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Let A be a structure. A partial function f : A → A is a partial
automorphism of A if f is an isomorphism A|Dom(f ) → A|Range(f ).

If α is an automorphism of A such that f ⊆ α, we say that f
extends to α.

Example

A graph G is vertex-transitive if every partial automorphism f with
|Dom(f )| ≤ 1 extends to an automorphism of G.

Definition
A structure A is homogeneous if every partial automorphism of A
with finite domain extends to an automorphism of A.
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Definition (EPPA, extension property for partial
automorphisms)

Let B be a structure and let A be its induced substructure. B is
an EPPA-witness for A if every partial automorphism of A extends
to an automorphism of B.

A class C of finite structures has EPPA if for every A ∈ C there is
B ∈ C, which is an EPPA-witness for A.
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Definition (EPPA, extension property for partial
automorphisms)

Let B be a structure and let A be its induced substructure. B is
an EPPA-witness for A if every partial automorphism of A extends
to an automorphism of B.
A class C of finite structures has EPPA if for every A ∈ C there is
B ∈ C, which is an EPPA-witness for A.

Theorem (Hrushovski, 1992)

The class of all finite graphs has EPPA.



A connection to model theory

Suppose that a class of graphs C has EPPA and JEP.

Pick A0 ∈ C.

Let M be the union of the chain. Every partial automorphism of M
with finite domain extends to an automorphism of M (i.e. M is
homogeneous).

Theorem [Kechris, Rosendal, 2007]: The class of all finite
substructures of a homogeneous structure M has EPPA if and only
if Aut(M) can be written as the closure of a chain of compact
subgroups.
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Classification programme of homogeneous structures

Using the [Lachlan, Woodrow, 1980] classification of homogeneous
graphs, we know all EPPA classes of graphs:

▶ Class of all graphs [Hrushovski, 1992],

▶ classes of all Kn-free graphs, n ≥ 2 [Herwig, 1998]

▶ various classes of disjoint unions of cliques [easy],

▶ complements thereof,

▶ subgraphs of the finite homogeneous graphs [Gardiner, 1976].
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Examples

▶ Graphs [Hrushovski, 1992], Kn-free graphs [Herwig, 1998]

▶ Relational structures (with forbidden cliques) [Herwig, 1995],
[Hodkinson, Otto, 2003]

▶ Metric spaces [Solecki, 2005; Vershik, 2008], also [Conant, 2019]

▶ Two-graphs [Evans, Hubička, K, Nešeťril, 2018]

▶ Metrically homogeneous graphs [AB-WHKKKP, 2017], [K, 2019]

▶ Generalised metric spaces [Hubička, K, Nešeťril, 2019+]

▶ n-partite and semigeneric tournaments [Hubička, Jahel, K, Sabok,
2024]

▶ Groups [Siniora, 2017]

▶ . . .

Question (Herwig, Lascar, 2000)
Do finite tournaments have EPPA?



EPPA numbers of graphs

Given a graph G, let eppa(G) be the least number of vertices of an
EPPA-witness for G. Put eppa(n) = max{eppa(G) : |G| = n}.

Theorem (Hrushovski, 1992)

▶ eppa(n) ≤ (2n2n)!.

▶ eppa(n) ≥ 2n/2.

Problem (Hrushovski, 1992)

Improve the bounds.
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Theorem (Herwig, Lascar, 2000)

For every G with n vertices and maximum degree ∆ we have that
eppa(G) ≤

(∆n
∆

)
∈ nO(n).

In particular, bounded degree graphs have polynomial EPPA
numbers.

Theorem (Evans, Hubička, K, Nešeťril, 2021)

eppa(n) ≤ n2n−1

Independently proved also by Andréka and Németi.
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Theorem (Herwig, Lascar, 2000)

If the maximum degree of G is ∆, then it has an EPPA-witness on
at most

(∆n
∆

)
vertices.

Proof.

1. Let G = (V ,E ) be a graph. Assume that G is ∆-regular.

2. Define H so that V (H) =
(E
∆

)
and XY ∈ E (H) if X ∩ Y ̸= ∅.

3. Embed ψ : G → H sending v 7→ {e ∈ E : v ∈ e}.
4. A partial automorphism of G gives a partial permutation of E .

5. Extend it to a permutation of E respecting the partial
automorphism.

6. Every permutation of E induces an automorphism of H.

For non-regular graphs, add “half-edges” to make them regular.
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An upper bound [Evans, Hubička, K, Nešeťril, 2021]

Given set A, define graph HA.

HA = {(x , f ) : x ∈ A, f : A \ {x} → {0, 1}}.

{(x , f ), (y , g)} ∈ E ⇐⇒ x ̸= y and f (y) ̸= g(x).

1. For a permutation π : A → A define
απ : Hn → Hn by
απ((x , f )) = (π(x), g), where
g(y) = f (π−1(y)).

2. απ ∈ Aut(HA).

3. For x ̸= y ∈ A define αxy by
αxy ((z , f )) = (z , g) where
g(w) = 1− f (w) if {x , y} = {z ,w}
and g(w) = f (w) otherwise.

4. αxy ∈ Aut(HA).
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1. Fix a graph G

and consider HG

.

2. Embed G to HG vertex-by-vertex,
preserving projections.

3. Pick a partial automorphism f of
G

, project it to G , and extend it to
a permutation π of G .

4. Consider απ. There is a canonical
choice of αxiyi ’s such that
απ ◦ αx1y1 ◦ · · · ◦ αxkyk extends f .
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Summary of upper bounds

1. Finite homogeneous graphs (C5, L(K3,3), mKn, mKn).

2. Complements of Kneser graphs (
(∆n
∆

)
, O(n∆) for constant ∆).

3. Valuation graphs (n2n−1).



Summary of upper bounds

1. Finite homogeneous graphs (C5, L(K3,3), mKn, mKn).

2. Complements of Kneser graphs (
(∆n
∆

)
, O(n∆) for constant ∆).

3. Valuation graphs (n2n−1).



Summary of upper bounds

1. Finite homogeneous graphs (C5, L(K3,3), mKn, mKn).

2. Complements of Kneser graphs (
(∆n
∆

)
, O(n∆) for constant ∆).

3. Valuation graphs (n2n−1).



Summary of upper bounds

1. Finite homogeneous graphs (C5, L(K3,3), mKn, mKn).

2. Complements of Kneser graphs (
(∆n
∆

)
, O(n∆) for constant ∆).

3. Valuation graphs (n2n−1).



A lower bound

Observation (Bradley-Williams, Cameron, Hubička, Konečný,
2023)

There is G such that every EPPA-witness for G has at least
Ω(2n/

√
n) vertices. Consequently, eppa(n) ≥ Ω(2n/

√
n).

Proof (basically Hrushovski’92).

 Every permutation of the left part
is a partial automorphism of G.

▶ Claim: In every EPPA-witness,
for every S ∈

( [n]
n/2

)
, there is a

vertex connected to S and not to
[n] \ S .

▶ Pick arbitrary S ∈
( [n]
n/2

)
.

▶ eppa(G) ≥
( n
n/2

)
∈ Ω(2n/

√
n).
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2023)

There is G such that every EPPA-witness for G has at least
Ω(2n/

√
n) vertices. Consequently, eppa(n) ≥ Ω(2n/

√
n).

Proof (basically Hrushovski’92).

 Every permutation of the left part
is a partial automorphism of G.

▶ Claim: In every EPPA-witness,
for every S ∈

( [n]
n/2

)
, there is a

vertex connected to S and not to
[n] \ S .

▶ Pick arbitrary S ∈
( [n]
n/2

)
.

▶ eppa(G) ≥
( n
n/2

)
∈ Ω(2n/

√
n).

n

n

2



A lower bound

Observation (Bradley-Williams, Cameron, Hubička, Konečný,
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Observation (B-WCHK, 2023)

If G is triangle-free with maximum degree ∆ then

eppa(G) ∈ Ω(n∆).

Corollary

Cycles have quadratic EPPA numbers.
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Observation (B-WCHK, 2023)

Asymptotically almost surely eppa(G (n, 1/2)) ≫ n.

Proof (sketch).

1. Find an independent set I of size 2 log2(n).

2. There is a vertex connected to about half of I .

3. So eppa(G (n, 1/2)) ≳
(2 log2(n)
log2(n)

)
∈ Ω(n2/

√
log(n)).

Conjecture

eppa(G (n, 1/2)) is superpolynomial.
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For every c , d , a.a.s. eppa(G (n, c/n)) ≫ nd .

Proof (sketch).

1. Find an independent set I of size c ′n.

2. There is a vertex connected to exactly d members of I .
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Summary of lower bounds

1. eppa(n) ≥ Ω(2n/
√
n).

2. If G is not sub-homogeneous (a subgraph of a homogeneous
graph) then eppa(G) ≥ 5

4n.

3. If G is triangle-free bounded-degree then eppa(G) ∈ Θ(n∆).

4. eppa(G (n, 1/2)) ≫ n2−ϵ.

5. eppa(G (n, c/n)) is superpolynomial.

6. If G is bounded-degree non-sub-homogeneous then
eppa(G) ∈ Ω(n2).
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Hypergraphs

Theorem (Hubička, Konečný, Nešeťril, 2022)

For every k ≥ 2, eppak(n) ≤ n2(
n−1
k−1).
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Proof

▶ ab is a hyperedge ⇐⇒ the b-th bit of a is 1.

▶ If H is an EPPA-witness for G, v ∈ H and a ∈ G , put
fv (a) =

∑
b∈G :abv∈E(H) 2

b. (f = id)

▶ Claim: For every permutation f of {0, . . . , 2m − 1} there is
v ∈ H such that fv = f .

▶ Permute the blue vertices of G according to f and fix the red
vertices. Let g ∈ Aut(H) be an extension. Then fg( ) = f .

▶ Consequently, |H| ≥ m! ∈ 2Ω(n log n).

▶ Note that there are only 2O(n log n) partial permutations.
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Conclusion

Problem
Close the gap Ω(2n/

√
n) ≤ eppa(n) ≤ n2n−1. (I doubt the lower

bound is tight.)

Conjecture

If G is not sub-homogeneous then eppa(G) ∈ Ω(n2). (Even ω(n)
would be nice.)

Question
Are bounded-(co)degree graphs and sub-homogeneous graphs the
only ones with polynomial EPPA numbers?

Problem
Improve the bounds for G (n, 1/2) (or other random graphs).

Problem
Compute the exact EPPA numbers of cycles. (Dibs!)
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Conclusion II

Problem
Compute the exact EPPA numbers of other graphs.

Problem
Study EPPA numbers of directed graphs. (n4n−1 resp. n3n−1

upper bounds, many lower bounds persist)

Problem
Improve the bounds 2Ω(n log(n)) ≤ eppak(n) ≤ n2(

n−1
k−1).

Problem
If G is Km-free, what can we say about its Km-free
EPPA-witnesses? (There is one of size 22

O(n)
if m is constant.)

Question (Herwig, Lascar, 2000)

Do finite tournaments have EPPA?

Problem
Is there a graph G with eppa(G) ̸= ceppa(G)?

Thank you!

(Answers?)
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