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Infinite H-colouring problems

Forbidden vertex-coloured pattern problems

Forbid homomorphically

P vs. NP-complete dichotomy
Feder-Vardi (1999) + Bulatuv, Zhuk (2017)

Bodirsky-Madelain-Mottet (2021)

NP-complete
NO-MONO-TRI(k)

3-COL

P
2-COL

Forbid (induced) subgraphs

Full expressive power of NP
Feder-Vardi (1999)

NP-complete

P
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Infinite H-colouring problems

Forbidden edge-coloured patterns

Conjectured P vs. NP-complete dichotomy
Bodirsky-Pinsker (2012)

NP-complete
NO-MONO-TRI(k)

P
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Oriented expressions of graph classes

Example 1 (Robbins 1939)
A graph G is 2-edge-connected if and only if it admits a strongly
connected orientation.

Example 2 (definition)
A graph G is a comparability graph if and only if it admits a transitive
orientation.

Example 3 (Roy-Gallai-Hasse-Vitaver Theorem)
A graph G is k-colourable if and only if it admits an orientation with no
directed walk of length k.
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Oriented expressions of graph classes

Example 2 (Definition)
A graph G is a comparability graph if and only if it admits an F-free
orientation.
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Oriented expressions of graph classes

Further examples

▶ Proper circular-arc graphs

▶ Proper Helly circular-arc graphs

▶ 3-colourable comparability graphs

▶ Star forests

▶ Unicyclic graphs

▶ k-colourable graphs

▶ C2k+1-colourable graphs
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Oriented expressions of graph classes

F-free orientation problem:
On input graph G decide if there is an
F-free orientation of G

B1
−→
C 3

NP-complete

k-col

C2k+1-col

F
P 3 vertices
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Oriented expressions of graph classes

F-free orientation completion
problem (Bang-Jensen, Huang, Zhu (2017)):
On input partially oriented graph G
decide if there is an F-free orientation
completion of G

E

NP-complete

E
F-free orientation

F
P P3
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The F -free orientation problem

Example 1: Every tournament in F has a directed cycle

1

2

3

F = {
−→
C 3}

Remark: F-free orientation problem is trivial

But: Orientation completion not necessarily trivial.

Santiago G.P. Forbidden Tournaments and the Orientation Problem



The F -free orientation problem

Example 1: Every tournament in F has a directed cycle

1

2

3

F = {
−→
C 3}

Remark: F-free orientation problem is trivial

But: Orientation completion not necessarily trivial.

Santiago G.P. Forbidden Tournaments and the Orientation Problem



The F -free orientation problem

Example 2: T3-free orientation (completion) problem.

1
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3

F = {T3}

1 2

3 4

G

Code orientations of G as solutions to the
sys. lin. eq. over Z2

xij + xji = 0 for ij ∈ E
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The F -free orientation problem

Example 2: T3-free orientation (completion) problem.

1

2

3

F = {T3}

1 2

3 4

G ′

x12 = 1, x13 = 1, x23 = 1, x24 = 1, x34 = 1
x21 = 0, x31 = 0, x32 = 0, x42 = 0, x43 = 0
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The F -free orientation problem

1

2

3
−→
C 3

1

2

3

T3

For each triangle i , j , k the following
equality holds:

xij + xjk = 0.

There exists a triangle i , j , k such that the
following equality holds:

xij + xjk = 1 for instance x23 + x31 = 1.
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The F -free orientation problem

1

2

3
−→
C 3

1 2

3 4

G

For each triangle i , j , k the following
equality holds:

xij + xjk = 0.

Code T3-free orientation completions of G
as solutions to

xij + xji = 0 for ij ∈ E

xij + xjk = 0 for ijk ∈ T

xij = 1 for ij ∈ A
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The F -free orientation problem

1 2

3 4
T4

1 2

3 4
TC4

1 2

3 4
C−
3

1 2

3 4
C+
3

For each i , j , k , l in C−3 and in C+
3

xij + xjk + xkl + xli = 1.

x12 + x24 + x43 + x31 = 0 in T4

x12 + x24 + x43 + x31 = 0 in TC4
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The F -free orientation problem

Example 3: The {T4,TC4}-free orientation (completion) problem is in P

Question: For which finite sets of tournaments F the F-free does this
method work?
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The F -free orientation problem
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1

2

3

minority

▶ −→
C 3-free tournaments are not preserved by the minority operation.

▶ T3-free tournaments are preserved by the minority operation.
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The F -free orientation problem
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Lemma
Let F be a finite set of tournaments. The F-free orientations of a graph
G correspond to the solution space of some system of linear equations if
and only if the F-free tournaments are preserved by the minority
operation.
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The F -free orientation problem

Example 4: The
−→
C 3-free orientation completion problem is NP-complete

Reduction from NAE 3-SAT with Input: (x ∨ y ∨ z) ∧ . . .

x0 x1

z0

z1 y0

y1
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The F -free orientation problem

Is that all?
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The F -free orientation problem

Theorem (Bodirsky, G.P., 24+)
For every finite set of finite tournaments F one of the following cases
holds.

1. Ff is preserved by the minority operation. In this case, the F-free
orientation completions of a partially oriented graph G correspond
to the solution space of a system of linear equations over Z2.

2. Otherwise, F-free orientation completion problem is NP-complete.

In the first case, the F-free orientation completion problem is in P.
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The F -free orientation problem

Corollary
If every tournament in F contains a directed cycle, then the F-free
orientation completion problem is NP-complete.
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The F -free orientation problem

Theorem (Bodirsky, G.P., 24+)
For every finite set of finite tournaments F one of the following cases
holds.

1. F contains no transitive tournament. In this case, every graph
admits an F-free orientation.

2. Ff is preserved by the minority operation. In this case, the F-free
orientations of a graph G correspond to the solution space of a
system of linear equations over Z2.

3. Otherwise, F-free orientation problem is NP-complete.

In cases 1 and 2, the F-free orientation problem is in P.
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The F -free orientation problem

Corollary

The Tk -free orientation problem is NP-complete for each k ≥ 4.

1

2

3

4

TC4

1

2

3

4

TC4

1

2

3

4

TC4

1

2

3

4

T4

If the F-free orientation problem is NP-hard, then it is still NP-hard for
Kf -free graphs.
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Thank you!

F-free orientation

NP-complete
otherwise

P

cyclic

minority

F-free orientation completion

NP-complete

cyclic

otherwise

P
minority
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Proof overview

F DFBF

or. comp. problem CSP(DF ,U)CSP(BF , 0, 1)

CSP(DF ,U,S4)
S4:(x1→x2∧x3→x4)
∨(x1←x2∧x3←x4)

Fraissé-limit of F-free
oriented graphs

Code F-free tournament on [k]

as
(
k
2

)
boolean relation

U:x1→x2
∨x1←x2

≈
pol-time
reduction

pp-interpretation of (BF , 0, 1) ∗
in (DF ,U, S4)

pp-definition of S4 in (DF ,U)

∗via homogeneity of DF
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Proof overview

DF

CSP(DF ,U)

CSP(DF ,U,S4)
S4:(x1→x2∧x3→x4)
∨(x1←x2∧x3←x4)

U:x1→x2
∨x1←x2

pp-definition of S4 in (DF ,U)

Essentially combinatorial

x1 x2

x3 x4

pp-definition of S4 when F = {
−→
C 3}
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Proof overview

F DFBF

or. problem CSP(HF )CSP(BF )

CSP(HF ,S4)
S4:(x1→x2∧x3→x4)
∨(x1←x2∧x3←x4)

Fraissé-limit of F-free
oriented graphs

Code F-free tournament on [k]

as
(
k
2

)
boolean relation

Underlying graph

≈pol-time reduction

pp-interpretation of BF ∗
in (HF , S4)

pp-definition of S4 in HF

∗via homogeneity of DF
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Proof overview

DF

CSP(HF )

CSP(HF ,S4)

Underlying graph

pp-definition of S4 in HF

Aut(H)

⟨Aut(DF ),sw,−⟩

⟨Aut(DF ),−⟩⟨Aut(DF ),sw⟩

Aut(DF )

Classification of Aut(HF )
(Agarwal and Kompatscher, 2018)

From general principles ∗

∗orbits of k-tuples are pp-definable in
ω-categorical model complete cores
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