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Structures

Definition

A (relational) structure A over a signature σ is a set A together with
subsets of powers of A for each element in σ.

Examples

of structures

(N;+, ⋅,1) where + and ⋅ are considered as subset of N3 and 1 is
considered as subset of N1.

All groups, rings, modules,. . . in the usual way.

A group action G ↷ X defines a structure on X , which we call
S(G ↷ X ). The signature is G and the relation corresponding to
g ∈ G is {(x ,g .x) ∣ x ∈ X}.
graphs (with a binary relation)

3-SAT = ({⊺,�};⊺,�,∧,∨,¬)
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Problems

Definition

The constraint satisfaction problem or CSP of a structure A is to decide
whether a primitive positive formula (first order, no ∀,¬,∨) is true in this
structure.

Examples

CSP(3-SAT) = CSP({⊺,�};⊺,�,∧,∨,¬) is the usual 3-SAT problem
(NP-complete)

CSP(N;+, ⋅,1) decides whether a system of equations can be solved
in N. (Turing Complete)

The CSP of a finite (undirected) graph is to decide whether another
finite graph can be mapped to this one. (If the graph is bipartite, this
is in P, else it is NP-complete. Hell, Nešeťril 1990)

The CSP of a finite structure is in P or NP complete. (Bulatov 2017;
Zhuk 2017)
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Reductions

Definition

A primitive positive construction of a σ-structure A in a τ -structure B
consists of

1 a positive integer n

2 a σ-structure B̃ with base set Bn, where the k-ary relations of B̃ are
pp-definable as kn-ary relations in B

3 σ-homomorphisms f ∶ B̃ → A and g ∶A→ B̃.

A primitive positive construction gives a logspace reduction from CSP(A)
to CSP(B).
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Example

Graph 3-coloring (with colors , , ) is NP-hard, because one can reduce

3-SAT to by n = 1 and

⊺ =
� =

unequal(x , y) =
yx

x ∨ y ∨ z = x y z

with identification maps

f ( ) = � g(�) =
f ( ) = f ( ) = ⊺ g(⊺) =
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Algebraically

Definition

A polymorphism of a σ-structure A is a homomorphism An → A for n ∈ N.

x1,1 x1,2 x1,3 x1,4
f↦ y1

x2,1 x2,2 x2,3 x2,4 ↦ y2
x3,1 x3,2 x3,3 x3,4 ↦ y3∈ ∈ ∈ ∈ Ô⇒ ∈

R R R R R

The set Pol(A) of all polymorphisms has the structure of a

Clone /
Cartesian Operad

Minion /
Clonoid /

Cartesian Club

Operad /
Preclone

Club
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Minions
The minor of f ∶An → A along α∶ [n]→ [m] is the map
fα∶Am → A, (x1, . . . , xm)↦ f (xα(1), . . . , xα(n)).

Definition

A minion homomorphism from Pol(A) to Pol(B) is a map of sets F , that

preserves arities and

preserves minors, i.e. F (fα) = (Ff )α
Picture from https://www.pngwing.com/id/free-png-svred, at 7.Oct.2024
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Minor Condition

A height-1-condition or minor condition of A is a condition of the form

∃f ∈ Pol(A) ∶⋀ fα = fβ

Examples

f (x) = f (y) constant

f (x , x , x) = f (x , y , y) = f (y , y , x) quasi Maltsev

f (x , x , x) = f (x , x , y) = f (x , y , x) = f (y , x , x) quasi majority

f (x , y , z) = f (y , z , x) = f (y , x , z) (fully) symmetric of arity 3

f (x , x , y) = f (x , y , y) and symmetric totally symmetric of arity 3

f (x , x , y) = f (z , z , y) and symmetric general. minority of arity 3
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Three Definitions

Theorem (Barto, Opřsal, Pinsker 2018)

For two structures A and B, the following is equivalent:

1 A pp-constructs B.

2 There is a minion-homomorphism Pol(A)→ Pol(B).
3 Every minor condition valid in Pol(A) is valid in Pol(B).

In this case, CSP(B) reduces to CSP(A) in logspace (L).
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The PP-Constructability Poset on Finite Structures

, , . . .

, , , . . .

3-SAT, , , . . .

???

P time

NP complete

L

NL
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The PP-Constructability Poset on Finite Structures

1 Every equivalence class contains an idempotent structure A.

End(A) = {idA}

2 The poset of all smooth digraphs is classified (Bodirsky, Starke, Vucaj 2021)

3 The poset of all 2-Element structures is classified (Bodirsky, Vucaj 2020)
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The PP-Constructability Poset on 2-Element Structures

(Z/2; 0,1,+)

2-SAT

HORNSAT

B2

3-SAT

P time

NP complete

L

NL
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The Third Layer of the PP-Constructability Poset
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The Third Layer of the PP-Constructability Poset

Theorem

The pp-constructabillity poset has a third layer consisting of the
equivalence classes of

1 B2 and

2 for all finite simple groups G , the structure S(G ↷ P(G)), where
P(G) is the disjoint union of all primitive group actions.

Moreover,

P(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

G (with multiplication)

if G is cyclic

{M ≤ Gmaximal subgroup} (with conjugation)

if G is nonabelian simple
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Proof overview

Let A be a structure.

1 If A has a quasi Maltsev polymorphism and fully symmetric
polymorphisms of all arities, then pp-constructs A.

2 If A has no quasi Maltsev polymorphism, then A pp-constructs B2.
(Opřsal 2018)

3 If A has not fully symmetric polymorphism of an arity n, then A
pp-constructs S(G ↷ P(G)) for G finite simple group.

4 S(G ↷ P(G)) does not pp-construct S(G ′ ↷ P(G ′)) for G ≠ G ′
different, finite simple
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Part 1
Let A be a structure with End(A) = idA, quasi Maltsev, symetric of all
arities.

f (x , x , x) = f (x , y , y) = f (y , y , x) = x quasi Maltsev

f (x , y , z) = f (y , z , x) = f (y , x , z) (fully) symmetric of arity 3

A has a majority polymorphism. (Vucaj 2023)

x = f (x , x , x) = f (x , x , y) = f (x , y , x) = f (y , x , x) quasi majority

A has generalised pairing polymorphisms: arity 2n + 1, mapping

permutation of (x , y1, y1, y2, y2, ..., yn, yn)↦ x

Proof: Induction, Exercise. Hint:

majority
⎛
⎜
⎝

Maltsev(x1, x3, x2)
Maltsev(x3, x2, x1)
Maltsev(x2, x1, x3)

⎞
⎟
⎠
, Maltsev(x1,pairing(x3, . . . , x2n+1), x2)
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Part 1

A has symmetric generalised pairing polymorphisms of arity n.

symmetricarity n!(pairing(permutation of(x1, . . . , xn)) ∣ all permutations)

A has generalised minority polymorphisms of arity n.

sym.pairarity 2n−1−1(g.min(A) ∣ A odd proper subset of(x1, . . . , xn))

A has totally symmetric polymorphisms of arity n.

symmetricarity 2n−1(g.min(A) ∣ A odd subset of(x1, . . . , xn))

Pol( ) maps to Pol(A). (Vucaj, Zhuk 2024)
Idea: Map the generators of Pol( ) to generalized minority
and totally symmetric polymorphism.
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Part 3

If A has not fully symmetric polymorphism of an arity n, then A
pp-constructs S(G ↷ P(G)) for G finite simple group.

Consider all polymorphisms An → A.

It is a subset Poln(A) ⊆ AAn
.

It is pp-definable.

It has an action of Sn = Sym(n) by permuting entries.

The action is pp-definable.

The action Sn ↷ Poln(A) has no fixed point.

A pp-constructs a group action without fixed point, namely
S(Sn ↷ Poln(A)).
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Part 3

What is the simplest group we can get from S(G ↷ X )?

1 If H ≤ G , H ↷ X without fixed point, then S(G ↷ X ) pp-constructs
S(H ↷ X ).

2 If N ⊴ G , N ↷ X trivial, then S(G ↷ X ) pp-constructs S(G/N ↷ X ).
3 If N ⊴ G , N ↷ X with fixed points, then

Fix(N) = {x ∈ X ∣ N.x = x}

is closed under G action. Moreover, S(G ↷ X ) pp-constructs
S(G ↷ Fix(N)) and S(G/N ↷ Fix(N)).

What is left?
G simple, every maximal subgroup of G has a fixed point
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2 If N ⊴ G , N ↷ X trivial, then S(G ↷ X ) pp-constructs S(G/N ↷ X ).
3 If N ⊴ G , N ↷ X with fixed points, then

Fix(N) = {x ∈ X ∣ N.x = x}

is closed under G action. Moreover, S(G ↷ X ) pp-constructs
S(G ↷ Fix(N)) and S(G/N ↷ Fix(N)).

What is left?
G simple, every maximal subgroup of G has a fixed point
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Part 4

S(G ↷ P(G)) does not pp-construct S(G ′ ↷ P(G ′)) for G ≠ G ′ different,
finite simple.

Definition

For G ↷ X , define the minor condition Σ(G ↷ X ) as ∃f ∈ Pol
∣X ∣(A),

∀g ∈ G ∶ f (x1, . . . , x∣X ∣) = f (xg .1, . . . , xg .∣X ∣)

S(G ↷ X ) does not satisfy Σ(G ↷ X ).
If S(G ↷ X ) does not satisfy Σ(H ↷ Y ), then

there is no appropriate map XY → X ,
there is a problem child m in XY = map(Y ,X ),
there are subgroups G ′m ⊴ Gm ≤ G , H ′m ⊴ Hm ≤ H such that
Gm ↷ X ,Hm ↷ Y nontrivial and Gm/G ′m ≅ Hm/H ′m /≅ {1}.

S(G ↷ P(G)) satisfies Σ(G ′ ↷ P(G ′)) but not Σ(G ↷ P(G))
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The PP-Constructability Poset on Finite Structures

, , . . .

, , , . . .

B2G ↷ P(G), G finite, simple

3-SAT, , , . . .

???

P time

NP complete

L

NL
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