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(Quantified) constraint satisfaction problem

(relational) structure B = (B;RB : R ∈ τ); finite signature τ
primitive positive (pp) formula: ∃y1, . . . , yl(ψ1 ∧ · · · ∧ ψm), ψi atomic

Definition (CSP)

Constraint Satisfaction Problem for B (CSP(B)):
Input: pp-formula Φ over signature τ

Question: Does B |= Φ?

quantified primitive positive (qpp) formula: both ∀ and ∃ are allowed

Definition (QCSP)

Quantified Constraint Satisfaction Problem for B (QCSP(B)):
Input: qpp-formula Φ over signature τ

Question: Does B |= Φ?
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Quantified constraint satisfaction problem

QCSP can be seen as a game between the universal player (UP) and
the existential player (EP) assigning variables x with JxK ∈ B.

EP: trying to satisfy all constraints.

UP: trying to violate some constraint.

The EP has a winning strategy ↔ B |= Φ.

The UP has a winning strategy ↔ B ̸|= Φ.

Example: D = {(x , y , z) ∈ Q3 | x = y ⇒ y = z}.

CSP(Q;D) is trivial: JxK := 0 for all x satisfies all constraints.

QCSP(Q;D) is PSPACE-complete.

Intuition:

UP: tries to force u = v for some u, v with JuK ̸= JvK
EP: obeys the constraints, does not introduce unnecessary equalities
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Overview of results on (Q)CSPs

Finite domains:

classification of CSPs (Bulatov ’17; Zhuk ’17)

classification of QCSPs with all unary relations and 3-element
structures with all singleton unary relations (Zhuk, Martin ’22)

Equality (Q)CSPs (relations fo-definable in (Q; =)):

classification of CSPs (Bodirsky, Kára ’08)

partial classification of QCSPs (Bodirsky, Chen ’10) – only complexity
of QCSP(Q;D) missing

full classification of QCSPs (Zhuk, Martin, Wrona ’22)

Temporal (Q)CSPs (relations fo-definable in (Q;<)):

classification of CSPs (Bodirsky, Kára ’10)

some classification results on QCSPs (Charatonik, Wrona ’08; Chen,
Wrona ’12; Bodirsky, Chen, Wrona ’14; Wrona ’14)
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Žaneta Semanǐsinová (TU Dresden) Quantified Temporal Constraints within OH AAA105, 1 Jun 2024 4 / 14



Overview of results on (Q)CSPs

Finite domains:

classification of CSPs (Bulatov ’17; Zhuk ’17)

classification of QCSPs with all unary relations and 3-element
structures with all singleton unary relations (Zhuk, Martin ’22)

Equality (Q)CSPs (relations fo-definable in (Q; =)):

classification of CSPs (Bodirsky, Kára ’08)
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partial classification of QCSPs (Bodirsky, Chen ’10) – only complexity
of QCSP(Q;D) missing

full classification of QCSPs (Zhuk, Martin, Wrona ’22)

Temporal (Q)CSPs (relations fo-definable in (Q;<)):

classification of CSPs (Bodirsky, Kára ’10)
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Ord-Horn constraints

Ord-Horn (OH) fragment: temporal structures whose relations are
definable by an OH formula, i.e., a conjunction of clauses of the form

(x1 ̸= y1 ∨ · · · ∨ xk ̸= yk ∨ xk+1 ≥ yk+1) (last disjunct is optional).

↪→ contains QCSPs that are in PTIME, coNP- and PSPACE-complete

M+ := {(x , y , z) ∈ Q3 | x = y ⇒ x ≥ z}
M− := {(x , y , z) ∈ Q3 | x = y ⇒ x ≤ z}.

Theorem (Wrona ’14)

Let B be an OH structure. Then one of the following holds:

B is guarded OH.

QCSP(B) is coNP-hard.

B pp-defines M+ or M−.
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Complexity of Ord-Horn constraints

Theorem (Chen, Wrona ’12)

Let B be a guarded OH structure. Then QCSP(B) is in PTIME.

Proposition (Bodirsky, Chen ’10)

Let A,B be structures with the same domain. If every relation of B is
qpp-definable in A, then QCSP(B) reduces to QCSP(A) in PTIME.

; need to understand QCSP(Q;M+) (QCSP(Q;M−) is the dual problem)

Complexity of QCSP(Q;M+): left open in [Bodirsky, Chen, Wrona ’14]
↪→ could have been anywhere between PTIME and PSPACE
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Tractability of QCSP(Q;M+)

Theorem (Rydval, S., Wrona ’24)

QCSP(Q;M+) is in PTIME.

Fix: instance Φ of QCSP(Q;M+) with quantifier-free part ϕ over variables
V = V∃ ∪V∀

≺ := the linear order on V from the order in the quantifier prefix of Φ
We write A ≺ B meaning x ≺ y , ∀x ∈ A, y ∈ B.

Fact: It is possible to pp-define from M+ constraints of the form(∧
v∈A x = v

)
⇒ x ≥ z .
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Sketch of the algorithm

expand ϕ by constraints ψ of the form(∧
v∈A\x-z-cut x = v

)
⇒ x ≥ z

if ϕ ∧
(∧

v∈A x = v
)
∧ (x < z) is unsatisfiable

A ⊆ V∀ is of the form

↑u \{x , z} for x , z , u ∈ V,

where ↑u := {y ∈ V∀ | u ⪯ y}
reject if constraint (x ≥ z) or (z ≥ x) is derived where x ≺ z , z ∈ V∀

accept if no new constraints can be derived
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expand ϕ by constraints ψ of the form(∧
v∈A\x-z-cut x = v

)
⇒ x ≥ z

if ϕ ∧
(∧

v∈A x = v
)
∧ (x < z) is unsatisfiable

A ⊆ V∀ is of the form

↑u \{x , z} for x , z , u ∈ V,

where ↑u := {y ∈ V∀ | u ⪯ y}
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x-z-cut

For x , z ∈ V:
x-z-cut := {u ∈ V∀ | (V∃ ∩ {x , z}) ≺ u} \ {z}

x-z-cut comprises variables that the UP can play equal to x to trigger
the constraint x ≥ z

z is removed so that the constraint does not become trivial

Example: Φ := ∃u∀v∃w∀x∀y ϕ(u, v ,w , x , y)

u-w -cut = {x , y};

u-x-cut = {v , y};

v -x-cut = {v , y}.

Žaneta Semanǐsinová (TU Dresden) Quantified Temporal Constraints within OH AAA105, 1 Jun 2024 9 / 14



x-z-cut

For x , z ∈ V:
x-z-cut := {u ∈ V∀ | (V∃ ∩ {x , z}) ≺ u} \ {z}

x-z-cut comprises variables that the UP can play equal to x to trigger
the constraint x ≥ z

z is removed so that the constraint does not become trivial

Example: Φ := ∃u∀v∃w∀x∀y ϕ(u, v ,w , x , y)

u-w -cut = {x , y};

u-x-cut = {v , y};

v -x-cut = {v , y}.

Žaneta Semanǐsinová (TU Dresden) Quantified Temporal Constraints within OH AAA105, 1 Jun 2024 9 / 14



Example of the run of the algorithm

Φ = ∃x1∀x2∃x3∀x4∃x5
(
(x1 = x2 ⇒ x1 ≥ x5) ∧ (x3 = x2 ⇒ x3 ≥ x4)

∧ (x5 = x4 ⇒ x5 ≥ x3) ∧ (x3 ≥ x1) ∧ (x5 ≥ x1)
)
.

x1 x5 x3 x4
x2 x4 x2

Claim: The algorithm derives (x1 ≥ x4), and thereby rejects on Φ.

ϕ ∧ (x1 = x2) ∧ (x1 = x4) implies x1 = x2 = x4 = x5 = x3.

Hence, ϕ ∧ (
∧

v∈↑x2\{x1,x3}
x1 = v) ∧ (x1 < x3) is not satisfiable.

x1-x3-cut = {x4} ; ↑x2 \({x1, x3} ∪ x1-x3-cut) = {x2}
Hence, the algorithm expands ϕ by (x1 = x2 ⇒ x1 ≥ x3).

Now ϕ ∧ (x1 = x2) implies x1 = x2 = x3 ≥ x4.

Hence ϕ ∧ (
∧

v∈↑x2\{x1,x4}
x1 = v) ∧ (x1 < x4) is not satisfiable.

x1-x4-cut = {x2} ; ↑x2 \({x1, x4} ∪ x1-x4-cut) = ∅
Hence the algorithm expands ϕ by (x1 ≥ x4).
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Tractability consequences

Corollary

QCSP(B) is in PTIME if B is a structure whose relations are definable by
a conjunction of clauses of the form

(x ̸= y1 ∨ · · · ∨ x ̸= yk ∨ x ≥ z)

for k ≥ 0 and where the last disjunct (x ≥ z) may be omitted.

Equivalently: structures B whose relations lie both in the OH fragment
and the ππ-fragment (preserved by the operation ππ –
‘projection-projection’ operation from [Bodirsky, Kára ’09]).
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Complexity dichotomy for Ord-Horn constraints

Lemma (Rydval, S., Wrona ’24)

Let B be an OH structure that is not contained in the ππ fragment and
pp-defines M+. Then QCSP(B) is coNP-hard.

Proof idea:

B pp-defines R of arity ≤ 4 outside of the ππ fragment.

R qpp-defines D (⇒ PSPACE-hardness) or a certain relation Ž.

(Q;M+, Ž) is coNP-hard.

Theorem (Rydval, S., Wrona ’24)

Let B be an OH structure. Then QCSP(B) is in PTIME if B is guarded
OH, contained in the ππ fragment, or in the dual ππ fragment. Otherwise,
QCSP(B) is coNP-hard.
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Žaneta Semanǐsinová (TU Dresden) Quantified Temporal Constraints within OH AAA105, 1 Jun 2024 12 / 14



Open questions

Question 1: Do Ord-Horn QCSPs exhibit a dichotomy between coNP-
and PSPACE-hardness?

Question 2: Is QCSP(Q; x ̸= y ∨ x ≥ z ∨ x > w) in PTIME?

Answer ‘yes’ to Question 2 ⇒ tractability for QCSP(B) for all B contained
in the mi fragment (preserved by the operation mi [Bodirsky, Kára ’09])
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