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Infinite H-colouring problems

Forbidden vertex-coloured pattern problems
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Forbidden edge-coloured patterns
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Example 1 (Robbins 1939)

A graph G is 2-edge-connected if and only if it admits a strongly
connected orientation.
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Oriented expressions of graph classes

Example 1 (Robbins 1939)

A graph G is 2-edge-connected if and only if it admits a strongly
connected orientation.

Example 2 (definition)
A graph G is a comparability graph if and only if it admits a transitive
orientation.

Example 3 (Roy-Gallai-Hasse-Vitaver Theorem)

A graph G is k-colourable if and only if it admits an orientation with no
directed walk of length k.

Santiago G.P. Forbidden Tournaments and the Orientation Problem



Oriented expressions of graph classes

Example 2 (Definition)

A graph G is a comparability graph if and only if it admits an F-free
orientation.



Oriented expressions of graph classes

Further examples

» Proper circular-arc graphs
* /N
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Proper Helly circular-arc graphs
3-colourable comparability graphs
Star forests

Unicyclic graphs

k-colourable graphs
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Oriented expressions of graph classes

F-free orientation problem:
On input graph G decide if there is an

F-free orientation of G
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Oriented expressions of graph classes

F-free orientation completion

problem (Bang-Jensen, Huang, Zhu (2017)):

On input partially oriented graph G

decide if there is an F-free orientation

completion of G F (e P3
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The F-free orientation problem

Example 1: Every tournament in F has a directed cycle
2
[ J
1@<«<—03
F= {?3}

Remark: F-free orientation problem is trivial

But: Orientation completion not necessarily trivial.



The F-free orientation problem

Example 2: T3-free orientation (completion) problem.
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Example 2: T3-free orientation (completion) problem.
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The F-free orientation problem

Example 2: T3-free orientation (completion) problem.

2
10— 03
F={Ts3}

x2=1 x13=1 x3=1 xu=1 x33=1
x21 =0, x33 =0, x32 =0, x42 =0, x43=0




The F-free orientation problem

For each triangle i/, j, k the following
equality holds:

xjj + Xj = 0.

There exists a triangle 7, j, k such that the
following equality holds:

xjj + xjx = 1 for instance xp3 + x31 = 1.




The F-free orientation problem

2
@
For each triangle i/, j, k the following
equality holds:

xjj + Xj = 0.

Code T3-free orientation of G as solutions
to

xij+x;=0forij € E
®4 Xj+xj =0 for jjke T
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The F-free orientation problem

For each triangle i/, j, k the following
equality holds:

X,'j-i-Xjk:O.

Code T3-free orientation completions of G

1@ 0?2 as solutions to
xj+xjj=0forijecE
3@ @ xj +xj =0 for jjk € T

xj=1forijeA
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The F-free orientation problem

1I—>?2 1?‘_¥2 For each i,j, k,/ in C; and in C

30—04 3004 Xif + Xj + xi + xi = 1.
G G

10— 0?2 16— 0?2
le TXl X2+ X4 +X43+x31 =01in Ty

30— 04 30—04 X12 + Xo4 +Xa3 +x31 = 0in TG,
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The F-free orientation problem

Example 3: The { T4, TC,}-free orientation (completion) problem is in P



The F-free orientation problem

Example 3: The { T4, TC,}-free orientation (completion) problem is in P

Question: For which finite sets of tournaments F the F-free does this
method work?



The F-free orientation problem
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The F-free orientation problem
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The F-free orientation problem
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The F-free orientation problem
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Lemma
Let F be a finite set of tournaments. The F-free orientations of a graph

G correspond to the solution space of some system of linear equations if
and only if the F-free tournaments are preserved by the minority

operation.



The F-free orientation problem

Example 4: The ?yfree orientation completion problem is NP-complete



The F-free orientation problem

Example 4: The ?yfree orientation completion problem is NP-complete

Reduction from NAE 3-SAT with Input: (xVyVz)A...
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The F-free orientation problem

Example 4: The ?yfree orientation completion problem is NP-complete

Reduction from NAE 3-SAT with Input: (xVyVz)A...
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The F-free orientation problem

Example 4: The ?yfree orientation completion problem is NP-complete

Reduction from NAE 3-SAT with Input: (xVyVz)A...
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The F-free orientation problem

Is that all?



The F-free orientation problem

Theorem (Bodirsky, G.P., 24+)

For every finite set of finite tournaments F one of the following cases
holds.

1. Ff is preserved by the minority operation. In this case, the F-free
orientation completions of a partially oriented graph G correspond
to the solution space of a system of linear equations over Zj.

2. Otherwise, F-free orientation completion problem is NP-complete.

In the first case, the F-free orientation completion problem is in P.
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The F-free orientation problem

Corollary

If every tournament in F contains a directed cycle, then the F-free
orientation completion problem is NP-complete.

PR
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The F-free orientation problem

Theorem (Bodirsky, G.P., 24+)

For every finite set of finite tournaments F one of the following cases
holds.

1. F contains no transitive tournament. In this case, every graph
admits an F-free orientation.

2. Fy is preserved by the minority operation. In this case, the F-free
orientations of a graph G correspond to the solution space of a
system of linear equations over Zj.

3. Otherwise, F-free orientation problem is NP-complete.

In cases 1 and 2, the F-free orientation problem is in P.
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The F-free orientation problem

Corollary

The Ty-free orientation problem is NP-complete for each k > 4.
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If the F-free orientation problem is NP-hard, then it is still NP-hard for
K¢-free graphs.



Thank you!

cyclic
minority minority
P P
cyclic
otherwise otherwise
NP-complete NP-complete
JF-free orientation completion F-free orientation
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Proof overview
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Proof overview

Code F-free tournament on [k] Fraissé-limit of F-free
as (g) boolean relation oriented graphs
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Proof overview
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