Algebraic Methods for the Complexity of Constraint Satisfaction Problems

Max Hadek

Charles University

DDS-M, 3 June 2024

erc

European Research Council

Funded by the European Union (ERC, POCOCOP, 101071674). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Algebraic Methods for the Complexity of Con:

What is CSP?

Given variables x_{1}, \ldots, x_{n} and some "constraints", decide whether the constraints can be satisfied.

What is CSP?

Given variables x_{1}, \ldots, x_{n} and some "constraints", decide whether the constraints can be satisfied.

- Suduku

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

What is CSP?

Given variables x_{1}, \ldots, x_{n} and some "constraints", decide whether the constraints can be satisfied.

- Suduku

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

- solving systems of equations

$$
\begin{aligned}
& x_{1}=x_{2}+x_{3}+x_{4} \\
& x_{2}=x_{3}-x_{1}
\end{aligned}
$$

What is CSP?

Given variables x_{1}, \ldots, x_{n} and some "constraints", decide whether the constraints can be satisfied.

- Suduku

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

- solving systems of equations

$$
\begin{aligned}
& x_{1}=x_{2}+x_{3}+x_{4} \\
& x_{2}=x_{3}-x_{1}
\end{aligned}
$$

- satisfiability of formulas

$$
\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{4} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee \neg x_{4}\right)
$$

CSP templates

Definition

A CSP-template is any relational structure, i.e. a set A together with some r_{i}-ary relations $R_{i} \subseteq A^{r_{i}}$ on A.

$$
\mathbb{A}=\left(A ; R_{1}, R_{2}, \ldots\right)
$$

CSP templates

Definition

A CSP-template is any relational structure, i.e. a set A together with some r_{i}-ary relations $R_{i} \subseteq A^{r_{i}}$ on A.

$$
\mathbb{A}=\left(A ; R_{1}, R_{2}, \ldots\right)
$$

Computational problem $\operatorname{CSP}(\mathbb{A})$:
INPUT: a sentence of the form

$$
\begin{aligned}
\exists x_{1} \exists x_{2} \ldots \exists x_{n}: R_{i_{1}}(\text { some variables }) & \wedge R_{i_{2}}(\text { more variables }) \wedge \ldots \\
& \wedge R_{i_{k}}(\text { maybe the same variables })
\end{aligned}
$$

QUESTION: is the sentence true in \mathbb{A} ?

Meta-questions

Question 1

Given \mathbb{A}, is there a fast (polynomial time) algorithm that solves $\operatorname{CSP}(\mathbb{A})$?

2-SAT vs. 3-SAT

$$
\mathbb{A}=(\{0,1\} ;(x \vee y),(x \vee \neg y),(\neg x \vee y),(\neg x \vee \neg y))
$$

2-SAT vs. 3-SAT

$$
\mathbb{A}=(\{0,1\} ;(x \vee y),(x \vee \neg y),(\neg x \vee y),(\neg x \vee \neg y))
$$

2-SAT
There is a polynomial time algorithm that solves $\operatorname{CSP}(\mathbb{A})$.

2-SAT vs. 3-SAT

$$
\mathbb{A}=(\{0,1\} ;(x \vee y),(x \vee \neg y),(\neg x \vee y),(\neg x \vee \neg y))
$$

2-SAT
There is a polynomial time algorithm that solves $\operatorname{CSP}(\mathbb{A})$.

$$
\mathbb{B}=(\{0,1\} ;(x \vee y \vee z),(x \vee y \vee \neg z), \ldots,(\neg x \vee \neg y \vee \neg z))
$$

2-SAT vs. 3-SAT

$$
\mathbb{A}=(\{0,1\} ;(x \vee y),(x \vee \neg y),(\neg x \vee y),(\neg x \vee \neg y))
$$

2-SAT
There is a polynomial time algorithm that solves $\operatorname{CSP}(\mathbb{A})$.

$$
\mathbb{B}=(\{0,1\} ;(x \vee y \vee z),(x \vee y \vee \neg z), \ldots,(\neg x \vee \neg y \vee \neg z))
$$

3-SAT

$\operatorname{CSP}(\mathbb{B})$ is NP-complete, i.e. (assuming $\mathrm{P} \neq \mathrm{NP}$) there is no algorithm solving 3-SAT in polynomial time.

Meta-questions

Question 1
Given \mathbb{A}, is there a fast (polynomial time) algorithm that solves $\operatorname{CSP}(\mathbb{A})$?

Question 2
Can we decide this based on some algebraic invariant of \mathbb{A} ?

Polymorphisms

Definition

A homomorphism between two relational structures $\left(A, R_{i}\right)$ and $\left(B, S_{i}\right)$ is a map $f: A \rightarrow B$ such that

$$
f_{*}\left(R_{i}\right) \subseteq S_{i}
$$

A polymorphism of arity n of \mathbb{A} is a homomorphism

$$
\mathbb{A}^{n} \rightarrow \mathbb{A}
$$

Polymorphisms of 2-SAT and 3-SAT

2-SAT has an interesting polymorphism:

$$
\begin{aligned}
\operatorname{maj}:\{0,1\}^{3} \rightarrow\{0,1\}, & (x, x, y) \\
(x, y, x) & \mapsto x \\
(y, x, x) & \mapsto x
\end{aligned}
$$

Polymorphisms of 2-SAT and 3-SAT

2-SAT has an interesting polymorphism:

$$
\begin{aligned}
\operatorname{maj}:\{0,1\}^{3} \rightarrow\{0,1\}, & (x, x, y) \\
(x, y, x) & \mapsto x \\
(y, x, x) & \mapsto x
\end{aligned}
$$

3-SAT does not: every polymorphism is a projection

$$
\pi_{i}:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{i}
$$

Dichotomy Theorem

Theorem (Bulatov, Zhuk 2017)
If \mathbb{A} is a finite structure, then:

- $\operatorname{CSP}(\mathbb{A}) \in P$, if \mathbb{A} has any "interesting" polymorphism
- if not, then $\operatorname{CSP}(\mathbb{A})$ is NP-complete

Outlook

- What about infinite \mathbb{A} ?

Outlook

- What about infinite \mathbb{A} ?
- What about variations of CSP? (PCSP, valued CSP, QCSP,...)

Outlook

- What about infinite \mathbb{A} ?
- What about variations of CSP? (PCSP, valued CSP, QCSP,...)
- What am I doing?

Outlook

- What about infinite \mathbb{A} ?
- What about variations of CSP? (PCSP, valued CSP, QCSP,...)
- What am I doing?

Categorification

