Resolving Sets in Temporal Graphs

Jan Bok1*,*² , Antoine Dailly¹ , Tuomo Lehtilä1*,*3*,*⁴

 1 LIMOS, Université Clermont-Auvergne, Clermont-Ferrand, France ² Faculty of Mathematics and Physics, Charles University, Prague ³ Department of Computer Science, University of Helsinki, Helsinki, Finland ⁴ Helsinki Institute for Information Technology (HIIT), Espoo, Finland

Funded by: ANR GRALMECO, I-SITE CAP 20-25, ERC Synergy Grant POCOCOP (GA 101071674), Business Finland Project 6GNTF

 $\tilde{\chi}$

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least four satellites

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least four satellites

g

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least four satellites

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least four satellites

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least four satellites

How many "satellites" would I need in a given graph? [⇒] Well-studied Metric Dimension

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least four satellites

How many "satellites" would I need in a given graph? [⇒] Well-studied Metric Dimension

What if the graph **changes over time**?

 $G = (V, E_1, E_2, \ldots, E_{t_{\text{max}}})$ [Ferreira & Viennot, 2002]

Well-studied in distributed algorithms and dynamic networks (biological, transportation...) [Casteigts, 2018] for a thorough introduction

Well-studied in distributed algorithms and dynamic networks (biological, transportation...) [Casteigts, 2018] for a thorough introduction

Useful terms

- \blacktriangleright The static graph $G = (V, E)$ is the **underlying graph**
- \blacktriangleright λ is the **time labeling**
- ▶ A **journey** is a path in the underlying graph with **strictly increasing** time-steps

Three possible variables to minimize in a journey

Three possible variables to minimize in a journey

▶ **Shortest:** Number of edges in the underlying graph

Three possible variables to minimize in a journey

- ▶ **Shortest:** Number of edges in the underlying graph
- ▶ **Fastest:** Duration of the journey

Three possible variables to minimize in a journey

- ▶ **Shortest:** Number of edges in the underlying graph
- ▶ **Fastest:** Duration of the journey
- ▶ **Foremost:** Arrival time

Three possible variables to minimize in a journey

- ▶ **Shortest:** Number of edges in the underlying graph
- ▶ **Fastest:** Duration of the journey
- ▶ **Foremost:** Arrival time

Temporal distance

The **temporal distance** from u to v is the last time-step of a **foremost** journey from u to v.

Resolving Set

 $R \subseteq V$ s.t., $\forall u, v \in V$, $u \neq v$, $\exists r \in R$ with dist $(r, u) \neq$ dist(r*,* v). **Definition**

Temporal Resolving Set

 $R \subseteq V$ s.t., $\forall u, v \in V$, $u \neq v$, $\exists r \in R$ with $dist_t(r, u) \neq 0$ $dist_t(r, v)$. **Definition**

Temporal Resolving Set

 $R \subseteq V$ s.t., $\forall u, v \in V$, $u \neq v$, $\exists r \in R$ with $dist_t(r, u) \neq$ $dist_t(r, v)$. **Definition**

- \blacktriangleright All vertices must be reached from some vertex of R
- \blacktriangleright If $\lambda(e) = \{1, \ldots, \text{diam}(G)\}\)$ for every edge e, then we get the standard resolving set \rightarrow Generalization
- ▶ TEMPORAL RESOLVING SET: find a minimum-size set

Previous work on resolving sets

Resolving set

- ▶ Defined by [Harary & Melter, 1976] and [Slater, 1975], well-studied since
- \blacktriangleright NP-hard, even on restricted classes (bipartite...)
- \triangleright W[2]-hard (wrt solution size) on subcubic graphs
- ▶ Polynomial algorithms for trees and complete graphs

Previous work on resolving sets

Resolving set

- ▶ Defined by [Harary & Melter, 1976] and [Slater, 1975], well-studied since
- \blacktriangleright NP-hard, even on restricted classes (bipartite...)
- \triangleright W[2]-hard (wrt solution size) on subcubic graphs
- ▶ Polynomial algorithms for trees and complete graphs

k-truncated resolving set

 $dist_k(u, v) = min(dist(u, v), k + 1)$

- ▶ Defined by [Estrada-Moreno et al., 2021], generalizing adjacency resolving sets for any k
- \triangleright NP-hard on trees, but XP (wrt k) algorithm
- ▶ Polynomial algorithms for subdivided stars and complete graphs

Our results: complexity of TEMPORAL RESOLVING SET

Theorem [B., Dailly & Lehtilä, 2024]

TEMPORAL RESOLVING SET is **NP-hard**, even if the underlying graph is a **tree** and each edge appears **at most twice**.

Theorem [B., Dailly & Lehtilä, 2024]

TEMPORAL RESOLVING SET is **NP-hard**, even if the underlying graph is a **tree** and each edge appears **at most twice**.

Proof idea: reduction from 3-DIMENSIONAL MATCHING

Theorem [B., Dailly & Lehtilä, 2024]

TEMPORAL RESOLVING SET is **NP-hard**, even if the underlying graph is a **tree** and each edge appears **at most twice**.

Proof idea: reduction from 3-DIMENSIONAL MATCHING

triple (1*,* 3*,* 6)

Theorem [B., Dailly & Lehtilä, 2024]

TEMPORAL RESOLVING SET is **NP-hard**, even if the underlying graph is a **tree** and each edge appears **at most twice**.

Proof idea: reduction from 3-DIMENSIONAL MATCHING

triple (1*,* 3*,* 6)

Theorem [B., Dailly & Lehtilä, 2024]

TEMPORAL RESOLVING SET is **NP-hard**, even if the underlying graph is a **tree** and each edge appears **at most twice**.

Proof idea: reduction from 3-DIMENSIONAL MATCHING

triple (1*,* 3*,* 6)

 \triangleright Control vertices are always in the set

Theorem [B., Dailly & Lehtilä, 2024]

TEMPORAL RESOLVING SET is **NP-hard**, even if the underlying graph is a **tree** and each edge appears **at most twice**.

Proof idea: reduction from 3-DIMENSIONAL MATCHING

 \triangleright Control vertices are always in the set

▶ First vertex in the set for every triple **not** in the matching

Theorem [B., Dailly & Lehtilä, 2024]

Temporal Resolving Set can be solved in **linear** time if the underlying graph is a **path** and each edge appears **once**.

Theorem [B., Dailly & Lehtilä, 2024]

Temporal Resolving Set can be solved in **linear** time if the underlying graph is a **path** and each edge appears **once**.

Theorem [B., Dailly & Lehtilä, 2024]

Temporal Resolving Set can be solved in **linear** time if the underlying graph is a **path** and each edge appears **once**.

Theorem [B., Dailly & Lehtilä, 2024]

Temporal Resolving Set can be solved in **linear** time if the underlying graph is a **path** and each edge appears **once**.

Theorem [B., Dailly & Lehtilä, 2024]

Temporal Resolving Set can be solved in **linear** time if the underlying graph is a **path** and each edge appears **once**.

Algorithm idea $\begin{array}{ccccccc} 6 & 3 & 1 & 2 & 4 & 8 & 8 & 1 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{array}$ Lerate $9 \overline{) 6 \overline{) 3 \overline{) 0 \cdot 1 \cdot 0^2 \cdot 0^6 \cdot 0^8 \cdot 0^8 \cdot 0^2}}$

Theorem [B., Dailly & Lehtilä, 2024]

Temporal Resolving Set can be solved in **linear** time if the underlying graph is a **path** and each edge appears **once**.

Algorithm idea $\begin{array}{ccccccc} 6 & 3 & 1 & 2 & 4 & 8 & 8 & 1 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{array}$ Lerate Q^6 0 3 0 1 0 2 0 6 Q^8 0 3 0 $-$ Conflict

Theorem [B., Dailly & Lehtilä, 2024]

Temporal Resolving Set can be solved in **linear** time if the underlying graph is a **path** and each edge appears **once**.

Algorithm idea $0 \t 0 \t 3 \t 1 \t 2 \t 4 \t 8 \t 8 \t 1$ Iterate $\frac{3}{1}$ $\frac{1}{2}$ $\frac{2}{1}$ $\frac{6}{1}$ $\frac{8}{1}$ $\frac{8}{1}$ $\frac{8}{1}$ $\frac{6}{1}$ $\frac{1}{1}$ $\frac{6}{1}$ $\frac{6}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ last vertex to reach the 1st conflict solved

Theorem [B., Dailly & Lehtilä, 2024]

Temporal Resolving Set can be solved in **linear** time if the underlying graph is a **path** and each edge appears **once**.

Algorithm idea $0 \t 0 \t 3 \t 1 \t 2 \t 4 \t 8 \t 8 \t 1$ Iterate \bullet $\frac{2}{0}$ \circ $\frac{6}{0}$ \bullet $\frac{8}{0}$ \circ \cdot last vertex to reach the 1st conflict Iterate

Theorem [B., Dailly & Lehtilä, 2024]

Temporal Resolving Set can be solved in **linear** time if the underlying graph is a **path** and each edge appears **once**.

- ▶ A few more details for edge cases
- \blacktriangleright Proof of optimality: technical analysis \blacktriangleright 9/13

Subdivided stars

Theorem [B., Dailly & Lehtilä, 2024]

Temporal Resolving Set can be solved in **polynomial** time if the underlying graph is a **subdivided star**, each edge appears **once** and the time-steps are **1 or 2**.

Subdivided stars

Theorem [B., Dailly & Lehtilä, 2024]

Temporal Resolving Set can be solved in **polynomial** time if the underlying graph is a **subdivided star**, each edge appears **once** and the time-steps are **1 or 2**.

Subdivided stars

Theorem [B., Dailly & Lehtilä, 2024]

Temporal Resolving Set can be solved in **polynomial** time if the underlying graph is a **subdivided star**, each edge appears **once** and the time-steps are **1 or 2**.

- \blacktriangleright Apply the path algorithm on every branch
- ▶ Manage the center and the link with the branches (lots of cases to consider carefully!)

Our results: periodic time labelings

 \rightarrow 4-periodic time labeling

Our results: periodic time labelings

 \rightarrow 4-periodic time labeling

Results for 1 time label per edge

- ▶ Combinatorial results (bounds) for paths, cycles, complete graphs, subdivided stars, and complete binary trees
- ▶ XP algorithm (wrt **period**) for subdivided stars

Proposition [B. Dailly, Lehtilä, 2024]

Any leaf is a temporal resolving set of a path with a periodic time labeling.

Proposition [B. Dailly, Lehtilä, 2024]

Any leaf is a temporal resolving set of a path with a periodic time labeling.

Theorem [B. Dailly, Lehtilä, 2024]

 $\tt TEMPORAL$ $\tt ResOLVING SET$ can be solved in time $\mathcal{O}(n^{p+1})$ on a **subdivided star** of order **n** if the time labeling is **p-periodic** and each edge appears **once in every period**.

Proposition [B. Dailly, Lehtilä, 2024]

Any leaf is a temporal resolving set of a path with a periodic time labeling.

Theorem [B. Dailly, Lehtilä, 2024]

 $\tt TEMPORAL$ $\tt ResOLVING SET$ can be solved in time $\mathcal{O}(n^{p+1})$ on a **subdivided star** of order **n** if the time labeling is **p-periodic** and each edge appears **once in every period**.

Proof idea

- \blacktriangleright Lemma: for a tree in this setting, there is a minimum-size temporal resolving set containing only leaves
- ▶ At least *ℓ* − p leaves are necessary (*ℓ* = number of leaves)
- **►** Test every set of ℓp , $\ell p + 1$, ..., ℓ leaves 12/13

Final words

Our contributions

- ▶ Introducing temporal resolving sets
- ▶ NP-hard even on subdivided stars and complete graphs
- ▶ Poly-time algorithms for paths, stars (under constraints)
- ▶ XP on subdivided stars for periodic labelings (wrt period)

Final words

Our contributions

- ▶ Introducing temporal resolving sets
- ▶ NP-hard even on subdivided stars and complete graphs
- ▶ Poly-time algorithms for paths, stars (under constraints)
- ▶ XP on subdivided stars for periodic labelings (wrt period)

Future work

- ▶ Other parameters: number of time-steps, ...
- ▶ Large number of labels per edge might help!
- ▶ Other notions of distance (shortest and fastest journey)

Final words

Our contributions

- ▶ Introducing temporal resolving sets
- ▶ NP-hard even on subdivided stars and complete graphs
- ▶ Poly-time algorithms for paths, stars (under constraints)
- ▶ XP on subdivided stars for periodic labelings (wrt period)

Future work

- ▶ Other parameters: number of time-steps, ...
- ▶ Large number of labels per edge might help!
- ▶ Other notions of distance (shortest and fastest journey)

