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Minimal (and almost minimal) operations

Operation clones and the pointwise convergence topology

Definition 1 (Operation clone)

Let B be a (possibly infinite) set, O(n) = BBn
and O :=

⋃
n∈NO(n).

We call C ⊆ O an operation clone over B if
• C contains all projections;
• C is closed under composition.

We equip O with the pointwise convergence topology: For S ⊆ O,
f ∈ S ⇔ for all A ⊆ B finite there is g ∈ S such that g↾A = f↾A.

⟨S⟩ denotes the smallest closed clone containing S.

There is a correspondence between:
• closed subclones of O;
• polymorphism clones of relational structures on B.
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Minimal (and almost minimal) operations

Minimal clones and operations I
Let D ⊋ C be closed subclones of O.

Definition 2 (almost minimal)

The k-ary operation f ∈ D \ C is almost minimal above C if for
each r < k,

⟨C ∪ {f}⟩ ∩ O(r) = C ∩ O(r).

Definition 3 (Minimal operation)

f ∈ D \ C is minimal above C if it almost minimal above C, and
everything new that it generates with C also generates f with C:

h ∈ ⟨C ∪ {f}⟩ \ C ⇒ f ∈ ⟨C ∪ {h}⟩ .
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Minimal (and almost minimal) operations

Minimal clones and operations II
Definition 4
D is minimal above C if there is no closed clone E such that
C ⊊ E ⊊ D.

• There is a correspondence between
• minimal closed clones above C;
• clones ⟨C ∪ {f}⟩ for f minimal above C.

• For C ⊊ D, there is always f ∈ D almost minimal above C;

• For the structures B we are most interested in1, Pol(B) always
has a minimal operation above ⟨Aut(B)⟩;

1i.e. B is finite or ω-categorical in a finite relational language.
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Minimal (and almost minimal) operations

Some terminology for operations
We define some operations in virtue of the identities they satisfy:
• ternary quasi-majority:

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ m(x, x, x);

• quasi-Malcev:

M(y, y, x) ≈ M(x, y, y) ≈ M(x, x, x);

• For f idempotent, i.e. f(x, . . . , x) ≈ x, remove the ’quasi’;
• ternary minority:

m(y, y, x) ≈ m(y, x, y) ≈ m(x, y, y) ≈ m(x, x, x) ≈ x;

• semiprojection: a k-ary f such that there is an i ∈ {1, . . . , k}
such that whenever |{a1, . . . , ak}| < k,

f(a1, . . . , ak) = ai.
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Minimal (and almost minimal) operations

Rosenberg’s five types theorem

Theorem 5 (Five types theorem, Rosenberg 1986)

Let B be finite and f be minimal above ⟨1⟩. Then, f is of one of the
following five types:

1 a unary function;
2 a binary function;
3 a ternary majority operation;
4 a ternary minority operation;
5 a k-ary semiprojection for some k ≥ 3.

Moreover, the ternary minority corresponds to x+ y + z in some
Boolean group.

A group is Boolean if every element has order 2.
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Results

Our project
For G ↷ B a non-trivial group G acting faithfully on B,
we want to classify the minimal operations lying above ⟨G⟩.

STRATEGY: Classify almost minimal operations first.

The classification of almost minimal operations splits into three cases:

• G is not a Boolean group acting freely on B;
• G is a Boolean group acting freely on B and ̸= Z2;
• Z2 acting freely on B.

For minimal operations, the last two cases can be treated together.
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Results

Classifying almost minimal operations I

Theorem 6 (Three Types Theorem, Marimon and Pinsker 2024)

Let B be a finite set. Let G ↷ B be such that G is not a Boolean
group acting freely on B. Let f be almost minimal above ⟨G⟩. Then,
f is one of:

1 a unary function;
2 a binary function;
3 a k-ary orbit-semiprojection for 3 ≤ k ≤ s, where s = |Orb(G)|.

f is an orbit-semiprojection if there is an i ∈ {1, . . . , k} and a unary
operation g ∈ G such that whenever at least two of the aj lie in
the same orbit,

f(a1, . . . , ak) = g(ai).
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Results

Classifying almost minimal operations II
Theorem 7 (Boolean case, Marimon and Pinsker 2024)

Let G ↷ B be a Boolean group acting freely on B with s-many orbits
and |G| > 2. Let f be an almost minimal operation above ⟨G⟩. Then,
f is of one of the following types:

1 f is unary;
2 f is binary;
3 f is a ternary twisted minority;
4 f is a k-ary orbit-semiprojection for 3 ≤ k ≤ s.

A twisted minority is a ternary operation such that for all β ∈ G,

m(y, x, βx) ≈ m(x, βx, y) ≈ m(x, y, βx) ≈ m(βy, βy, βy).
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Results

Classifying almost minimal operations III
Theorem 8 (Z2 case, Marimon and Pinsker 2024)

Let Z2 act freely on B with s-many orbits. Let f be an almost minimal
operation above ⟨Z2⟩. Then, f is of one of the following types:

1 f is unary;

2 f is a ternary twisted minority;

3 f is an odd majority;

4 f is, up to permuting its variables, an odd Malcev;

5 f is a k-ary orbit-semiprojection for 2 ≤ k ≤ s.

An odd majority m is a quasi-majority such that for γ the non-identity element in
Z2,

m(y, x, γx) ≈ m(x, γx, y) ≈ m(x, y, γx) ≈ m(y, y, y).

An odd Malcev is a quasi-Malcev such that M(x, γy, z) is an odd majority.
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Results

Minimal operations

• Orbit semiprojections only generate other orbit semiprojections,
so for |Orb(G)| ≥ 3, they always exist as minimal;2

• Odd majorities and odd Malcevs are NEVER minimal;

• Minimal twisted minorities are particularly well-behaved:
• m(x, y, z) = w is a symmetric 4-ary relation;

• For α, β, γ ∈ G,m(αx, βy, γz) ≈ αβγm(x, y, z);

• m induces on the orbits of G a minority of the form
m⋆(x, y, z) = x+ y + z in a Boolean group;

• They exist above ⟨G⟩ if and only if |Orb(G)| = 2n or is infinite.

2At least in the contexts that interest us.
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Applications

Applications: finding low arity essential polymorphisms I
We want to study CSP(B) for B countably infinite and Aut(B) ↷ B
oligomorphic: Aut(B) ↷ Bn has finitely many orbits for all n.
We call these structures ω-categorical.

Sufficient to work with a model complete core: Aut(B) = End(B).

It is often helpful to find low arity essential polymorphisms:

Definition 9 (Essentially unary and essential operations)

f is essentially unary if there is unary g and 1 ≤ i ≤ k such that

f(x1, . . . , xk) ≈ g(xi).

Otherwise, f is essential.

Paolo Marimon, Michael Pinsker Minimal operations over permutation groups



Applications

Applications: finding low arity essential polymorphisms II
For B ω-categorical, people developed techniques to find binary
essential polymorphisms given an essential one (cf. Bodirsky and Kára
2008, and Mottet and Pinsker 2022).

Question 1 (Question 24 in Bodirsky 2021)

Does an ω-categorical model complete core with an essential
polymorphism also have a binary essential polymorphism?

Answer:
• NO: whenever Aut(B) has ≥ 3 orbits, ⟨Aut(B) ∪ {f}⟩ for f an

orbit semiprojection is a counterexample;
• However, this is true on ≤ 2 orbits;
• Moreover, this is true when CSP(B) is not hard. . .
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Applications

Applications: finding low arity essential polymorphisms III
Theorem 10 (Marimon and Pinsker 2024)

Suppose B is a finite or ω-categorical model complete core and
Aut(B) ↷ B is not the free action of a Boolean group on B (always
the case if B is ω-categorical).
(⋆) Suppose Pol(B) does not have a uniformly continuous

h1-homomorphism to Proj (the clone of projections on {0, 1});
Then, Pol(B) contains a binary essential polymorphism.

• ¬(⋆) ⇒ CSP(B) is NP hard;
• Proof uses the Three Types Theorem (for almost minimal

operations).
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