
Spectrahedral shadows and completely positive
maps on real closed fields

Manuel Bodirsky

Institut für Algebra, TU Dresden

Joint work with Mario Kummer and Andreas Thom

Pisa, 19. September 2024

ERC Synergy Grant POCOCOP (GA 101071674).

Spectrahedral Shadows Manuel Bodirsky 1



Outline

1 Semialgebraic feasibility problems

2 Spectrahedral shadows

3 Conjecture of Helton-Nie, solved by Scheiderer

4 New model theoretic proof, new results

5 Open problems

Spectrahedral Shadows Manuel Bodirsky 2



Linear Program Feasability

Satisfiability of Linear Inequalities:

Input: a finite set of variables V and
a finite set of linear inequalities of the form
a1x1 + · · ·+ anxn ≤ a0

with variables x1, . . . , xn ∈ V
and coefficients a0,a1, . . . ,an ∈ Q.

Question: Is there a solution over Q (equivalently, over R), i.e.,
a map c : V → Q that satisfies all the inequalities?

Complexity: in P (there exists a polynomial-time algorithm)

Simplex algorithm: good in practice,
but exponential worst-case running time for all known pivot strategies

Ellipsoid method: polynomial-time worst case running time,
but not very fast in practise

What other forms of constraints can be solved in polynomial time as well?

Spectrahedral Shadows Manuel Bodirsky 3



Linear Program Feasability

Satisfiability of Linear Inequalities:

Input: a finite set of variables V and
a finite set of linear inequalities of the form
a1x1 + · · ·+ anxn ≤ a0

with variables x1, . . . , xn ∈ V
and coefficients a0,a1, . . . ,an ∈ Q.

Question: Is there a solution over Q (equivalently, over R), i.e.,
a map c : V → Q that satisfies all the inequalities?

Complexity: in P (there exists a polynomial-time algorithm)

Simplex algorithm: good in practice,
but exponential worst-case running time for all known pivot strategies

Ellipsoid method: polynomial-time worst case running time,
but not very fast in practise

What other forms of constraints can be solved in polynomial time as well?

Spectrahedral Shadows Manuel Bodirsky 3



Linear Program Feasability

Satisfiability of Linear Inequalities:

Input: a finite set of variables V and
a finite set of linear inequalities of the form
a1x1 + · · ·+ anxn ≤ a0

with variables x1, . . . , xn ∈ V
and coefficients a0,a1, . . . ,an ∈ Q.

Question: Is there a solution over Q (equivalently, over R), i.e.,
a map c : V → Q that satisfies all the inequalities?

Complexity: in P (there exists a polynomial-time algorithm)

Simplex algorithm: good in practice,
but exponential worst-case running time for all known pivot strategies

Ellipsoid method: polynomial-time worst case running time,
but not very fast in practise

What other forms of constraints can be solved in polynomial time as well?

Spectrahedral Shadows Manuel Bodirsky 3



Linear Program Feasability

Satisfiability of Linear Inequalities:

Input: a finite set of variables V and
a finite set of linear inequalities of the form
a1x1 + · · ·+ anxn ≤ a0

with variables x1, . . . , xn ∈ V
and coefficients a0,a1, . . . ,an ∈ Q.

Question: Is there a solution over Q (equivalently, over R), i.e.,
a map c : V → Q that satisfies all the inequalities?

Complexity: in P (there exists a polynomial-time algorithm)

Simplex algorithm: good in practice,
but exponential worst-case running time for all known pivot strategies

Ellipsoid method: polynomial-time worst case running time,
but not very fast in practise

What other forms of constraints can be solved in polynomial time as well?

Spectrahedral Shadows Manuel Bodirsky 3



Linear Program Feasability

Satisfiability of Linear Inequalities:

Input: a finite set of variables V and
a finite set of linear inequalities of the form
a1x1 + · · ·+ anxn ≤ a0

with variables x1, . . . , xn ∈ V
and coefficients a0,a1, . . . ,an ∈ Q.

Question: Is there a solution over Q (equivalently, over R), i.e.,
a map c : V → Q that satisfies all the inequalities?

Complexity: in P (there exists a polynomial-time algorithm)

Simplex algorithm:

good in practice,
but exponential worst-case running time for all known pivot strategies

Ellipsoid method: polynomial-time worst case running time,
but not very fast in practise

What other forms of constraints can be solved in polynomial time as well?

Spectrahedral Shadows Manuel Bodirsky 3



Linear Program Feasability

Satisfiability of Linear Inequalities:

Input: a finite set of variables V and
a finite set of linear inequalities of the form
a1x1 + · · ·+ anxn ≤ a0

with variables x1, . . . , xn ∈ V
and coefficients a0,a1, . . . ,an ∈ Q.

Question: Is there a solution over Q (equivalently, over R), i.e.,
a map c : V → Q that satisfies all the inequalities?

Complexity: in P (there exists a polynomial-time algorithm)

Simplex algorithm: good in practice,

but exponential worst-case running time for all known pivot strategies

Ellipsoid method: polynomial-time worst case running time,
but not very fast in practise

What other forms of constraints can be solved in polynomial time as well?

Spectrahedral Shadows Manuel Bodirsky 3



Linear Program Feasability

Satisfiability of Linear Inequalities:

Input: a finite set of variables V and
a finite set of linear inequalities of the form
a1x1 + · · ·+ anxn ≤ a0

with variables x1, . . . , xn ∈ V
and coefficients a0,a1, . . . ,an ∈ Q.

Question: Is there a solution over Q (equivalently, over R), i.e.,
a map c : V → Q that satisfies all the inequalities?

Complexity: in P (there exists a polynomial-time algorithm)

Simplex algorithm: good in practice,
but exponential worst-case running time for all known pivot strategies

Ellipsoid method: polynomial-time worst case running time,
but not very fast in practise

What other forms of constraints can be solved in polynomial time as well?

Spectrahedral Shadows Manuel Bodirsky 3



Linear Program Feasability

Satisfiability of Linear Inequalities:

Input: a finite set of variables V and
a finite set of linear inequalities of the form
a1x1 + · · ·+ anxn ≤ a0

with variables x1, . . . , xn ∈ V
and coefficients a0,a1, . . . ,an ∈ Q.

Question: Is there a solution over Q (equivalently, over R), i.e.,
a map c : V → Q that satisfies all the inequalities?

Complexity: in P (there exists a polynomial-time algorithm)

Simplex algorithm: good in practice,
but exponential worst-case running time for all known pivot strategies

Ellipsoid method:

polynomial-time worst case running time,
but not very fast in practise

What other forms of constraints can be solved in polynomial time as well?

Spectrahedral Shadows Manuel Bodirsky 3



Linear Program Feasability

Satisfiability of Linear Inequalities:

Input: a finite set of variables V and
a finite set of linear inequalities of the form
a1x1 + · · ·+ anxn ≤ a0

with variables x1, . . . , xn ∈ V
and coefficients a0,a1, . . . ,an ∈ Q.

Question: Is there a solution over Q (equivalently, over R), i.e.,
a map c : V → Q that satisfies all the inequalities?

Complexity: in P (there exists a polynomial-time algorithm)

Simplex algorithm: good in practice,
but exponential worst-case running time for all known pivot strategies

Ellipsoid method: polynomial-time worst case running time,

but not very fast in practise

What other forms of constraints can be solved in polynomial time as well?

Spectrahedral Shadows Manuel Bodirsky 3



Linear Program Feasability

Satisfiability of Linear Inequalities:

Input: a finite set of variables V and
a finite set of linear inequalities of the form
a1x1 + · · ·+ anxn ≤ a0

with variables x1, . . . , xn ∈ V
and coefficients a0,a1, . . . ,an ∈ Q.

Question: Is there a solution over Q (equivalently, over R), i.e.,
a map c : V → Q that satisfies all the inequalities?

Complexity: in P (there exists a polynomial-time algorithm)

Simplex algorithm: good in practice,
but exponential worst-case running time for all known pivot strategies

Ellipsoid method: polynomial-time worst case running time,
but not very fast in practise

What other forms of constraints can be solved in polynomial time as well?

Spectrahedral Shadows Manuel Bodirsky 3



Linear Program Feasability

Satisfiability of Linear Inequalities:

Input: a finite set of variables V and
a finite set of linear inequalities of the form
a1x1 + · · ·+ anxn ≤ a0

with variables x1, . . . , xn ∈ V
and coefficients a0,a1, . . . ,an ∈ Q.

Question: Is there a solution over Q (equivalently, over R), i.e.,
a map c : V → Q that satisfies all the inequalities?

Complexity: in P (there exists a polynomial-time algorithm)

Simplex algorithm: good in practice,
but exponential worst-case running time for all known pivot strategies

Ellipsoid method: polynomial-time worst case running time,
but not very fast in practise

What other forms of constraints can be solved in polynomial time as well?

Spectrahedral Shadows Manuel Bodirsky 3



Semialgebraic Sets

A set S ⊆ Rn is called semialgebraic
if it is first-order definable in (R; +, ∗) with parameters from R.
∃,∀,∧,∨,¬,=

Examples.

{(x , y) ∈ R2 | x ≤ y } has the first-order definition ∃z(z2 + x = y).

{(x1, . . . , xn) ∈ Rn | a1x1 + · · ·+ anxn ≤ a0}.

{(x , y) ∈ R2 | y ≥ x2}.

{(x , y) ∈ {0,1,2}2 | x 6= y }.

Geometric perspective (Tarski-Seidenberg quantifier elimination):
S ⊆ Rn is semialgebraic if and only if
S is a union of intersections of (strict and weak) polynomial inequalities.

Satisfiability of constraints of the form x 6= y over {0,1,2}:
NP-hard (no polynomial-time algorithm unless P=NP).
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Convexity

A set S ⊆ Rn is called convex if for all a,b ∈ S we have{
αa + (1 − α)b | α ∈ {0,1}

}
⊆ S.

Equivalently, if S is semialgebraic: for all a,b ∈ S we have

(a + b)/2 ∈ S.

Thus, S has a ‘binary symmetric polymorphism’: a universal-algebraic
obstruction to standard hardness proofs.

Example of semialgebraic convex set:

{(x , y) ∈ R2 | y ≥ x2}
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Complexity
Satisfiability problem for convex semialgebraic sets:

input representation?
Options: each of the sets is given as a

Disjunction of conjunctions of polynomial inequalities
Conjunction of disjunctions of polynomial inequalities
. . .

Representation of coefficients?

Note. If there are only finitely many types of allowed constraints,
representability questions are trivial.

Example. All constraints of the form

x + y = z

x ≤ y

x = 1
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Primitive Positive Definitions

A primitive positive (pp) formula is a formula of the form

∃x1, . . . , xn(ψ1 ∧ · · ·∧ψm)

where ψ1, . . . , ψm are atomic formulas (no parameters unless mentioned).
If B is a structure and φ(y1, . . . , yk ) is a formula over the signature of B,
then φ defines the relation

{(a1, . . . ,ak ) ∈ Bk | B |= φ(a1, . . . ,ak )}.

A set S is pp-definable in B if there exists a pp formula φ that defines S in B.

Notes.

If all relations of B are semialgebraic, then every relation with a
pp-definition in B is semialgebraic.

If all relations of B are convex, then every relation with a
pp-definition in B is convex.
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Linear Feasibility Problem and PP-Definitions

Lemma. For every a0,a1, . . . ,ak ∈ Q, the set

{(x1, . . . , xk ) | a1x1 + · · ·+ ak xk ≤ a0}

has a primitive positive definition in

B = (R;R+,≤,1) where R+ = {(x , y , z) | x + y = z}

The size of the formula is linear in the representation size of a0,a1, . . . ,ak .

Corollary. Satisfaction problem for given linear inequalities reduces
to satisfaction problem for relations from B.

Question. Is there a set of ‘basic’ convex semialgebraic sets that can
pp-define all others?
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Spectrahedra
A ∈ Rk×k real symmetric matrix.

A � 0: A is positive semidefinite, i.e., y>Ay ≥ 0 for all y ∈ Rk .
S ⊆ Rn is called a spectrahedron if

S = {(x1, . . . , xn) | A0 + A1x1 + · · ·+ Anxn � 0︸ ︷︷ ︸
‘linear matrix inequality (LMI)’

}

for some symmetric A0,A1, . . . ,An ∈ Rk×k .
Feasible regions of semidefinite programs (SDP).

Example.

S =

{
(x , y) |

(
1 x
x y

)
� 0
}

=
{
(x , y) | y − x2 ≥ 0

}
Obs. Spectrahedra are

semialgebraic,
convex,
closed under finite intersections.
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Spectrahedral Shadows
Question. Is every convex semialgebraic set pp-definable over spectrahedra?

Equivalently. Is every such set a shadow (projection) of a spectrahedron?

History:

Asked by Nemirovski in ICM plenary address, Madrid 2006.

Set of spectrahedral shadows closed under convex hulls of finite unions,
topological closure, convex duality, . . . (many authors)

Positive answer conjectured by Helton and Nie 2009

Scheiderer 2018a: question confirmed for n = 2.

Scheiderer 2018b: question refuted (for n = 14).

Scheiderer 2018b: “What are alternative characterizations of
spectrahedral shadows that are easier to work with”?

Concretely, for example: “is the set of all copositive A ∈ R5×5 a
spectrahedral shadow?” (Scheiderer 2018b)
A is copositive if x>Ax ≥ 0 for every non-negative real vector x .

This talk: model-theoretic approach to these questions.
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Model Theoretic Approach

Use preservation theorems to study (non-) definability
Often obtain stronger results: non-definability by

existential positive formulas ∃,∧,∨,= or by
positive formulas ∀,∃,∧,∨,=.

Tarski principle for real closed field: may equivalently study the question
over any real-closed field extension R of R instead of R.

Definition. A,B: structures with the same domain.

B is reduct of A if B is obtained from A by dropping relations.

B is expansion of A if A is reduct of B.

B is first-order expansion of A if B is expansion of A and
all relations of B are first-order definable in A.

B is first-order reduct of A if B is reduct of first-order expansion of A.

Example. (R; {(x , y) | y ≥ x2}) is a first-order reduct of (R; +, ·,1).
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Preservation Theorems

Classic versions

A first-order formula φ is equivalent to an existential positive formula︸ ︷︷ ︸
∃,∧,∨,=

in B

if and only if (Lyndon-Łoś-Tarski)
φ is preserved by homomorphisms between models of Th(B)

A first-order formula φ is equivalent to a positive formula︸ ︷︷ ︸
∀,∃,∧,∨,=

in B

if and only if (Lyndon)
φ is preserved by surjective homomorphisms between models of Th(B)

Problem: what are the models of Th(B) if B = (R;all spectrahedra)?

Idea:

We do know the models of Th(R; +, ·,1): real-closed fields.

Instead of homomorphisms between models of Th(B) we work
within an appropriate real-closed field.

‘Tarski (transfer) principle’
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φ is preserved by homomorphisms between models of Th(B)

A first-order formula φ is equivalent to a positive formula︸ ︷︷ ︸
∀,∃,∧,∨,=

in B

if and only if (Lyndon)
φ is preserved by surjective homomorphisms between models of Th(B)

Problem: what are the models of Th(B) if B = (R;all spectrahedra)?

Idea:

We do know the models of Th(R; +, ·,1): real-closed fields.

Instead of homomorphisms between models of Th(B) we work
within an appropriate real-closed field.

‘Tarski (transfer) principle’

Spectrahedral Shadows Manuel Bodirsky 12



Preservation Theorems

Classic versions

A first-order formula φ is equivalent to an existential positive formula︸ ︷︷ ︸
∃,∧,∨,=

in B

if and only if (Lyndon-Łoś-Tarski)
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Preservation Theorems, refined version

A: a structure. Let A∗ be an elementary extension of A,

i.e., A is a substructure of A∗ such that for every first-order formula
φ(x1, . . . , xk ) and a ∈ Ak we have A |= φ(a) if and only if A∗ |= φ(a).

If S is first-order definable in A, then S∗ denotes the set defined by the
same formula over A∗.

If B is a reduct of A, then B∗ denotes the first-order reduct defined by the
same first-order formulas over A∗.

Theorem. A has an elementary extension A∗ such that the following holds.
If B is a first-order reduct of A and S ⊆ Ak is first-order definable in A, then

S has an existential positive definition in B if and only if
S∗ is preserved by all endomorphisms of B∗.

K has a positive definition in B if and only if
S∗ is preserved by all surjective endomorphisms of B∗.

S has a first-order definition in B if and only if
S∗ is preserved by all automorphisms of B∗.
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Completely Positive Maps

R: some elementary extension of (R; +, ·).

Definition. f : R → R

unital if it preserves the formula x = 1,

R-linear if it preserves the formula z = αx + βy for all α,β ∈ R.

completely positive if for every k ∈ N and symmetric A ∈ Rk×k ,
if A � 0 then f (A) � 0.

B := (R;all spectrahedra) (a first-order reduct of (R; +, ·)).

Lemma. f : R → R is an endomorphism of B∗ if and only if
f is unital, R-linear, and completely positive.
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The Real Closed Field of Hahn Series

Λ: divisible ordered abelian group.

Examples: Λ = R,
Λ = Qn with componentwise addition and the lexicographic order.

H = R[[εΛ]]: Hahn series over R with value group Λ.
Valuation v : H → Λ ∪ {∞} given by

v
(∑

e∈Λ

ceε
e) := min

{
(e ∈ Λ | ce 6= 0

}
.

H is real closed.
R[Λ]: subring of H of series with finite support.
Fix f : Λ→ R.

Lf : H → H,
∑
e∈Λ

ceε
e 7→∑

e∈Λ

f (e)ceε
e

Want to choose f so that Lf is unital, (R-linear,) and completely positive.
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Bijectivity

f : Λ→ R.

Lemma. Suppose Lf : H → H is unital and completely positive.
Then Lf is bijective.

Proof. Let a ∈ Λ.

A :=

(
εa 1
1 ε−a

)
� 0

Lf unital and completely positive:

Lf (A) =
(

f (a)εa 1
1 f (−a)ε−a

)
� 0

Hence, f (a)f (−a) ≥ 1, so f (a) 6= 0.
Define

g : Λ→ R, a 7→ 1
f (a)

Lf ◦ Lg = Lg ◦ Lf = idH . �
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Positive Definite Maps

How to choose f so that Lf is interesting?

Definition. f : Λ→ R is positive definite if for distinct a1, . . . ,ak ∈ Λ
the matrix (f (ai + aj))i,j is positive definite.

Lemma. If f is positive definite, then Lf is completely positive.

f : Λ→ R can be extended linearly to R-linear map Tf : R[Λ]→ R.
Every b ∈ R[Λ] can be written as b =

∑k
i=1 ciε

ai

for k ∈ N, (c1, . . . , ck ) ∈ Rk , and (a1, . . . ,ak ) ∈ Λk .

Tf (b2) =
∑
i,j

cicj f (ai + aj) = (c1, . . . , ck ) · (f (ai + aj))1≤i,j≤k ·

c1
...

ck


So: f positive definite iff Tf (b2) > 0 for all b ∈ R[Λ] \ {0}.
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Example of Positive Definite Map

Example for Λ = R.

H(C): ring of holomorphic functions on C.
Define Ψ : R[Λ]→ H(C) by setting for a ∈ R

Ψ(εa) := (z 7→ exp(az))

and extending linearly to all of R[Λ].
Note. If Ψ(g) vanishes on [a,b] for a < b, then g = 0.
µ: measure on R obtained as pushforward of Lebesgue measure on [a,b].

T : R[Λ]→ R,g 7→ ∫ Ψ(g)(x)dµ(x)
satisfies T (g2) ≥ 0, and T (g2) > 0 for all g ∈ R[Λ] \ {0}.

Define f : R→ R by f (a) = T (εa) for a ∈ R.
Then T = Tf and f is positive definite. �
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SOS

p ∈ R[x1, . . . , xn] is SOS
if it can be written as sum of squares of polynomials from R[x1, . . . , xn].

If p is SOS, then p(x) ≥ 0 for all x ∈ Rn.

Hilbert 1888: converse need not be true.

If f ∈ R[Qn] is SOS in R[Qn], it need not be nonnegative on all of Rn:
ε ∈ R[Q] takes negative values on R, but equals (ε

1
2 )2.

Observation. p ∈ R[x1, . . . , xn] is SOS in R[Qn] if and only if
p(xm

1 , . . . , x
m
n ) is SOS in R[x1, . . . , xn] for some m ≥ 1.

Question. Is there p ∈ R[x1, . . . , xn] such that

p(�x) ≥ 0 for all �x ∈ Rn,

for all m ≥ 1, the polynomial p(xm
1 , . . . , x

m
n ) is not SOS in R[�x ]?
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The Motzkin Polynomial

m(x1, x2, x3) := x6
3 − 3x2

1 x2
2 x2

3 + x4
1 x2

2 + x4
1 x2

2 ∈ R[x1, x2, x3]

has support {(0,0,6), (2,2,2), (2,4,0), (4,2,0)}.

Facts.

m(x1, x2, x3) ≥ 0 for all x1, x2, x3 ∈ R.
Proof: use inequality of arithmetic and geometric means.
For 0 ≤ λ1, . . . , λn ≤ 1 such that λ1 + · · ·+ λn = 1 have

λ1t1 + · · ·+ λntn ≥ tλ1
1 · · · t

λn
n

m is not SOS (Motzkin, Reznik).

m(y2
1 , y

2
2 , y

2
3 ) is SOS.
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The Horn Polynomial

h = (x1 + · · ·+ x5)
2 − 4(x1x2 + x2x3 + x3x4 + x4x5 + x5x1)

x1

x2
x3

x4

x51 h(�x) ≥ 0 for all �x ∈ R5
≥0 (Hall+Newman 1963)

2 For every k > 0, the polynomial h(xk
1 , . . . , x

k
5 )

is not SOS (Powers+Reznik 2021)

Part 1 can be generalised from C5 to every graph,
based on the following principle by Motzkin+Straus 1964:
For every graph G = ([n],E), the expression

max0≤λ1,...,λ|V|≤1
λ1+···+λn=1

∑
{u,v}∈E

λuλv

has value 1
2 (1 − 1

k ) where k is the size of the largest clique in G.
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Main Result

S ⊂ Zn
≥0 finite.

P+(S) :=
{

p ∈ R[x1, . . . , xn] | p has support S, and p(x) ≥ 0 for all x ∈ Rn}
May view P+(S) as a (semialgebraic) relation:

{
c ∈ R|S| | ∀x1, . . . , xn

∑
s∈S

cs

n∏
i=1

xsi
i ≥ 0

}
.

Theorem. TFAE:

1 P+(S) is spectrahedral shadow.

2 P+(S) has a positive definition in (B, 6=).

3 there exists d ≥ 1 such that for every p ∈ P+(S): p(xd
1 , . . . , x

d
n ) ∈ SOS.

1⇒ 2: trivial.
2⇒ 3: hardest part. Need a new separation result.
3⇒ 1: well-known for d = 1.
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Consequences

Corollary. For n ≥ 5, the set of all copositive matrices A ∈ Rn×n

is not a spectrahedral shadow.

Answers question of Scheiderer (2018).

Proof. Set of copositive matrices←→ Set of all homogeneous q ∈ R[x1, . . . , xn] of degree 2 such that

q(x2
1 , . . . , x

2
n ) ≥ 0 for all x1, . . . , xn ∈ R

←→ P+(S) for S = {2s ∈ Zn
≥0 | s1 + · · ·+ sn = 2}.

Define p := h(x2
1 , . . . , x

2
n ) for Horn polynomial h.

p ∈ P+(S),

p(xd
1 , . . . , x

d
n ) not SOS for all d > 0.

Theorem implies: P+(S) not spectrahedral shadow. �
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Separation Result

Outline of proof of the hard direction.

Suppose p ∈ P+(S) is not SOS.
1 Construct real closed field R and R-linear T : R[Qn]→ R such that

(a) T (a2) > 0 for all a ∈ R[Qn] \ {0}, and
(b) T (p) < 0.

2 Define f : Qn → R by f (w) := T (εw1
1 · · · ε

wn
n ).

3 Have T = Tf by the R-linearity of T .

4 (a) implies that f is positive definite.

5 Replacing T by T/T (1), may assume f (0) = 1, so that Lf is unital.

6 Lf : R[[εQ
n
]]→ R[[εQ

n
]] is (R-linear and) completely positive.

7 q := p(ε1x1, . . . , εnxn) polynomial with coefficients in R[[εQ
n
]].

8 q(�b) ≥ 0 for all �b, since p ∈ P+(S).

9 Lf (q)(ε−1
1 , . . . , ε−1

n ) = Tf (p) < 0.

10 Thus, Lf preserves all relations of B,
but not the formula defining P+(S). �
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Open Problems

1 What is the computational complexity of SDP feasibility,

i.e., the problem of determining whether a

{(x1, . . . , xn) | A0 + A1x1 + · · ·+ Anxn � 0} = ∅

for given symmetric A0,A1, . . . ,An ∈ Qk×k ? Is it in P?
Is in ∃R ⊆ PSPACE. If it is in NP, then NP = coNP.

2 ‘Sums-of-square-roots-problem’: What is the complexity of deciding√
a1 + · · ·+

√
an ≤ a0 for given a0,a1, . . . ,an ∈ Q? Reduces to

semidefinite program feasibility.

3 Prove that the constraint satisfaction problem for every non-linear convex
semi-algebraic expansion of (R; +,1,≤) is at least as hard as the
sums-of-square-roots problem.

4 Does {(x , y) | y ≥ x6) have a primitive positive definition in
(R; +,1, {(x , y) | y ≥ x2)?
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