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Computational problems

3-SAT

Input: a propositional formula φ in 3-CNF,
e.g. (x1 ∨¬x2 ∨ x3)∧ (¬x3 ∨¬x2 ∨ x4)∧ . . .
Output: Is φ satisfiable?

graph 3-coloring

Input: an undirected graph G = (V ,E )

Output: Is G 3-colorable?

graph acyclicity

Input: a directed graph G = (V ,E )

Output: Does G contain a directed cycle?

NP-complete

NP-complete

P

problems in P = class of effectively solvable problems
NP-complete problems = problems with effectively verifiable solution;
believed to be hard to solve
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Constraint Satisfaction Problem

(relational) structure B = (B;RB : R ∈ τ); finite signature τ
primitive positive formula: ∃x1, . . . , xl (ψ1 ∧ · · · ∧ψm), ψi atomic formulas

B – fixed τ -structure

Definition (CSP(B))

Input: a pp-formula φ over τ
Output: Does φ hold in B?

Example (3-SAT):
B = ({0, 1};R000,R001,R011,R111), where Rijk = {0, 1}3 \ {(i , j , k)}
Rewrite input (x1 ∨ ¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x2 ∨ x4) ∧ . . . as

∃x1, x2, . . .R001(x1, x3, x2) ∧ R011(x4, x3, x2) ∧ . . .

Then CSP(B) is the same problem as 3-SAT.
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Constraint Satisfaction Problem

(relational) structure B = (B;RB : R ∈ τ); finite signature τ
primitive positive formula: ∃x1, . . . , xl (ψ1 ∧ · · · ∧ψm), ψi atomic formulas

B – fixed τ -structure

Definition (CSP(B))

Input: a pp-formula φ over τ
Output: Does φ hold in B?

Example (3-SAT):
B = ({0, 1};R000,R001,R011,R111), where Rijk = {0, 1}3 \ {(i , j , k)}
Rewrite input (x1 ∨ ¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x2 ∨ x4) ∧ . . . as

∃x1, x2, . . .R001(x1, x3, x2) ∧ R011(x4, x3, x2) ∧ . . .

Then CSP(B) is the same problem as 3-SAT.

Žaneta Semanǐsinová (TU Dresden) Constraint Satisfaction Problems Košice, 8 Feb 2024 5 / 26



Constraint Satisfaction Problem

B – fixed τ -structure

Definition (CSP(B))

Input: finite τ -structure A
Output: Is there a homomorphism from A to B? (Does A→ B?)

Example (3-coloring):
B = K3 (complete graph on 3 vertices)
G → B iff G is 3-colorable.

0 1

2

Example (graph acyclicity):
B = (Q;<); (Q;E )
G → B iff G has no directed cycle.
Write edges of G in a pp-formula: ∃x1, x2, . . .E (x1, x2) ∧ E (x3, x4) . . .
is satisfiable in (Q;E ) iff G has no directed cycle.
Observation: Cannot be modelled over a finite template.

Žaneta Semanǐsinová (TU Dresden) Constraint Satisfaction Problems Košice, 8 Feb 2024 6 / 26
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Complexity of CSPs

Conjecture (Feder, Vardi ’93), now theorem:

Theorem (Bulatov (’17); Zhuk (’17))

For every finite B, CSP(B) is in P or NP-complete.

NP

NP hard

P

≠∅ Ladner
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Primitive positive definitions

pp-define = define by a primitive positive formula

Example: The structure ({0, 1};R000,R001,R011,R111) pp-defines the
relation XOR = {(0, 1), (1, 0)} by

R000(x , y , y) ∧ R111(x , y , y).

Observation

If B pp-defines a relation R, then CSP(B,R) reduces to CSP(B) in
poly-time.

Question: How to certify that a relation is not pp-definable?
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Polymorphisms

Definition (polymorphism)

An operation f : Bn → B is a polymorphism of (or preserves) B if for
every relation R of B and for all tuples r̄1, . . . , r̄n ∈ R also
f (r̄1, . . . , r̄n) ∈ R (computed row-wise).
Pol(B) – the set of all polymorphisms of B

Example: The operation min is a polymorphism of (Q;<).1
>

5

 2

>
3

min→

min→

1

>

3



Example (projections): For every structure B, n ∈ N and i ∈ {1, . . . , n},
πni : Bn → B defined by

πni (x1, . . . , xn) = xi

is a polymorphism of B.
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Use of polymorphisms

1. Certify that a relation is not pp-definable

Theorem (Bodnarčuk, Kalužnin, Kotov, Romov (’69); Geiger (’68))

B, B′ - structures on the same finite domain
All relations of B′ are pp-definable in B iff Pol(B) ⊆ Pol(B′).

; if a relation R is not pp-definable, there is f ∈ Pol(B) that does not
preserve R
; complexity of CSP(B) depends only on polymorphisms of B

2. Provide algorithms
Simple example:
B has a constant polymorphism ⇒ (c , . . . , c) ∈ RB for every RB 6= ∅
A – input for CSP(B):
If RA 6= ∅ and RB = ∅ for some R, then A 6→ B.
Otherwise, a 7→ c, a ∈ A is a homomorphism A→ B.
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Theorem (Bodnarčuk, Kalužnin, Kotov, Romov (’69); Geiger (’68))

B, B′ - structures on the same finite domain
All relations of B′ are pp-definable in B iff Pol(B) ⊆ Pol(B′).

; if a relation R is not pp-definable, there is f ∈ Pol(B) that does not
preserve R
; complexity of CSP(B) depends only on polymorphisms of B

2. Provide algorithms
Simple example:
B has a constant polymorphism ⇒ (c , . . . , c) ∈ RB for every RB 6= ∅

A – input for CSP(B):
If RA 6= ∅ and RB = ∅ for some R, then A 6→ B.
Otherwise, a 7→ c, a ∈ A is a homomorphism A→ B.
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Pp-constructions

pp-power of B: a σ-structure C = (Bd ;RC : R ∈ σ) for some d ∈ N where
RC ⊆ Bdk is pp-definable in B for every R ∈ σ

homomorphic equivalence: B and C such that B→ C and C→ B

Definition (pp-construction)

A structure B pp-constructs a structure B′ if B′ is homomorphically
equivalent to a pp-power C of B.

Lemma (Barto, Opřsal, Pinsker (’15))

If B pp-constructs B′, then CSP(B′) reduces to CSP(B) in poly-time.
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Lemma (Barto, Opřsal, Pinsker (’15))

If B pp-constructs B′, then CSP(B′) reduces to CSP(B) in poly-time.
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Algebraic description of pp-constructability

height-one (h1) identity: equation of the form

∀x1, . . . , xn, y1, . . . , ym f (x1, . . . , xn) = g(y1, . . . , ym)

Pol(B) satisfies an identity iff ∃f , g ∈ Pol(B) which satisfy the identity.

Theorem (Barto, Opřsal, Pinsker (’15))

B, B′ – finite structures
B pp-constructs B′ iff Pol(B′) satisfies every h1-identity satisfied in
Pol(B).
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Finite-domain CSP dichotomy theorem

Theorem (Bulatov (’17); Zhuk (’17))

If B is a finite structure, then precisely one of the following holds:

B pp-constructs K3 and CSP(B) is NP-complete.

B has a cyclic polymorphism f of some arity n, i.e., f satisfying

∀x1, . . . , xn f (x1, x2, . . . , xn) = f (x2, x3, . . . , xn, x1)

and CSP(B) is in P.

Observation: It is decidable which of the two cases applies.

Fact: Pol(K3) satisfies the same h1-identities as the projections on {0, 1}.
Corollary: First item is equivalent to ‘Pol(B) satisfies only the
h1-identities satisfied by projections on {0, 1}’.

Žaneta Semanǐsinová (TU Dresden) Constraint Satisfaction Problems Košice, 8 Feb 2024 14 / 26
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Oligomorphicity

Definition (oligomorphic group)

A permutation group G on a countable set B is oligomorphic if for every
k ∈ N the action of G on Bk has only finitely many orbits.

Fact: B on a countable domain, Aut(B) is oligomorphic iff B is
ω-categorical.

Examples (structures with oligomorphic automorphism group):

finite structures

structures fo-definable in (Q, <)

structures fo-definable in the countable random graph

Theorem (Barto, Opřsal, Pinsker (’15))

If Aut(B) is oligomorphic, B pp-constructs K3 iff Pol(B) satisfies only the
h1-identities satisfied by projections on {0, 1}.
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Infinite-domain dichotomy conjecture

Definition

B is finitely bounded if there exists a universal sentence φ such that a
finite structure A embeds in B iff A |= φ.

B is homogeneous if every isomomorphism between finite
substructures of B extends to an automorphism of B.

Fact: If B a reduct of finitely bounded homogeneous structure, then
Aut(B) oligomorphic and CSP(B) is in NP.

Conjecture (Bodirsky, Pinsker (’11), adapted)

Let B a reduct of fin. bounded homogeneous structure. Then either B
pp-constructs K3 and CSP(B) is NP-complete or CSP(B) is in P.

Verified for structures fo-definable in: (Q, <), any homogeneous graph,
unary ω-categorical structures, ...
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Outline

1 Introduction to CSPs

2 Tools for classifying complexity

3 Infinite-domain CSPs

4 Valued CSPs
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Constraint satisfaction variants

B – fixed relational structure
Input: list of constraints (e.g. as a pp-formula)
Output:

CSP: Decide whether there is a solution that satisfies all constraints.

MaxCSP: Find the maximal number of constraints that can be
satisfied at once.

VCSP: Find the minimal cost with which the constraints can be
satisfied (each constraint comes with a cost depending on the chosen
values).

Observation: VCSP generalizes CSP and MaxCSP.
Proof: Model the tuples in relations with cost 0 and outside with cost 1
(for MaxCSP) or ∞ (for CSP).
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VCSP

A valued structure Γ consists of:

(countable) domain D

(finite, relational) signature τ

for each R ∈ τ of arity k, a function RΓ: Dk → Q ∪ {∞}

Definition (VCSP(Γ))

Input: u ∈ Q, an expression

φ(x1, . . . , xn) =
∑
i

ψi ,

where each ψi is an atomic τ -formula
Question: Is

inf
ā∈Dn

φ(ā) ≤ u in Γ?
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ā∈Dn
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Directed Max-Cut as a VCSP

Example:
Input: G = (V ,E ) – finite directed graph
Goal: Find a partition A ∪ B of V such that E ∩ (A× B) is maximal.
Equivalently: E ∩ (A2 ∪ B2 ∪ B × A) is minimal.

Let ΓMC be a valued structure where:

D = {0, 1}
τ = {R}, R binary

R(x , y) =

{
0 if x = 0 and y = 1

1 otherwise

Take vertices of G as variables. The size of a maximal cut of G is

min
v̄∈Dn

∑
(vi ,vj )∈E

R(vi , vj). The partition of V is given by the values 0 and 1.

every instance of VCSP(ΓMC) corresponds to a digraph
; VCSP(ΓMC) is the Directed Max-Cut problem (NP-complete)
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Pp-constructions for VCSPs

pp-definitions can be generalized to valued structures (e.g. ∧; +,
∃; inf, and more operators)

we can define a notion of a pp-construction

Proposition (Bodirsky, Lutz, S.)

If Aut(Γ) and Aut(∆) are oligomorphic and Γ pp-constructs ∆, then
VCSP(∆) reduces to VCSP(Γ) in poly-time.

K3 can be viewed as the valued structure on ({0, 1, 2};E ) where

E (x , y) =

{
0 if x 6= y ;

∞ if x = y .

Corollary

If Aut(Γ) is oligomorphic and Γ pp-constructs K3, then VCSP(Γ) is
NP-hard.
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Fractional polymorphisms

Definition (fractional polymorphism)

Γ – valued τ -structure with domain D
A fractional polymorphism of Γ of arity n is a probablity distribution ω on
operations Dn → D such that for every k-ary R ∈ τ and a1, . . . , an ∈ Dk

Eω[f 7→ R(f (a1, . . . , an))]︸ ︷︷ ︸
expected value

≤ 1

n

n∑
j=1

R(aj)

︸ ︷︷ ︸
arithmetic mean

.

Example: For every Γ and n ∈ N, ω defined by

ω(πni ) =
1

n
for every i ∈ {1, . . . , n}

is a fractional polymorphism of Γ.
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Tractability for VCSPs

Known for finite-domain VCSPs:

Theorem (adapted from Kozik, Ochremiak (’15) and Kolmogorov,
Krokhin, Roĺınek (’15))

If Γ is a finite valued structure, then precisely one of the following holds:

Γ pp-constructs K3 and VCSP(Γ) is NP-complete.

Γ has a cyclic fractional polymorphism and VCSP(Γ) is in P.

Theorem (Bodirsky, Lutz, S.)

Let B be a finitely bounded homogeneous structure such that
Aut(Γ) = Aut(B). If Γ has a canonical pseudo cyclic fractional
polymorphism, then VCSP(Γ) is in P.
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Application of infinite-domain VCSPs

Definition (Resilience)

q – fixed conjunctive query (pp-formula)
Input: a finite database A (relational structure)
Output: minimal number of tuples to be removed from relations of A, so
that A 6|= q

Appears first in the paper of Meliou, Gatterbauer, Moore, Suciu (’10).

Goal: Classify complexity of resilience for all q.

Can be modelled as a VCSP when considered over bag databases
(each tuple appears with a multiplicity m ∈ N).

All queries that contain a cycle require infinite-domain valued
structures as templates.

Enables systematic study of resilience problems.
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