CSPs on Symmetric Sets

Max Hadek

Charles University

SSAOS, 9 Sept 2024

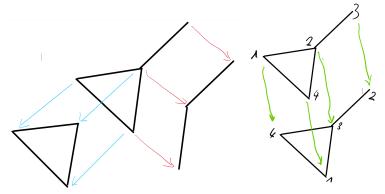
Max Hadek (Charles University)

CSPs on Symmetric Sets

1/9

Symmetric Set Example: Graphs

- $G_n := \text{set of graphs on vertex set } [n] = \{1, 2, \dots, n\}$
- injective maps $[k] \rightarrow [n]$ give maps $G_n \rightarrow G_k$

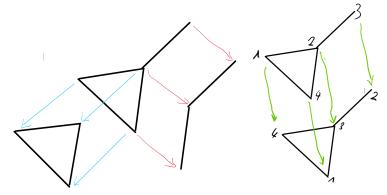


2/9

< □ > < 凸

Symmetric Set Example: Graphs

- $G_n := \text{set of graphs on vertex set } [n] = \{1, 2, \dots, n\}$
- injective maps $[k] \rightarrow [n]$ give maps $G_n \rightarrow G_k$

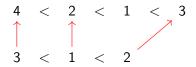


• $G := \text{all } G_n \text{ together maps } G_n \to G_k \text{ for all } [k] \to [n]$

A ID > A A P > A

Symmetric Set Example: Linear Orders

- L_n := set of linear orders on [n]
- $[k] \rightarrow [n]$ again gives map $L_n \rightarrow L_k$



A B M A B M

Symmetric Set Example: Linear Orders

- L_n := set of linear orders on [n]
- $[k] \rightarrow [n]$ again gives map $L_n \rightarrow L_k$



• L :=all L_n together maps $L_n \to L_k$ for all $[k] \to [n]$

Max Hadek (Charles University)

CSPs on Symmetric Sets

■ ▶ 4 ≧ ▶ 4 ≧ ▶ ≧ つへで SSAOS, 9 Sept 2024 3/9

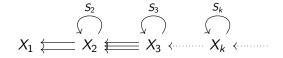
Symmetric Sets Formalism

Definition

A symmetric set is a sequence of sets X_1, X_2, \ldots together with maps $X(f) : X_n \to X_k$ for every injective map $[k] \to [n]$ such that

$$X(f \circ g) = X(g) \circ X(f)$$

 $X(id) = id$



4/9

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Relations on Symmetric Sets

X symmetric set, $R \subseteq X_n$ is called *n*-ary relation on X.

- {single edge} $\subseteq G_2$
- {triangle-free graphs} $\subseteq G_{37}$
- $\{(1 < 2)\} \subseteq L_2$
- Betw = {(1 < 2 < 3), (3 < 2 < 1)} $\subseteq L_3$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Relations on Symmetric Sets

X symmetric set, $R \subseteq X_n$ is called *n*-ary relation on X.

- {single edge} $\subseteq G_2$
- {triangle-free graphs} $\subset G_{37}$
- $\{(1 < 2)\} \subset L_2$
- Betw = {(1 < 2 < 3), (3 < 2 < 1)} $\subseteq L_3$

Question: Is there a linear order on $\{1, 2, 3, 4\}$ with

$$Betw(1,2,3) \land Betw(2,3,4) \land Betw(2,1,4)$$

1 < 2 < 3 < 4

5/9

Constraint Satisfaction Problems

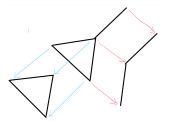
Let X symmetric set, $R \subseteq X_k$. CSP(X, R) is the following problem:

INPUT:

number *n* and conjunction of terms $R(\bar{v})$, where $\bar{v} \in [n]^{[k]}$

QUESTION:

Is there an element of $a \in X_n$ such that $X(\bar{v})(a) \in R$



Canonical Polymorphisms

Definition

Natural transformations $f: X^n \to X$ are called *canonical polymorphisms* of $R \subseteq X_k$ if

$$\bar{r} \in R^n \implies f_k(\bar{r}) \in R$$

Canonical Polymorphisms

Definition

Natural transformations $f: X^n \to X$ are called *canonical polymorphisms* of $R \subseteq X_k$ if

$$\bar{r} \in R^n \implies f_k(\bar{r}) \in R$$

Corollary (of Bulatov, Zhuk 2017)

If R has a "nice" canonical polymorphism, then $CSP(X, R) \in \mathbf{P}$

Max Hadek (Charles University)

CSPs on Symmetric Sets

7/9

< □ > < 同 > < 三 > < 三 >

Diagonal Polymorphisms

Definition

Natural transformations $f: X_{(n \times -)} \to X$ are called *diagonal polymorphisms* of $R \subseteq X_k$ if for $\overline{R} \in X_{n \times k}$

$$\forall i=1\ldots n \quad \pi_i(\bar{r})\in R \implies f_k(\bar{r})\in R$$

$$X_{n} \xleftarrow{} X_{n \times 2} \xleftarrow{} X_{n \times 3} \xleftarrow{} X_{n \times k}$$

$$f_{1} \downarrow \qquad f_{2} \downarrow \qquad f_{3} \downarrow \qquad f_{k} \downarrow$$

$$X_{1} \xleftarrow{} X_{2} \xleftarrow{} X_{3} \xleftarrow{} X_{k} \supseteq R$$

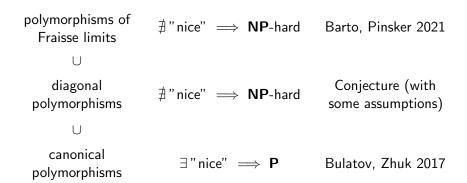
Max Hadek (Charles University)

CSPs on Symmetric Sets

SSAOS, 9 Sept 2024

- 4 回 ト 4 ヨ ト 4 ヨ ト

Overview / Results



CSPs on Symmetric Sets

SSAOS, 9 Sept 2024

< □ > < □ > < □ > < □ > < □ > < □ >