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The problem we are studying

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use

of at least four satellites

How many "satellites" would
I need in a given graph?

⇒ Well-studied Metric Dimension

What if the graph changes over time?
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Temporal graphs
G = (V , E1, E2, . . . , Etmax) [Ferreira & Viennot, 2002]

G = (V , E , λ) [Kempe, Kleinberg & Kumar, 2000]

⇔

t = 1 t = 2 t = 3 t = 4

1,3

2,4

2
3,4

3

3

2

4

1,3

Well-studied in distributed algorithms and dynamic networks
(biological, transportation...)

[Casteigts, 2018] for a thorough introduction

Useful terms
▶ The static graph G = (V , E ) is the underlying graph
▶ λ is the time labeling
▶ A journey is a path in the underlying graph with strictly

increasing time-steps
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Distance in temporal graphs
Three possible variables to minimize in a journey

▶ Shortest: Number of edges in the underlying graph
▶ Fastest: Duration of the journey
▶ Foremost: Arrival time
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u v

The temporal distance from u to v is the last time-step of a
foremost journey from u to v .

Temporal distance
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Resolving Set

R ⊆ V s.t., ∀u, v ∈ V , u ̸= v , ∃r ∈ R with dist(r , u) ̸=
dist(r , v).

Definition

1 2 31

1

1

1

1
1

▶ All vertices must be reached from some vertex of R
▶ If λ(e) = {1, . . . , diam(G)} for every edge e, then we get the

standard resolving set → Generalization
▶ Temporal Resolving Set: find a minimum-size set
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Previous work on resolving sets
Resolving set
▶ Defined by [Harary & Melter, 1976] and [Slater, 1975],

well-studied since
▶ NP-hard, even on restricted classes (bipartite...)
▶ W[2]-hard (wrt solution size) on subcubic graphs
▶ Polynomial algorithms for trees and complete graphs

k-truncated resolving set
distk(u, v) = min(dist(u, v), k + 1)
▶ Defined by [Estrada-Moreno et al., 2021], generalizing

adjacency resolving sets for any k
▶ NP-hard on trees, but XP (wrt k) algorithm
▶ Polynomial algorithms for subdivided stars and complete

graphs
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Our results: complexity of Temporal Resolving Set

Standard
resolving set

k-truncated
resolving set

Temporal
resolving set

Trees poly NP-hard
XP wrt k

NP-hard
(2 consecutive time

labels per edge)

Subdivided
stars poly poly

NP-hard (2 time labels
per edge)

poly (time labels 1 and
2, one per edge)

Stars,
Paths poly poly poly (1 time label per

edge)
Complete

graphs poly poly NP-hard (time labels 1
and 2, one per edge)
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NP-hardness

Temporal Resolving Set is NP-hard, even if the underlying
graph is a tree and each edge appears at most twice.

Theorem [B., Dailly & Lehtilä, 2024]

Proof idea: reduction from 3-Dimensional Matching

n −
1, n n edges n edges n edges n edges n edges...

triple (1, 3, 6)

n, n +
1

6n, 6n +
1

3n, 3n +
1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

n2 + 1

not in the matching

▶ Control vertices are always in the set
▶ First vertex in the set for every triple not in the matching
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Paths

Temporal Resolving Set can be solved in linear time if the
underlying graph is a path and each edge appears once.

Theorem [B., Dailly & Lehtilä, 2024]

Algorithm idea
6 3 1 2 4 8 8

Iterate

6 3 1 2 6 8 8

Conflict

last vertex to reach
the 1st conflict

solvedIterate

▶ A few more details for edge cases
▶ Proof of optimality: technical analysis
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Subdivided stars

Temporal Resolving Set can be solved in polynomial time
if the underlying graph is a subdivided star, each edge appears
once and the time-steps are 1 or 2.

Theorem [B., Dailly & Lehtilä, 2024]

Algorithm idea

▶ Apply the path algorithm on every branch
▶ Manage the center and the link with the branches (lots of

cases to consider carefully!)
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Our results: periodic time labelings

t = 1 t = 2 t = 3 t = 4

t = 5 t = 6 t = 7 t = 8

. . .
→ 4-periodic time labeling

Results for 1 time label per edge
▶ Combinatorial results (bounds) for paths, cycles, complete

graphs, subdivided stars, and complete binary trees
▶ XP algorithm (wrt period) for subdivided stars
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Periodic time labelings on subdivided stars

Any leaf is a temporal resolving set of a path with a periodic
time labeling.

Proposition [B. Dailly, Lehtilä, 2024]

Temporal Resolving Set can be solved in time O(np+1) on
a subdivided star of order n if the time labeling is p-periodic
and each edge appears once in every period.

Theorem [B. Dailly, Lehtilä, 2024]

Proof idea
▶ Lemma: for a tree in this setting, there is a minimum-size

temporal resolving set containing only leaves
▶ At least ℓ − p leaves are necessary (ℓ = number of leaves)
▶ Test every set of ℓ − p, ℓ − p + 1, . . . , ℓ leaves
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Final words
Our contributions
▶ Introducing temporal resolving sets
▶ NP-hard even on subdivided stars and complete graphs
▶ Poly-time algorithms for paths, stars (under constraints)
▶ XP on subdivided stars for periodic labelings (wrt period)

Future work
▶ Other parameters: number of time-steps, ...
▶ Large number of labels per edge might help!
▶ Other notions of distance (shortest and fastest journey)
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