 6 Jul 2024 3 / 22



Quantified constraint satisfaction problem

QCSP: a game between the universal player (UP) and the existential
player (EP) assigning variables x with JxK ∈ B.

EP: trying to satisfy all constraints.

UP: trying to violate some constraint.

The EP has a winning strategy ↔ B |= Φ.

The UP has a winning strategy ↔ B ̸|= Φ.

Example: D = {(x , y , z) ∈ Q3 | x = y ⇒ y = z}.

CSP(Q;D) is trivial: JxK := 0 for all x satisfies all constraints.

QCSP(Q;D) is PSPACE-complete (Zhuk, Martin, Wrona ’23).

Intuition:

UP: tries to force u = v for some u, v with JuK ̸= JvK
EP: obeys the constraints, does not introduce unnecessary equalities
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Žaneta Semanǐsinová (TU Dresden) Quantified Temporal Constraints TAT, 6 Jul 2024 3 / 22



Quantified constraint satisfaction problem

QCSP: a game between the universal player (UP) and the existential
player (EP) assigning variables x with JxK ∈ B.

EP: trying to satisfy all constraints.

UP: trying to violate some constraint.

The EP has a winning strategy ↔ B |= Φ.

The UP has a winning strategy ↔ B ̸|= Φ.

Example: D = {(x , y , z) ∈ Q3 | x = y ⇒ y = z}.

CSP(Q;D) is trivial: JxK := 0 for all x satisfies all constraints.

QCSP(Q;D) is PSPACE-complete (Zhuk, Martin, Wrona ’23).

Intuition:

UP: tries to force u = v for some u, v with JuK ̸= JvK
EP: obeys the constraints, does not introduce unnecessary equalities
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Overview of results on (Q)CSPs

Finite domains:

classification of CSPs (Bulatov ’17; Zhuk ’17)

classification of QCSPs with all unary relations and 3-element
structures with all singleton unary relations (Zhuk, Martin ’22)

Equality (Q)CSPs (relations fo-definable in (Q; =)):

classification of CSPs (Bodirsky, Kára ’08)

partial classification of QCSPs (Bodirsky, Chen ’10) – only complexity
of QCSP(Q;D) missing

full classification of QCSPs (Zhuk, Martin, Wrona ’23)

Temporal (Q)CSPs (relations fo-definable in (Q;<)):

classification of CSPs (Bodirsky, Kára ’10)

some classification results on QCSPs (Charatonik, Wrona ’08; Chen,
Wrona ’12; Bodirsky, Chen, Wrona ’14; Wrona ’14)
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some classification results on QCSPs (Charatonik, Wrona ’08; Chen,
Wrona ’12; Bodirsky, Chen, Wrona ’14; Wrona ’14)
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partial classification of QCSPs (Bodirsky, Chen ’10) – only complexity
of QCSP(Q;D) missing

full classification of QCSPs (Zhuk, Martin, Wrona ’23)

Temporal (Q)CSPs (relations fo-definable in (Q;<)):

classification of CSPs (Bodirsky, Kára ’10)
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Ord-Horn constraints

Ord-Horn (OH) fragment: temporal structures whose relations are
definable by an OH formula, i.e., a conjunction of clauses of the form

(x1 ̸= y1 ∨ · · · ∨ xk ̸= yk ∨ xk+1 ≥ yk+1) (last disjunct is optional).

Example (complexity within OH):
QCSP(Q;R) where R is defined by (x1 ̸= x2 ∨ x3 ≥ x4) ∧ ϕ is:

in PTIME if ϕ = (x3 ≥ x1) ∧ (x1 ≥ x3) ∧ (x3 ̸= x4) (Chen, Wrona ’12)

coNP-complete if ϕ = (
∧

i ,j∈{1,2} xi ̸= xj+2) (Zhuk ’22, pers. comm.)

PSPACE-complete if ϕ is empty (Zhuk, Martin, Wrona ’23)
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Three cases for Ord-Horn constraints

Theorem (Wrona ’14)

Let B be an OH structure. Then one of the following holds:

B is guarded OH.

QCSP(B) is coNP-hard.

B pp-defines M+ or M−.

M+ := {(x , y , z) ∈ Q3 | x = y ⇒ x ≥ z}
M− := {(x , y , z) ∈ Q3 | x = y ⇒ x ≤ z}
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Complexity of Ord-Horn constraints

Theorem (Chen, Wrona ’12)

Let B be a guarded OH structure. Then QCSP(B) is in PTIME.

Proposition (Bodirsky, Chen ’10)

Let A,B be structures with the same domain. If every relation of B is
qpp-definable in A, then QCSP(B) reduces to QCSP(A) in PTIME.

; need to understand QCSP(Q;M+) (QCSP(Q;M−) is the dual problem)

Complexity of QCSP(Q;M+): left open in [Bodirsky, Chen, Wrona ’14]
↪→ could have been anywhere between PTIME and PSPACE
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Example instance of QCSP(Q;M+)

Φ = ∃x1∀y1∃x2∀y2∃x3
(
(x1 = y1 ⇒ x1 ≥ x2) ∧ (x2 = x1 ⇒ x2 ≥ x3)

∧ (x3 = y1 ⇒ x3 ≥ y2) ∧ (x3 ≥ x2) ∧ (x2 ≥ x1)
)
.

x1 x2 x3 y2
y1 x1 y1

the EP plays Jx1K = 0

the UP plays Jy1K = 0, triggering the constraint x1 ≥ x2

the EP plays Jx2K = 0, obeying x1 ≥ x2 and x2 ≥ x1

this triggers the constraint x2 ≥ x3

the UP plays Jy2K = 1

the EP has to choose Jx3K = 0, because of x2 ≥ x3 and x3 ≥ x2

(x3 = y1 ⇒ x3 ≥ y2) is now falsified

the UP has a winning strategy on this instance ⇒ Φ is false
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Žaneta Semanǐsinová (TU Dresden) Quantified Temporal Constraints TAT, 6 Jul 2024 8 / 22



Example instance of QCSP(Q;M+)

Φ = ∃x1∀y1∃x2∀y2∃x3
(
(x1 = y1 ⇒ x1 ≥ x2) ∧ (x2 = x1 ⇒ x2 ≥ x3)

∧ (x3 = y1 ⇒ x3 ≥ y2) ∧ (x3 ≥ x2) ∧ (x2 ≥ x1)
)
.

x1 x2 x3 y2
y1 x1 y1

the EP plays Jx1K = 0

the UP plays Jy1K = 0, triggering the constraint x1 ≥ x2

the EP plays Jx2K = 0, obeying x1 ≥ x2 and x2 ≥ x1

this triggers the constraint x2 ≥ x3

the UP plays Jy2K = 1

the EP has to choose Jx3K = 0, because of x2 ≥ x3 and x3 ≥ x2

(x3 = y1 ⇒ x3 ≥ y2) is now falsified

the UP has a winning strategy on this instance ⇒ Φ is false
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Žaneta Semanǐsinová (TU Dresden) Quantified Temporal Constraints TAT, 6 Jul 2024 8 / 22



The setup

Wanted: PTIME-algorithm for QCSP(Q;M+)
M+ = {(x , y , z) ∈ Q3 | x = y ⇒ x ≥ z}

fix instance Φ of QCSP(Q;M+) over variables V = V∃ ∪V∀

ϕ := quantifier-free part of Φ

≺ := linear order on V from the order in the quantifier prefix of Φ

we write A ≺ B meaning x ≺ y , ∀x ∈ A, y ∈ B

Fact: It is possible to pp-define from M+ constraints of the form(∧
v∈A x = v

)
⇒ x ≥ z

by definitions of linear length.
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x-z-cut

For x , z ∈ V:
x-z-cut := {u ∈ V∀ | (V∃ ∩ {x , z}) ≺ u} \ {z}

x-z-cut comprises variables that the UP can play equal to x to trigger
the constraint x ≥ z

z is removed so that the constraint does not become trivial

Example: Φ := ∃u∀v∃w∀x∀y ϕ(u, v ,w , x , y)

u-w -cut = {x , y}
u-x-cut = {v , y}
v -x-cut = {v , y}
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Sketch of the algorithm

expand ϕ by constraints ψ of the form(∧
v∈A\x-z-cut x = v

)
⇒ x ≥ z

if ϕ ∧
(∧

v∈A x = v
)
∧ (x < z) is unsatisfiable

A ⊆ V∀ is of the form

↑u \{x , z} for x , z , u ∈ V,

where ↑u := {y ∈ V∀ | u ⪯ y}
↪→ polynomially many such sets

reject if (x ≥ z) or (z ≥ x) is derived where x ≺ z , z ∈ V∀

accept if no new constraints can be derived
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Žaneta Semanǐsinová (TU Dresden) Quantified Temporal Constraints TAT, 6 Jul 2024 11 / 22



Sketch of the algorithm

expand ϕ by constraints ψ of the form(∧
v∈A\x-z-cut x = v

)
⇒ x ≥ z

if ϕ ∧
(∧

v∈A x = v
)
∧ (x < z) is unsatisfiable

A ⊆ V∀ is of the form

↑u \{x , z} for x , z , u ∈ V,

where ↑u := {y ∈ V∀ | u ⪯ y}

↪→ polynomially many such sets

reject if (x ≥ z) or (z ≥ x) is derived where x ≺ z , z ∈ V∀

accept if no new constraints can be derived
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Žaneta Semanǐsinová (TU Dresden) Quantified Temporal Constraints TAT, 6 Jul 2024 11 / 22



Sketch of the algorithm

expand ϕ by constraints ψ of the form(∧
v∈A\x-z-cut x = v

)
⇒ x ≥ z

if ϕ ∧
(∧

v∈A x = v
)
∧ (x < z) is unsatisfiable

A ⊆ V∀ is of the form

↑u \{x , z} for x , z , u ∈ V,

where ↑u := {y ∈ V∀ | u ⪯ y}
↪→ polynomially many such sets

reject if (x ≥ z) or (z ≥ x) is derived where x ≺ z , z ∈ V∀

accept if no new constraints can be derived
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Algorithm for QCSP(Q;M+)

Input: an instance Φ of QCSP(Q;M+) with the quantifier-free part ϕ
Output: true or false
while ϕ changes do

for x , z , u ∈ V do
if ϕ contains the clause (x ≥ z) or (z ≥ x), where x ≺ z and
z ∈ V∀ then

return false;
if ϕ ∧ (

∧
v∈↑u\{x ,z} x = v) ∧ (x < z) is unsatisfiable then

expand ϕ by the clause(
(
∧

v∈↑u\({x ,z}∪x-z-cut) x = v) ⇒ x ≥ z
)
;

return true;

↪→ CSP(Q;<,M+) is in PTIME ⇒ the satisfiability test runs in PTIME
↪→ the algorithm runs in PTIME
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Example of the run of the algorithm

Φ = ∃x1∀x2∃x3∀x4∃x5
(
(x1 = x2 ⇒ x1 ≥ x5) ∧ (x3 = x2 ⇒ x3 ≥ x4)

∧ (x5 = x4 ⇒ x5 ≥ x3) ∧ (x3 ≥ x1) ∧ (x5 ≥ x1)
)
.

x1 x5 x3 x4
x2 x4 x2

Claim: The algorithm derives (x1 ≥ x4), and thereby rejects on Φ.

ϕ ∧ (x1 = x2) ∧ (x1 = x4) implies x1 = x2 = x4 = x5 = x3.

Hence, ϕ ∧ (
∧

v∈↑x2\{x1,x3}
x1 = v) ∧ (x1 < x3) is not satisfiable.

x1-x3-cut = {x4} ; ↑x2 \({x1, x3} ∪ x1-x3-cut) = {x2}
Hence, the algorithm expands ϕ by (x1 = x2 ⇒ x1 ≥ x3).

Now ϕ ∧ (x1 = x2) implies x1 = x2 = x3 ≥ x4.

Hence, ϕ ∧ (
∧

v∈↑x2\{x1,x4}
x1 = v) ∧ (x1 < x4) is not satisfiable.

x1-x4-cut = {x2} ; ↑x2 \({x1, x4} ∪ x1-x4-cut) = ∅
Hence, the algorithm expands ϕ by (x1 ≥ x4).
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ϕ ∧ (x1 = x2) ∧ (x1 = x4) implies x1 = x2 = x4 = x5 = x3.

Hence, ϕ ∧ (
∧

v∈↑x2\{x1,x3}
x1 = v) ∧ (x1 < x3) is not satisfiable.

x1-x3-cut = {x4} ; ↑x2 \({x1, x3} ∪ x1-x3-cut) = {x2}
Hence, the algorithm expands ϕ by (x1 = x2 ⇒ x1 ≥ x3).

Now ϕ ∧ (x1 = x2) implies x1 = x2 = x3 ≥ x4.

Hence, ϕ ∧ (
∧

v∈↑x2\{x1,x4}
x1 = v) ∧ (x1 < x4) is not satisfiable.
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The algorithm on false instances

Lemma (Rydval, S., Wrona ’24)

If the algorithm derives from Φ a constraint ψ, then Φ is true iff Φ
expanded by ψ is true.

Proof: (almost) straightforward induction

Whenever the algorithm rejects, it derived

x ≥ z or z ≥ x where x ≺ z , z ∈ V∀.

Lemma ⇒ Φ is false ⇒ the algorithm rejects false instances

Žaneta Semanǐsinová (TU Dresden) Quantified Temporal Constraints TAT, 6 Jul 2024 14 / 22



The algorithm on false instances

Lemma (Rydval, S., Wrona ’24)

If the algorithm derives from Φ a constraint ψ, then Φ is true iff Φ
expanded by ψ is true.

Proof: (almost) straightforward induction

Whenever the algorithm rejects, it derived

x ≥ z or z ≥ x where x ≺ z , z ∈ V∀.

Lemma ⇒ Φ is false ⇒ the algorithm rejects false instances
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The algorithm on true instances

Proof system P:

P derives predicates of the form P(x , z ;A), x , z ∈ V, A ⊆ V∀.

Intuitive interpretation:
(∧

v∈A x = v
)
⇒ x ≥ z .

Lemma (Rydval, S., Wrona ’24)

If P(x , z ;A) is derived and z /∈ A, then the algorithm expands ϕ by((∧
v∈↑A\({x ,z}∪x-z-cut)

x = v
)
⇒ x ≥ z

)
.

In particular, it expands ϕ by (x ≥ z) for every P(x , z ; ∅).

If the proof system does not derive P(x , z ; ∅) or P(z , x ; ∅) for x ≺ z,
z ∈ V∀, then Φ is true.

↪→ conditional constraints are necessary for this to be true
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Žaneta Semanǐsinová (TU Dresden) Quantified Temporal Constraints TAT, 6 Jul 2024 15 / 22



The algorithm on true instances

Proof system P:

P derives predicates of the form P(x , z ;A), x , z ∈ V, A ⊆ V∀.

Intuitive interpretation:
(∧

v∈A x = v
)
⇒ x ≥ z .

Lemma (Rydval, S., Wrona ’24)

If P(x , z ;A) is derived and z /∈ A, then the algorithm expands ϕ by((∧
v∈↑A\({x ,z}∪x-z-cut)

x = v
)
⇒ x ≥ z

)
.

In particular, it expands ϕ by (x ≥ z) for every P(x , z ; ∅).

If the proof system does not derive P(x , z ; ∅) or P(z , x ; ∅) for x ≺ z,
z ∈ V∀, then Φ is true.

; the algorithm accepts correctly
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The proof system P

“Trial version” of P

Initialize P(x ,x ;∅) :− x∈V

Simplify P(x ,z ;A\x-z-cut) :− P(x ,z ;A)

Transitivity P(x ,z ;A) :− P(x ,y ;A)∧P(y ,z ;∅)

Constraint P(x ,z ;y) :− (x=y⇒x≥z)∧y∈V∀

Example (transitivity): P(x , z ;A) :− P(x , y ;A) ∧ P(y , z ; ∅)( (∧
v∈A x = v

)
⇒ x ≥ y

)
∧ (y ≥ z)

;
(∧

v∈A x = v
)
⇒ x ≥ z
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P does not give a PTIME-algorithm

Example: Φ = ∃x1∀y01∀y11∃x2∀y02∀y12 · · · ∃xn−1∀y0n−1∀y1n−1∃xn∀yn

x1

x2
· · · xn−1

xn yn

y 0
1

y 1
1

y 0
2

y 1
2

y 0
n−2

y 1
n−2 y 0

n−1

y 1
n−1 x1

P follows shortest derivation sequences

P derives P(x1, xn; {y i11 , . . . , y
in−1

n−1}) for all i1, . . . , in−1 ∈ {0, 1}
the algorithm derives (xn−1 ≥ x1), . . . , (x2 ≥ x1), (x1 ≥ yn)

the algorithm rejects because of (x1 ≥ yn)

P may derive exponentially many predicates
⇒ does not give a PTIME-algorithm
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Tractability consequences

Theorem (Rydval, S., Wrona ’24)

QCSP(Q;M+) is in PTIME.

Corollary

QCSP(B) is in PTIME if B is a structure whose relations are definable by
a conjunction of clauses of the form

(x ̸= y1 ∨ · · · ∨ x ̸= yk ∨ x ≥ z)

for k ≥ 0 and where the last disjunct (x ≥ z) may be omitted.

Equivalently: structures B whose relations lie both in the OH fragment
and the ππ fragment (pp fragment from [Bodirsky, Kára ’09]).
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Complexity dichotomy for Ord-Horn constraints

Lemma (Rydval, S., Wrona ’24)

Let B be an OH structure that is not contained in the ππ fragment and
pp-defines M+. Then QCSP(B) is coNP-hard.

Theorem (Rydval, S., Wrona ’24)

Let B be an OH structure. Then QCSP(B) is in PTIME if B is guarded
OH, contained in the ππ fragment, or in the dual ππ fragment. Otherwise,
QCSP(B) is coNP-hard.

Proof idea (lemma):

B pp-defines R of arity ≤ 4 outside of the ππ fragment.

R qpp-defines D (⇒ PSPACE-hardness) or a certain relation Ž.

QCSP(Q;M+, Ž) is coNP-hard.
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coNP-hardness of QCSP(Q;M+, Ž)

Ž := {(x1, y1, x2, y2) ∈ Q4 | (x1 ̸= y1 ∨ x2 ̸= y2) ∧ (y1 < y2)},

Lemma

QCSP(Q;M+, Ž) is coNP-hard.

Proof idea:

build a similar gadget as for (Q;D) using constraints of the form
M+(x , y , z) ∧M+(z , z , x) instead of D(x , y , z), that is,

(x = y ⇒ x ≥ z) ∧ (z ≥ x) instead of x = y ⇒ x = z

use a Ž-constraint as a control mechanism for the choices of the EP

Remark: the constraints M+(z , z , x) give unconditional constraints z ≥ x
; we can prove only coNP-hardness
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QCSP(Q;M+, Ž) is coNP-hard.

Proof idea:

build a similar gadget as for (Q;D) using constraints of the form
M+(x , y , z) ∧M+(z , z , x) instead of D(x , y , z), that is,

(x = y ⇒ x ≥ z) ∧ (z ≥ x) instead of x = y ⇒ x = z
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Open questions

Question 1: Do Ord-Horn QCSPs exhibit a dichotomy between coNP-
and PSPACE-hardness?

Question 2: Is QCSP(Q; x ̸= y ∨ x ≥ z1 ∨ x ≥ z2) in NP?

Answer ‘yes’ to Question 2 ⇒ membership in NP for QCSP(B) for all B
contained in the ππ fragment

Question 3: Is QCSP(Q; x ̸= y ∨ x ≥ z ∨ x > w) in PTIME?

Answer ‘yes’ to Question 3 ⇒ tractability for QCSP(B) for all B
contained in the mi fragment [Bodirsky, Kára ’09]

↪→ a maximal tractable fragment for CSPs

↪→ the last such fragment where it is unknown whether it is a maximal
tractable fragment for QCSPs
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