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Let A be a graph. A partial function f: A — A is a partial
automorphism of A if f is an isomorphism A|pom(r) — AlRange(f)-
If v is an automorphism of A such that f C «, we say that f
extends to a.

Example

> A graph G is vertex-transitive if every partial automorphism f
with [Dom(f)| < 1 extends to an automorphism of G.

> A graph G is edge-transitive if every partial automorphism f
with Dom(f) being an edge extends to an automorphism of G.

Definition
A graph G is homogeneous if every partial automorphism of G with
finite domain extends to an automorphism of G.
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Finite homogeneous graphs [Gardiner, 1976]

The following are the only finite homogeneous graphs:
» mK, and complements,
> Cs,
> L(K33).
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EPPA numbers

Definition
eppa(A) = min{|B| : B is an EPPA-witness for A}.

eppa(n) = max{eppa(A) : |A| = n}.

Theorem (Hrushovski, 1992)
For every n we have that

272 < eppa(n) < oc.

Problem (Hrushovski, 1992)
Improve the bounds.
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A connection to model theory

Pick a graph Ayg.

Let M be the union of the chain. Then M is homogeneous.

Theorem [Hodges, Hodkinson, Lascar, Shelah, 1993]: The
countable random graph has the small index property.

Theorem [Kechris, Rosendal, 2007]: The class of all finite
substructures of a homogeneous structure M has EPPA if and only
if Aut(M) can be written as the closure of a chain of compact
subgroups.



Theorem (Herwig, Lascar, 2000)

For every G with n vertices, m edges and maximum degree A we
have that eppa(G) < (4"x™) € n(n).

In particular, bounded degree graphs have polynomial EPPA
numbers.



Theorem (Herwig, Lascar, 2000)

For every G with n vertices, m edges and maximum degree A we
have that eppa(G) < (4"x™) € n(n).

In particular, bounded degree graphs have polynomial EPPA
numbers.

Theorem (Evans, Hubi¢ka, K, NeZet¥il, 2021)

eppa(n) < n2""1
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For every G with n vertices, m edges and maximum degree A we
have that eppa(G) < (4"x™) € n(n).

In particular, bounded degree graphs have polynomial EPPA
numbers.

Theorem (Evans, Hubi¢ka, K, NeZet¥il, 2021)

eppa(n) < n2""1

Independently proved also by Andréka and Németi.
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Theorem (Herwig, Lascar, 2000)

If the maximum degree of G is A, then it has an EPPA-witness on
at most (%) vertices.

Proof.

1.

AR

6.

Let G = (V, E) be a graph. Assume that G is A-regular.
Define H so that V(H) = (g) and XY e EH)if XNY #0.
Embed ¢): G — H sending v — {e € E : v € e}.

A partial automorphism of G gives a partial permutation of E.

Extend it to a permutation of E respecting the partial
automorphism.

Every permutation of E induces an automorphism of H. 0

For non-regular graphs, add “half-edges” to make them regular.



An upper bound [Evans, Hubi¢ka, K, NeZet¥il, 2021]

Given set A, define graph Ha.
Ha={(x,f):xe€ A f: A\ {x} = {0,1}}.
{(x,f),(v.8)} € E <= x#yand f(y) # g(x).

1. For a permutation 7: A — A define 11
ar: H, — H, by
ax((x, 1)) = (7(x), g), where 1
gly) = f(z=1(y)). U
2. an € Aut(Ha). 01
3. For x # y € A define o, by
axy((z,f)) = (z,8) where 00
g(w) =1—f(w)if{x,y} ={z,w}
and g(w) = f(w) otherwise. H4 T Y

4. ay, € Aut(Ha).



An upper bound [Evans, Hubi¢ka, K, Neget¥il, 2021] II.

Ha={(x,f):xe A f: A\ {x} = {0,1}}.
{0 1),(v:8)} € E <= x#yand f(y) # g(x).

11
5. Fix a graph G and consider Hg. W

6. Embed G to H¢ vertex-by-vertex, 10
preserving projections.

7. Pick a partial automorphism f of 01
G, project it to G, and extend it to
a permutation 7 of G.
00

8. Consider a;. There is a canonical
choice of ay,,'s such that
QU O Qlqyy O+ + O Qiy,y, extends f.
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1. Finite homogeneous graphs (Gs, L(K33), mK,, mK,).
2. Complements of Kneser graphs (O(n®) for constant A).
3. Valuation graphs (n2"~1).
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A lower bound

Observation (Bradley-Williams, Cameron, Hubitka, K, 2023)
eppa(n) > Q(2"/+/n).

Proof (basically Hrushovski'92).

@ Every permutation of the left part
is a partial automorphism of G.

» Claim: In every EPPA-witness,
for every S € (,57]2) there is a
vertex connected to S and not to
[n]\ S.

» Pick arbitrary S € (,57]2)

> eppa(G) > (n72) € Q(2"/\/n).
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Observation (B-WCHK, 2023)
Asymptotically almost surely eppa(G(n,1/2)) > n.

Proof (sketch).
1. Find an independent set [ of size 2log,(n).

2. There is a vertex connected to about half of /.
3. So eppa(G(n,1/2)) 2 (8lY) € Q(n?//log(n

log,(n)

Conjecture

eppa(G(n,1/2)) is superpolynomial.
Observation (B-WCHK, 2023)

For every c,d, a.a.s. eppa(G(n,c/n)) > n9.
Proof (sketch).

1. Find an independent set | of size ¢’n.

2. There is a vertex connected to exactly d members of /.
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Open problems

Problem
Close the gap Q(2"/+/n) < eppa(n) < n2"1. (I doubt the lower
bound is tight.)

Conjecture

If G is not sub-homogeneous then eppa(G) € Q(n?). (Even w(n)
would be nice.)

Question
Are bounded-(co)degree graphs and sub-homogeneous graphs the
only ones with polynomial EPPA numbers?

Problem
Improve the bounds for G(n,1/2) (or other random graphs).

Problem
Compute the exact EPPA numbers of cycles. (Likely solved by
Cameron, eppa(C,) = (3) ifn>1.)
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Open problems ||

Problem
Compute the exact EPPA numbers of other graphs.

Problem
Study EPPA numbers of directed graphs. (n4"~! resp. n3"~!
upper bounds, many lower bounds persist)

Problem

If G is K,-free, what can we say about its K,,-free
EPPA-witnesses? (There is one of size 22°"if m is constant. )
Question (Herwig, Lascar, 2000)

Do finite tournaments have EPPA?

Problem
Improve bounds for hypergraphs.
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Hypergraphs

Theorem (Hubitka, KoneZny, Nesetfil, 2022)
n—1
For every k > 2, eppa,(n) < n2(ic)

Observation (B-WCHK, 2023)

For every m, there is a 3-uniform hypergraph G on n =2"+ m+1
vertices with eppas(G) > (2™)! € 29(nlogn),

Note that there are only 20(7logn) partial automorphisms of an
Yy p y
n-vertex structure.)
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ab- is a hyperedge <= the b-th bit of a is 1.

If His an EP —Arﬁsvve,rg-l?a)d a€e G, put

f(a) = Xpegabvermy 27 (f =id)

Claim: For every permutation f of {0,...,2" — 1} there is
v € H such that f, = f.

Permute the blue vertices of G according to f and fix the red
vertices. Let g € Aut(H) be an extension. Then fy() = f.

Consequently, |H| > (2™)! € 29Q(nlogn)



