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Polymorphisms ...

Definition

Let C be a category with finite products. Let A and B be objects in C.
Then,

Pol(A,B) = (HomC(An,B) ∣ n ∈ N)

The polymorphisms Pol(A,B) define a minion.
The polymorphisms Pol(A) ∶= Pol(A,A) define a clone and a minion.

Example

Polymorphisms of structures, clones, minions, topological spaces,
Coalgebras over a field (with ⊗), ...
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Polymorphisms in CSPs

Theorem

Let A and B be finite strucutres.

Pol(A,B) determines complexity of the PCSP(A,B)
Minionhomomorphisms induce logspace reductions of PCSPs

Questions

Which minions correspond to problems in P? (Solved for A = B by
Bulatov 2017 and Zhuk 2017)

Which minions correspond to problems in L, NL, Mod2 L, ... ?

Find good definitions for a generalization to infinite domain (P)CPS.
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Polymorphisms in Topology
Consider A = B topological spaces with continuous maps.

Theorem (multiple contributors)

Let A be a connected compact simplicial complex (a nice topological
space). The following are equivalent:

1 A is contractible.

2 All homotopy groups πn(A) are trivial. (Whitehead 1945)

3 A has an idempotent majority polymorphism. (Taylor 1977)

4 A has idempotent fully symmetric polymorphisms of all arities.
(Eckmann, Ganea, Hilton 1962 and Weinberger 2004)

Definition

idempotent ∀x ∈ A ∶ x = f (x , . . . , x)
majority ∀x , y ∈ A ∶ x = f (x , x , y) = f (x , y , x) = f (y , x , x)

fully symmetric ∀x1 . . . xn ∈ A,∀σ ∶ f (x1, . . . , xn) = f (xσ(1), . . . , xσ(n))
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Polymorphisms in Topology

Two connected compact abstract simplicial complexes1

1right picture from https://www.kinderkram-direkt.de/GEOMAG-Magnet-Spiel-Panels-114-Teile.htm

Sebastian Meyer (TU Dresden) Polymorphisms in CSPs, Topology and Social Choices 30th May 2024 6 / 16

https://www.kinderkram-direkt.de/GEOMAG-Magnet-Spiel-Panels-114-Teile.htm


Polymorphisms in Topology

Consider A = B abstract simplicial complexes with simplicial maps.

Theorem (Larose, Zádori 2005 and Meyer unpublished)

Let A be a connected compact abstract simplicial complex that has any
idempotent Taylor polymorphism. Then, every connected component of A
is contractible.

Questions

Which polymorphisms classify that a map is contractible (homotopic
to a constant map)?

What about infinite simplicial complexes?
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Polymorphisms in Social Choices

Theorem

Consider a tournament over multiple rounds with n ≥ 3 participants:

Round № 1 2 3 4 result

Adam 1st 3rd 4th 1st 3rd
Bertalan 2nd 4th 3rd 3rd 4th
Celestin 3rd 2nd 2nd 4th 2nd
Dmitriy 4th 1st 1st 2nd 1st

The result of a person should only depend on the rankings of that person
(not on the name or the ranking of the others).
Then, the result only depends on a single round.

Proof.

Every polymorphism of Kn is essentially unary.
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Topology in Social Choices

Theorem (Weinberger 2004)

Let A be a topological space that has for every n a continuous,
unanimous, anonymous choice function. Then, A is contractible or the
choice functions are not sober.

Example

Let A be a set with the structure of a simplicial complex.
If there is a choice function on this set satisfying any Taylor conditions,
then each component is contractible.
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Topology in Structures

Definition

Let A be a structure and B ⊆ An be a pp-definable subset. Then, B
becomes a simplicial complex with faces

⎧⎪⎪⎨⎪⎪⎩
(b1,1, . . . ,b1,n), . . . , (bk,1, . . . ,bk,n) ∈ Bk

RRRRRRRRRRRR
⋀

i ∶[n]→[k]

(bi1,1, . . . ,bin,n) ∈ B
⎫⎪⎪⎬⎪⎪⎭

Example

(0,0,0)

(0,1,0)

(0,0,1)

(0,1,1)

(1,0,0)

(1,1,0)

(1,0,1)

(1,1,1)
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Topology in Structures

Theorem (Hell, Nešeťril 1990)

Every finite (undirected) simple non-bipartite graph G has no Taylor
polymorphism.

Proof.

The set of all tuples of two points connected by an edge in G has the
structure of a simplicial complex C with an automorphism α representing
the flip of the edge. Now, assume that G has a Taylor polymorphism.

1 (C , α) has a Taylor polymorphism.

2 The core of (C , α) has a Taylor polymorphism.

3 The core of (C , α) has an idempotent Taylor polymorphism.

4 The core of (C , α) has contractible components.

5 α has a fixed point in the core. (Brouwer fixed-point theorem)

6 α has a fixed point in C , contradiction.

(Idea based on Krokhin, Opřsal, Wrochna, Živný 2022)
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Topology in CSP

Theorem (Schnider, Weber at CG Week 2024)

Let A be an idempotent Boolean structure.

1 If A has a Schaefer polymorphism, then every pp-definable set has
trivial homology groups when considered as simplicial complex.

2 If A has no Schaefer polymorphism, then every compact simplicial
complex can be obtained by a pp-definable set (up to a
homeomorphism).
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Topology in CSP

Theorem (Meyer unpublished)

Let A be an idempotent structure.

1 If A has a Taylor polymorphism, then every pp-definable set has trivial
homology groups when considered as simplicial complex.

2 If A has no Taylor polymorphism, then every compact simplicial
complex can be obtained by a pp-definable set (up to a homotopy).

Questions

Can we get new results for promise CSPs? (K.O.W.Ž. 2022)

Does this result generalizes to 0-homotopic maps and PCSPs?

What about infinite domain CSP and non-compact simplicial
complexes?
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Thank you for your attention
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