Identifying Tractable Quantified Temporal Constraints within Ord-Horn

```
Žaneta Semanišinová joint work with Jakub Rydval and Michał Wrona
Institute of Algebra
TU Dresden
AAA105
1 Jun 2024
```


erc

```
European Research Council
ERC Synergy Grant POCOCOP (GA 101071674)
```


(Quantified) constraint satisfaction problem

(relational) structure $\mathfrak{B}=\left(B ; R^{\mathfrak{B}}: R \in \tau\right)$; finite signature τ primitive positive (pp) formula: $\exists y_{1}, \ldots, y_{l}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right), \psi_{i}$ atomic

(Quantified) constraint satisfaction problem

(relational) structure $\mathfrak{B}=\left(B ; R^{\mathfrak{B}}: R \in \tau\right)$; finite signature τ primitive positive (pp) formula: $\exists y_{1}, \ldots, y_{l}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right), \psi_{i}$ atomic

Definition (CSP)

Constraint Satisfaction Problem for $\mathfrak{B}(\operatorname{CSP}(\mathfrak{B}))$:
Input: pp-formula Φ over signature τ
Question: Does $\mathfrak{B} \vDash \Phi$?

(Quantified) constraint satisfaction problem

(relational) structure $\mathfrak{B}=\left(B ; R^{\mathfrak{B}}: R \in \tau\right)$; finite signature τ primitive positive (pp) formula: $\exists y_{1}, \ldots, y_{l}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right), \psi_{i}$ atomic

Definition (CSP)

Constraint Satisfaction Problem for $\mathfrak{B}(\operatorname{CSP}(\mathfrak{B}))$:
Input: pp-formula Φ over signature τ
Question: Does $\mathfrak{B} \models \Phi$?
quantified primitive positive (qpp) formula: both \forall and \exists are allowed

(Quantified) constraint satisfaction problem

(relational) structure $\mathfrak{B}=\left(B ; R^{\mathfrak{B}}: R \in \tau\right)$; finite signature τ primitive positive (pp) formula: $\exists y_{1}, \ldots, y_{l}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right), \psi_{i}$ atomic

Definition (CSP)

Constraint Satisfaction Problem for $\mathfrak{B}(\operatorname{CSP}(\mathfrak{B}))$:
Input: pp-formula Φ over signature τ
Question: Does $\mathfrak{B} \models \Phi$?
quantified primitive positive (qpp) formula: both \forall and \exists are allowed

Definition (QCSP)

Quantified Constraint Satisfaction Problem for $\mathfrak{B}(\operatorname{QCSP}(\mathfrak{B}))$:
Input: qpp-formula Φ over signature τ
Question: Does $\mathfrak{B} \models \Phi$?

Quantified constraint satisfaction problem

- QCSP can be seen as a game between the universal player (UP) and the existential player (EP) assigning variables x with $\llbracket x \rrbracket \in B$.

Quantified constraint satisfaction problem

- QCSP can be seen as a game between the universal player (UP) and the existential player (EP) assigning variables x with $\llbracket x \rrbracket \in B$.
- EP: trying to satisfy all constraints.
- UP: trying to violate some constraint.

Quantified constraint satisfaction problem

- QCSP can be seen as a game between the universal player (UP) and the existential player (EP) assigning variables x with $\llbracket x \rrbracket \in B$.
- EP: trying to satisfy all constraints.
- UP: trying to violate some constraint.
- The EP has a winning strategy $\leftrightarrow \mathfrak{B} \models \Phi$.
- The UP has a winning strategy $\leftrightarrow \mathfrak{B} \not \vDash \Phi$.

Quantified constraint satisfaction problem

- QCSP can be seen as a game between the universal player (UP) and the existential player (EP) assigning variables x with $\llbracket x \rrbracket \in B$.
- EP: trying to satisfy all constraints.
- UP: trying to violate some constraint.
- The EP has a winning strategy $\leftrightarrow \mathfrak{B} \models \Phi$.
- The UP has a winning strategy $\leftrightarrow \mathfrak{B} \not \models \Phi$.

Example: $\mathrm{D}=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow y=z\right\}$.

Quantified constraint satisfaction problem

- QCSP can be seen as a game between the universal player (UP) and the existential player (EP) assigning variables x with $\llbracket x \rrbracket \in B$.
- EP: trying to satisfy all constraints.
- UP: trying to violate some constraint.
- The EP has a winning strategy $\leftrightarrow \mathfrak{B} \models \Phi$.
- The UP has a winning strategy $\leftrightarrow \mathfrak{B} \not \models \Phi$.

Example: $\mathrm{D}=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow y=z\right\}$.

- $\operatorname{CSP}(\mathbb{Q} ; \mathrm{D})$ is trivial: $\llbracket x \rrbracket:=0$ for all x satisfies all constraints.

Quantified constraint satisfaction problem

- QCSP can be seen as a game between the universal player (UP) and the existential player (EP) assigning variables x with $\llbracket x \rrbracket \in B$.
- EP: trying to satisfy all constraints.
- UP: trying to violate some constraint.
- The EP has a winning strategy $\leftrightarrow \mathfrak{B} \models \Phi$.
- The UP has a winning strategy $\leftrightarrow \mathfrak{B} \not \models \Phi$.

Example: $\mathrm{D}=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow y=z\right\}$.

- $\operatorname{CSP}(\mathbb{Q} ; \mathrm{D})$ is trivial: $\llbracket x \rrbracket:=0$ for all x satisfies all constraints.
- $\operatorname{QCSP}(\mathbb{Q} ; \mathrm{D})$ is PSPACE-complete.

Quantified constraint satisfaction problem

- QCSP can be seen as a game between the universal player (UP) and the existential player (EP) assigning variables x with $\llbracket x \rrbracket \in B$.
- EP: trying to satisfy all constraints.
- UP: trying to violate some constraint.
- The EP has a winning strategy $\leftrightarrow \mathfrak{B} \models \Phi$.
- The UP has a winning strategy $\leftrightarrow \mathfrak{B} \not \models \Phi$.

Example: $\mathrm{D}=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow y=z\right\}$.

- $\operatorname{CSP}(\mathbb{Q} ; \mathrm{D})$ is trivial: $\llbracket x \rrbracket:=0$ for all x satisfies all constraints.
- $\operatorname{QCSP}(\mathbb{Q} ; \mathrm{D})$ is PSPACE-complete.

Intuition:

- UP: tries to force $u=v$ for some u, v with $\llbracket u \rrbracket \neq \llbracket v \rrbracket$
- EP: obeys the constraints, does not introduce unnecessary equalities

Overview of results on (Q)CSPs

Finite domains:

- classification of CSPs (Bulatov '17; Zhuk '17)

Overview of results on (Q)CSPs

Finite domains:

- classification of CSPs (Bulatov '17; Zhuk '17)
- classification of QCSPs with all unary relations and 3-element structures with all singleton unary relations (Zhuk, Martin '22)

Overview of results on (Q)CSPs

Finite domains:

- classification of CSPs (Bulatov '17; Zhuk '17)
- classification of QCSPs with all unary relations and 3-element structures with all singleton unary relations (Zhuk, Martin '22)
Equality (Q)CSPs (relations fo-definable in $(\mathbb{Q} ;=)$):
- classification of CSPs (Bodirsky, Kára '08)

Overview of results on (Q)CSPs

Finite domains:

- classification of CSPs (Bulatov '17; Zhuk '17)
- classification of QCSPs with all unary relations and 3-element structures with all singleton unary relations (Zhuk, Martin '22)
Equality (Q)CSPs (relations fo-definable in ($\mathbb{Q} ;=)$):
- classification of CSPs (Bodirsky, Kára '08)
- partial classification of QCSPs (Bodirsky, Chen '10) - only complexity of QCSP $(\mathbb{Q} ; \mathrm{D})$ missing

Overview of results on (Q)CSPs

Finite domains:

- classification of CSPs (Bulatov '17; Zhuk '17)
- classification of QCSPs with all unary relations and 3-element structures with all singleton unary relations (Zhuk, Martin '22)
Equality (Q)CSPs (relations fo-definable in $(\mathbb{Q} ;=)$):
- classification of CSPs (Bodirsky, Kára '08)
- partial classification of QCSPs (Bodirsky, Chen '10) - only complexity of QCSP (\mathbb{Q}; D) missing
- full classification of QCSPs (Zhuk, Martin, Wrona '22)

Overview of results on (Q)CSPs

Finite domains:

- classification of CSPs (Bulatov '17; Zhuk '17)
- classification of QCSPs with all unary relations and 3-element structures with all singleton unary relations (Zhuk, Martin '22)
Equality (Q)CSPs (relations fo-definable in $(\mathbb{Q} ;=)$):
- classification of CSPs (Bodirsky, Kára '08)
- partial classification of QCSPs (Bodirsky, Chen '10) - only complexity of QCSP (\mathbb{Q}; D) missing
- full classification of QCSPs (Zhuk, Martin, Wrona '22)

Temporal (Q)CSPs (relations fo-definable in $(\mathbb{Q} ;<)$):

- classification of CSPs (Bodirsky, Kára '10)

Overview of results on (Q)CSPs

Finite domains:

- classification of CSPs (Bulatov '17; Zhuk '17)
- classification of QCSPs with all unary relations and 3-element structures with all singleton unary relations (Zhuk, Martin '22)
Equality (Q)CSPs (relations fo-definable in $(\mathbb{Q} ;=)$):
- classification of CSPs (Bodirsky, Kára '08)
- partial classification of QCSPs (Bodirsky, Chen '10) - only complexity of QCSP (\mathbb{Q}; D) missing
- full classification of QCSPs (Zhuk, Martin, Wrona '22)

Temporal (Q)CSPs (relations fo-definable in $(\mathbb{Q} ;<)$):

- classification of CSPs (Bodirsky, Kára '10)
- some classification results on QCSPs (Charatonik, Wrona '08; Chen, Wrona '12; Bodirsky, Chen, Wrona '14; Wrona '14)

Ord-Horn constraints

Ord-Horn (OH) fragment: temporal structures whose relations are definable by an OH formula, i.e., a conjunction of clauses of the form

$$
\left(x_{1} \neq y_{1} \vee \cdots \vee x_{k} \neq y_{k} \vee x_{k+1} \geq y_{k+1}\right) \text { (last disjunct is optional). }
$$

Ord-Horn constraints

Ord-Horn (OH) fragment: temporal structures whose relations are definable by an OH formula, i.e., a conjunction of clauses of the form

$$
\left(x_{1} \neq y_{1} \vee \cdots \vee x_{k} \neq y_{k} \vee x_{k+1} \geq y_{k+1}\right) \text { (last disjunct is optional). }
$$

\hookrightarrow contains QCSPs that are in PTIME, coNP- and PSPACE-complete

Ord-Horn constraints

Ord-Horn (OH) fragment: temporal structures whose relations are definable by an OH formula, i.e., a conjunction of clauses of the form

$$
\left(x_{1} \neq y_{1} \vee \cdots \vee x_{k} \neq y_{k} \vee x_{k+1} \geq y_{k+1}\right) \text { (last disjunct is optional). }
$$

\hookrightarrow contains QCSPs that are in PTIME, coNP- and PSPACE-complete

$$
\begin{aligned}
& \mathrm{M}^{+}:=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow x \geq z\right\} \\
& \mathrm{M}^{-}:=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow x \leq z\right\}
\end{aligned}
$$

Ord-Horn constraints

Ord-Horn (OH) fragment: temporal structures whose relations are definable by an OH formula, i.e., a conjunction of clauses of the form

$$
\left(x_{1} \neq y_{1} \vee \cdots \vee x_{k} \neq y_{k} \vee x_{k+1} \geq y_{k+1}\right) \text { (last disjunct is optional). }
$$

\hookrightarrow contains QCSPs that are in PTIME, coNP- and PSPACE-complete

$$
\begin{aligned}
& \mathrm{M}^{+}:=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow x \geq z\right\} \\
& \mathrm{M}^{-}:=\left\{(x, y, z) \in \mathbb{Q}^{3} \mid x=y \Rightarrow x \leq z\right\}
\end{aligned}
$$

Theorem (Wrona '14)

Let \mathfrak{B} be an OH structure. Then one of the following holds:

- \mathfrak{B} is guarded OH .
- QCSP(\mathfrak{B}) is coNP-hard.
- \mathfrak{B} pp-defines M^{+}or M^{-}.

Complexity of Ord-Horn constraints

Theorem (Chen, Wrona '12)

Let \mathfrak{B} be a guarded $O H$ structure. Then $\operatorname{QCSP}(\mathfrak{B})$ is in PTIME.

Complexity of Ord-Horn constraints

Theorem (Chen, Wrona '12)

Let \mathfrak{B} be a guarded OH structure. Then $\operatorname{QCSP}(\mathfrak{B})$ is in PTIME.

Proposition (Bodirsky, Chen '10)

Let $\mathfrak{A}, \mathfrak{B}$ be structures with the same domain. If every relation of \mathfrak{B} is qpp-definable in \mathfrak{A}, then $\operatorname{QCSP}(\mathfrak{B})$ reduces to $\operatorname{QCSP}(\mathfrak{A})$ in PTIME.

Complexity of Ord-Horn constraints

Theorem (Chen, Wrona '12)

Let \mathfrak{B} be a guarded $O H$ structure. Then $\operatorname{QCSP}(\mathfrak{B})$ is in PTIME.

Proposition (Bodirsky, Chen '10)

Let $\mathfrak{A}, \mathfrak{B}$ be structures with the same domain. If every relation of \mathfrak{B} is qpp-definable in \mathfrak{A}, then $\operatorname{QCSP}(\mathfrak{B})$ reduces to $\operatorname{QCSP}(\mathfrak{A})$ in PTIME.
\leadsto need to understand $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)\left(\mathrm{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{-}\right)\right.$is the dual problem $)$

Complexity of Ord-Horn constraints

Theorem (Chen, Wrona '12)

Let \mathfrak{B} be a guarded $O H$ structure. Then $\operatorname{QCSP}(\mathfrak{B})$ is in PTIME.

Proposition (Bodirsky, Chen '10)

Let $\mathfrak{A}, \mathfrak{B}$ be structures with the same domain. If every relation of \mathfrak{B} is qpp-definable in \mathfrak{A}, then $\operatorname{QCSP}(\mathfrak{B})$ reduces to $\operatorname{QCSP}(\mathfrak{A})$ in PTIME.
\sim need to understand $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)\left(\mathrm{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{-}\right)\right.$is the dual problem $)$
Complexity of $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$: left open in [Bodirsky, Chen, Wrona '14] \hookrightarrow could have been anywhere between PTIME and PSPACE

Tractability of QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}\right)$

Theorem (Rydval, S., Wrona '24)
 QCSP($\left.\mathbb{Q} ; \mathrm{M}^{+}\right)$is in PTIME.

Fix: instance Φ of $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$with quantifier-free part ϕ over variables $V=V_{\exists} \cup V_{\forall}$

Tractability of QCSP(Q) $\left.\mathrm{M}^{+}\right)$

Theorem (Rydval, S., Wrona '24) QCSP $\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$is in PTIME.

Fix: instance Φ of $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$with quantifier-free part ϕ over variables $\mathrm{V}=\mathrm{V}_{\exists} \cup \mathrm{V}_{\forall}$
$\prec:=$ the linear order on V from the order in the quantifier prefix of Φ We write $A \prec B$ meaning $x \prec y, \forall x \in A, y \in B$.

Tractability of QCSP(Q) $\left.\mathrm{M}^{+}\right)$

Theorem (Rydval, S., Wrona '24) QCSP $\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$is in PTIME.

Fix: instance Φ of $\operatorname{QCSP}\left(\mathbb{Q} ; \mathrm{M}^{+}\right)$with quantifier-free part ϕ over variables $\mathrm{V}=\mathrm{V}_{\exists} \cup \mathrm{V}_{\forall}$
$\prec:=$ the linear order on V from the order in the quantifier prefix of Φ We write $A \prec B$ meaning $x \prec y, \forall x \in A, y \in B$.

Fact: It is possible to pp-define from M^{+}constraints of the form

$$
\left(\bigwedge_{v \in A} x=v\right) \Rightarrow x \geq z
$$

Sketch of the algorithm

- expand ϕ by constraints ψ of the form

$$
\left(\bigwedge_{v \in A \backslash x-z-\mathrm{cut}} x=v\right) \Rightarrow x \geq z
$$

if $\phi \wedge\left(\bigwedge_{v \in A} x=v\right) \wedge(x<z)$ is unsatisfiable

Sketch of the algorithm

- expand ϕ by constraints ψ of the form

$$
\left(\bigwedge_{v \in A \backslash x-z-\mathrm{cut}} x=v\right) \Rightarrow x \geq z
$$

if $\phi \wedge\left(\bigwedge_{v \in A} x=v\right) \wedge(x<z)$ is unsatisfiable

- $A \subseteq \mathrm{~V}_{\forall}$ is of the form

$$
\uparrow_{u} \backslash\{x, z\} \quad \text { for } x, z, u \in \mathrm{~V},
$$

Sketch of the algorithm

- expand ϕ by constraints ψ of the form

$$
\left(\bigwedge_{v \in A \backslash x-z-\mathrm{cut}} x=v\right) \Rightarrow x \geq z
$$

if $\phi \wedge\left(\bigwedge_{v \in A} x=v\right) \wedge(x<z)$ is unsatisfiable

- $A \subseteq \mathrm{~V}_{\forall}$ is of the form

$$
\uparrow_{u} \backslash\{x, z\} \quad \text { for } x, z, u \in \mathrm{~V}
$$

where $\uparrow_{u}:=\left\{y \in V_{V} \mid u \preceq y\right\}$

Sketch of the algorithm

- expand ϕ by constraints ψ of the form

$$
\left(\bigwedge_{v \in A \backslash x-z-\mathrm{cut}} x=v\right) \Rightarrow x \geq z
$$

if $\phi \wedge\left(\bigwedge_{v \in A} x=v\right) \wedge(x<z)$ is unsatisfiable

- $A \subseteq \mathrm{~V}_{\forall}$ is of the form

$$
\uparrow_{u} \backslash\{x, z\} \quad \text { for } x, z, u \in \mathrm{~V}
$$

where $\uparrow_{u}:=\left\{y \in V_{\forall} \mid u \preceq y\right\}$

- reject if constraint $(x \geq z)$ or $(z \geq x)$ is derived where $x \prec z, z \in V_{\forall}$

Sketch of the algorithm

- expand ϕ by constraints ψ of the form

$$
\left(\bigwedge_{v \in A \backslash x-z-\mathrm{cut}} x=v\right) \Rightarrow x \geq z
$$

if $\phi \wedge\left(\bigwedge_{v \in A} x=v\right) \wedge(x<z)$ is unsatisfiable

- $A \subseteq \mathrm{~V}_{\forall}$ is of the form

$$
\uparrow_{u} \backslash\{x, z\} \quad \text { for } x, z, u \in \mathrm{~V},
$$

where $\uparrow_{u}:=\left\{y \in V_{\forall} \mid u \preceq y\right\}$

- reject if constraint $(x \geq z)$ or $(z \geq x)$ is derived where $x \prec z, z \in V_{\forall}$
- accept if no new constraints can be derived

x-z-cut

For $x, z \in \mathrm{~V}$:

$$
x \text {-z-cut }:=\left\{u \in \mathrm{~V}_{\forall} \mid\left(\mathrm{V}_{\exists} \cap\{x, z\}\right) \prec u\right\} \backslash\{z\}
$$

- x-z-cut comprises variables that the UP can play equal to x to trigger the constraint $x \geq z$
- z is removed so that the constraint does not become trivial

x-z-cut

For $x, z \in \mathrm{~V}$:

$$
x \text {-z-cut }:=\left\{u \in \mathrm{~V}_{\forall} \mid\left(\mathrm{V}_{\exists} \cap\{x, z\}\right) \prec u\right\} \backslash\{z\}
$$

- x-z-cut comprises variables that the UP can play equal to x to trigger the constraint $x \geq z$
- z is removed so that the constraint does not become trivial

Example: $\Phi:=\exists u \forall v \exists w \forall x \forall y \phi(u, v, w, x, y)$

- u-w-cut $=\{x, y\}$;
- u - x-cut $=\{v, y\}$;
- v-x-cut $=\{v, y\}$.

Example of the run of the algorithm

$$
\begin{aligned}
& \Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
&\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right) .
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

Example of the run of the algorithm

$$
\begin{aligned}
& \Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
&\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right) .
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

- $\phi \wedge\left(x_{1}=x_{2}\right) \wedge\left(x_{1}=x_{4}\right)$ implies $x_{1}=x_{2}=x_{4}=x_{5}=x_{3}$.

Example of the run of the algorithm

$$
\begin{aligned}
& \Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
&\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right) .
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

- $\phi \wedge\left(x_{1}=x_{2}\right) \wedge\left(x_{1}=x_{4}\right)$ implies $x_{1}=x_{2}=x_{4}=x_{5}=x_{3}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{3}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{3}\right)$ is not satisfiable.

Example of the run of the algorithm

$$
\begin{aligned}
& \Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
&\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right) .
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

- $\phi \wedge\left(x_{1}=x_{2}\right) \wedge\left(x_{1}=x_{4}\right)$ implies $x_{1}=x_{2}=x_{4}=x_{5}=x_{3}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{3}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{3}\right)$ is not satisfiable.
- $x_{1}-x_{3}$-cut $=\left\{x_{4}\right\} \leadsto \uparrow_{x_{2}} \backslash\left(\left\{x_{1}, x_{3}\right\} \cup x_{1}-x_{3}\right.$-cut $)=\left\{x_{2}\right\}$

Example of the run of the algorithm

$$
\begin{aligned}
& \Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
&\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right) .
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

- $\phi \wedge\left(x_{1}=x_{2}\right) \wedge\left(x_{1}=x_{4}\right)$ implies $x_{1}=x_{2}=x_{4}=x_{5}=x_{3}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{3}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{3}\right)$ is not satisfiable.
- x_{1} - x_{3}-cut $=\left\{x_{4}\right\} \sim \uparrow_{x_{2}} \backslash\left(\left\{x_{1}, x_{3}\right\} \cup x_{1}-x_{3}\right.$-cut $)=\left\{x_{2}\right\}$
- Hence, the algorithm expands ϕ by $\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{3}\right)$.

Example of the run of the algorithm

$$
\begin{aligned}
\Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right)
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

- $\phi \wedge\left(x_{1}=x_{2}\right) \wedge\left(x_{1}=x_{4}\right)$ implies $x_{1}=x_{2}=x_{4}=x_{5}=x_{3}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{3}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{3}\right)$ is not satisfiable.
- $x_{1}-x_{3}$-cut $=\left\{x_{4}\right\} \leadsto \uparrow_{x_{2}} \backslash\left(\left\{x_{1}, x_{3}\right\} \cup x_{1}-x_{3}\right.$-cut $)=\left\{x_{2}\right\}$
- Hence, the algorithm expands ϕ by $\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{3}\right)$.
- Now $\phi \wedge\left(x_{1}=x_{2}\right)$ implies $x_{1}=x_{2}=x_{3} \geq x_{4}$.

Example of the run of the algorithm

$$
\begin{aligned}
& \Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
&\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right) .
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

- $\phi \wedge\left(x_{1}=x_{2}\right) \wedge\left(x_{1}=x_{4}\right)$ implies $x_{1}=x_{2}=x_{4}=x_{5}=x_{3}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{3}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{3}\right)$ is not satisfiable.
- $x_{1}-x_{3}$-cut $=\left\{x_{4}\right\} \leadsto \uparrow_{x_{2}} \backslash\left(\left\{x_{1}, x_{3}\right\} \cup x_{1}-x_{3}\right.$-cut $)=\left\{x_{2}\right\}$
- Hence, the algorithm expands ϕ by $\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{3}\right)$.
- Now $\phi \wedge\left(x_{1}=x_{2}\right)$ implies $x_{1}=x_{2}=x_{3} \geq x_{4}$.
- Hence $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{4}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{4}\right)$ is not satisfiable.

Example of the run of the algorithm

$$
\begin{aligned}
& \Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
&\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right) .
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

- $\phi \wedge\left(x_{1}=x_{2}\right) \wedge\left(x_{1}=x_{4}\right)$ implies $x_{1}=x_{2}=x_{4}=x_{5}=x_{3}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{3}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{3}\right)$ is not satisfiable.
- $x_{1}-x_{3}$-cut $=\left\{x_{4}\right\} \sim \uparrow_{x_{2}} \backslash\left(\left\{x_{1}, x_{3}\right\} \cup x_{1}-x_{3}\right.$-cut $)=\left\{x_{2}\right\}$
- Hence, the algorithm expands ϕ by $\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{3}\right)$.
- Now $\phi \wedge\left(x_{1}=x_{2}\right)$ implies $x_{1}=x_{2}=x_{3} \geq x_{4}$.
- Hence $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{4}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{4}\right)$ is not satisfiable.
- x_{1} - x_{4}-cut $=\left\{x_{2}\right\} \sim \uparrow_{x_{2}} \backslash\left(\left\{x_{1}, x_{4}\right\} \cup x_{1}-x_{4}\right.$-cut $)=\emptyset$

Example of the run of the algorithm

$$
\begin{aligned}
& \Phi=\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5}\left(\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{5}\right) \wedge\left(x_{3}=x_{2} \Rightarrow x_{3} \geq x_{4}\right)\right. \\
&\left.\wedge\left(x_{5}=x_{4} \Rightarrow x_{5} \geq x_{3}\right) \wedge\left(x_{3} \geq x_{1}\right) \wedge\left(x_{5} \geq x_{1}\right)\right) .
\end{aligned}
$$

Claim: The algorithm derives $\left(x_{1} \geq x_{4}\right)$, and thereby rejects on Φ.

- $\phi \wedge\left(x_{1}=x_{2}\right) \wedge\left(x_{1}=x_{4}\right)$ implies $x_{1}=x_{2}=x_{4}=x_{5}=x_{3}$.
- Hence, $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{3}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{3}\right)$ is not satisfiable.
- $x_{1}-x_{3}$-cut $=\left\{x_{4}\right\} \sim \uparrow_{x_{2}} \backslash\left(\left\{x_{1}, x_{3}\right\} \cup x_{1}-x_{3}\right.$-cut $)=\left\{x_{2}\right\}$
- Hence, the algorithm expands ϕ by $\left(x_{1}=x_{2} \Rightarrow x_{1} \geq x_{3}\right)$.
- Now $\phi \wedge\left(x_{1}=x_{2}\right)$ implies $x_{1}=x_{2}=x_{3} \geq x_{4}$.
- Hence $\phi \wedge\left(\bigwedge_{v \in \uparrow_{x_{2}} \backslash\left\{x_{1}, x_{4}\right\}} x_{1}=v\right) \wedge\left(x_{1}<x_{4}\right)$ is not satisfiable.
- x_{1} - x_{4}-cut $=\left\{x_{2}\right\} \sim \uparrow_{x_{2}} \backslash\left(\left\{x_{1}, x_{4}\right\} \cup x_{1}-x_{4}\right.$-cut $)=\emptyset$
- Hence the algorithm expands ϕ by $\left(x_{1} \geq x_{4}\right)$.

Tractability consequences

Corollary

QCSP (\mathfrak{B}) is in PTIME if \mathfrak{B} is a structure whose relations are definable by a conjunction of clauses of the form

$$
\left(x \neq y_{1} \vee \cdots \vee x \neq y_{k} \vee x \geq z\right)
$$

for $k \geq 0$ and where the last disjunct $(x \geq z)$ may be omitted.

Tractability consequences

Corollary

$\operatorname{QCSP}(\mathfrak{B})$ is in PTIME if \mathfrak{B} is a structure whose relations are definable by a conjunction of clauses of the form

$$
\left(x \neq y_{1} \vee \cdots \vee x \neq y_{k} \vee x \geq z\right)
$$

for $k \geq 0$ and where the last disjunct $(x \geq z)$ may be omitted.
Equivalently: structures \mathfrak{B} whose relations lie both in the OH fragment and the $\pi \pi$-fragment (preserved by the operation $\pi \pi$ -'projection-projection' operation from [Bodirsky, Kára '09]).

Complexity dichotomy for Ord-Horn constraints

Lemma (Rydval, S., Wrona '24)

Let \mathfrak{B} be an OH structure that is not contained in the $\pi \pi$ fragment and pp-defines M^{+}. Then $\operatorname{QCSP}(\mathfrak{B})$ is coNP-hard.

Complexity dichotomy for Ord-Horn constraints

Lemma (Rydval, S., Wrona '24)

Let \mathfrak{B} be an OH structure that is not contained in the $\pi \pi$ fragment and pp-defines M^{+}. Then $\operatorname{QCSP}(\mathfrak{B})$ is coNP-hard.

Proof idea:

- \mathfrak{B} pp-defines R of arity ≤ 4 outside of the $\pi \pi$ fragment.

Complexity dichotomy for Ord-Horn constraints

Lemma (Rydval, S., Wrona '24)

Let \mathfrak{B} be an OH structure that is not contained in the $\pi \pi$ fragment and pp-defines M^{+}. Then $\operatorname{QCSP}(\mathfrak{B})$ is coNP-hard.

Proof idea:

- \mathfrak{B} pp-defines R of arity ≤ 4 outside of the $\pi \pi$ fragment.
- R qpp-defines $\mathrm{D}(\Rightarrow$ PSPACE-hardness) or a certain relation Ž.

Complexity dichotomy for Ord-Horn constraints

Lemma (Rydval, S., Wrona '24)

Let \mathfrak{B} be an OH structure that is not contained in the $\pi \pi$ fragment and pp-defines M^{+}. Then $\operatorname{QCSP}(\mathfrak{B})$ is coNP-hard.

Proof idea:

- \mathfrak{B} pp-defines R of arity ≤ 4 outside of the $\pi \pi$ fragment.
- R qpp-defines $\mathrm{D}(\Rightarrow$ PSPACE-hardness) or a certain relation Ž.
- $\left(\mathbb{Q} ; \mathrm{M}^{+}, \check{\mathrm{Z}}\right)$ is coNP-hard.

Complexity dichotomy for Ord-Horn constraints

Lemma (Rydval, S., Wrona '24)

Let \mathfrak{B} be an OH structure that is not contained in the $\pi \pi$ fragment and pp-defines M^{+}. Then $\operatorname{QCSP}(\mathfrak{B})$ is coNP-hard.

Proof idea:

- \mathfrak{B} pp-defines R of arity ≤ 4 outside of the $\pi \pi$ fragment.
- R qpp-defines $\mathrm{D}(\Rightarrow$ PSPACE-hardness) or a certain relation Ž.
- $\left(\mathbb{Q} ; \mathrm{M}^{+}, \mathrm{Z}\right)$ is coNP-hard.

Theorem (Rydval, S., Wrona '24)

Let \mathfrak{B} be an OH structure. Then $\operatorname{QCSP}(\mathfrak{B})$ is in PTIME if \mathfrak{B} is guarded OH , contained in the $\pi \pi$ fragment, or in the dual $\pi \pi$ fragment. Otherwise, QCSP (\mathfrak{B}) is coNP-hard.

Open questions

Question 1: Do Ord-Horn QCSPs exhibit a dichotomy between coNPand PSPACE-hardness?

Open questions

Question 1: Do Ord-Horn QCSPs exhibit a dichotomy between coNPand PSPACE-hardness?

Question 2: Is $\operatorname{QCSP}(\mathbb{Q} ; x \neq y \vee x \geq z \vee x>w)$ in PTIME?
Answer 'yes' to Question $2 \Rightarrow$ tractability for $\operatorname{QCSP}(\mathfrak{B})$ for all \mathfrak{B} contained in the mi fragment (preserved by the operation mi [Bodirsky, Kára '09])

Thank you for your attention

Funding statement: Funded by the European Union (ERC, POCOCOP, 101071674).
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

