Spectrahedral shadows and completely positive maps on real closed fields

Manuel Bodirsky

Institut für Algebra, TU Dresden

Joint work with Mario Kummer and Andreas Thom

Pisa, 19. September 2024

ERC Synergy Grant POCOCOP (GA 101071674).

Spectrahedral Shadows

Manuel Bodirsky

- 1 Semialgebraic feasibility problems
- 2 Spectrahedral shadows
- 3 Conjecture of Helton-Nie, solved by Scheiderer
- 4 New model theoretic proof, new results
- 5 Open problems

Satisfiability of Linear Inequalities:

Input: a finite set of variables *V* and a finite set of linear inequalities of the form $a_1x_1 + \dots + a_nx_n \le a_0$ with variables $x_1, \dots, x_n \in V$ and coefficients $a_0, a_1, \dots, a_n \in \mathbb{Q}$.

Satisfiability of Linear Inequalities:

Input: a finite set of variables *V* and a finite set of linear inequalities of the form $a_1x_1 + \cdots + a_nx_n \le a_0$ with variables $x_1, \ldots, x_n \in V$ and coefficients $a_0, a_1, \ldots, a_n \in \mathbb{Q}$.

Question: Is there a solution over \mathbb{Q} (equivalently, over \mathbb{R}), i.e., a map $c: V \to \mathbb{Q}$ that satisfies all the inequalities?

Satisfiability of Linear Inequalities:

Input: a finite set of variables *V* and a finite set of linear inequalities of the form $a_1x_1 + \cdots + a_nx_n \le a_0$ with variables $x_1, \ldots, x_n \in V$ and coefficients $a_0, a_1, \ldots, a_n \in \mathbb{Q}$.

Question: Is there a solution over \mathbb{Q} (equivalently, over \mathbb{R}), i.e., a map $c: V \to \mathbb{Q}$ that satisfies all the inequalities?

Satisfiability of Linear Inequalities:

Input: a finite set of variables *V* and a finite set of linear inequalities of the form $a_1x_1 + \cdots + a_nx_n \le a_0$ with variables $x_1, \ldots, x_n \in V$ and coefficients $a_0, a_1, \ldots, a_n \in \mathbb{Q}$.

Question: Is there a solution over \mathbb{Q} (equivalently, over \mathbb{R}), i.e., a map $c: V \to \mathbb{Q}$ that satisfies all the inequalities?

Complexity: in P (there exists a polynomial-time algorithm)

Simplex algorithm:

Satisfiability of Linear Inequalities:

Input: a finite set of variables *V* and a finite set of linear inequalities of the form $a_1x_1 + \cdots + a_nx_n \le a_0$ with variables $x_1, \ldots, x_n \in V$ and coefficients $a_0, a_1, \ldots, a_n \in \mathbb{Q}$.

Question: Is there a solution over \mathbb{Q} (equivalently, over \mathbb{R}), i.e., a map $c: V \to \mathbb{Q}$ that satisfies all the inequalities?

Complexity: in P (there exists a polynomial-time algorithm)

Simplex algorithm: good in practice,

Satisfiability of Linear Inequalities:

Input: a finite set of variables *V* and a finite set of linear inequalities of the form $a_1x_1 + \cdots + a_nx_n \le a_0$ with variables $x_1, \ldots, x_n \in V$ and coefficients $a_0, a_1, \ldots, a_n \in \mathbb{Q}$.

Question: Is there a solution over \mathbb{Q} (equivalently, over \mathbb{R}), i.e., a map $c: V \to \mathbb{Q}$ that satisfies all the inequalities?

Complexity: in P (there exists a polynomial-time algorithm)

 Simplex algorithm: good in practice, but exponential worst-case running time for all known pivot strategies

Satisfiability of Linear Inequalities:

Input: a finite set of variables *V* and a finite set of linear inequalities of the form $a_1x_1 + \cdots + a_nx_n \le a_0$ with variables $x_1, \ldots, x_n \in V$ and coefficients $a_0, a_1, \ldots, a_n \in \mathbb{Q}$.

Question: Is there a solution over \mathbb{Q} (equivalently, over \mathbb{R}), i.e., a map $c: V \to \mathbb{Q}$ that satisfies all the inequalities?

- Simplex algorithm: good in practice, but exponential worst-case running time for all known pivot strategies
- Ellipsoid method:

Satisfiability of Linear Inequalities:

Input: a finite set of variables *V* and a finite set of linear inequalities of the form $a_1x_1 + \cdots + a_nx_n \le a_0$ with variables $x_1, \ldots, x_n \in V$ and coefficients $a_0, a_1, \ldots, a_n \in \mathbb{Q}$.

Question: Is there a solution over \mathbb{Q} (equivalently, over \mathbb{R}), i.e., a map $c: V \to \mathbb{Q}$ that satisfies all the inequalities?

- Simplex algorithm: good in practice, but exponential worst-case running time for all known pivot strategies
- Ellipsoid method: polynomial-time worst case running time,

Satisfiability of Linear Inequalities:

Input: a finite set of variables *V* and a finite set of linear inequalities of the form $a_1x_1 + \cdots + a_nx_n \le a_0$ with variables $x_1, \ldots, x_n \in V$ and coefficients $a_0, a_1, \ldots, a_n \in \mathbb{Q}$.

Question: Is there a solution over \mathbb{Q} (equivalently, over \mathbb{R}), i.e., a map $c: V \to \mathbb{Q}$ that satisfies all the inequalities?

- Simplex algorithm: good in practice, but exponential worst-case running time for all known pivot strategies
- Ellipsoid method: polynomial-time worst case running time, but not very fast in practise

Satisfiability of Linear Inequalities:

Input: a finite set of variables *V* and a finite set of linear inequalities of the form $a_1x_1 + \cdots + a_nx_n \le a_0$ with variables $x_1, \ldots, x_n \in V$ and coefficients $a_0, a_1, \ldots, a_n \in \mathbb{Q}$.

Question: Is there a solution over \mathbb{Q} (equivalently, over \mathbb{R}), i.e., a map $c: V \to \mathbb{Q}$ that satisfies all the inequalities?

Complexity: in P (there exists a polynomial-time algorithm)

- Simplex algorithm: good in practice, but exponential worst-case running time for all known pivot strategies
- Ellipsoid method: polynomial-time worst case running time, but not very fast in practise

What other forms of constraints can be solved in polynomial time as well?

Spectrahedral Shadows

A set $S \subseteq \mathbb{R}^n$ is called semialgebraic if it is first-order definable in $(\mathbb{R}; +, *)$ with parameters from \mathbb{R} . $\exists, \forall, \land, \lor, \neg, =$

A set $S \subseteq \mathbb{R}^n$ is called semialgebraic if it is first-order definable in $(\mathbb{R}; +, *)$ with parameters from \mathbb{R} . $\exists, \forall, \land, \lor, \neg, =$

Examples.

• $\{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$ has the first-order definition $\exists z(z^2 + x = y)$.

A set $S \subseteq \mathbb{R}^n$ is called semialgebraic if it is first-order definable in $(\mathbb{R}; +, *)$ with parameters from \mathbb{R} . $\exists, \forall, \land, \lor, \neg, =$

Examples.

- $\{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$ has the first-order definition $\exists z(z^2 + x = y)$.
- $\blacksquare \{(x_1,\ldots,x_n)\in\mathbb{R}^n\mid a_1x_1+\cdots+a_nx_n\leq a_0\}.$

A set $S \subseteq \mathbb{R}^n$ is called semialgebraic if it is first-order definable in $(\mathbb{R}; +, *)$ with parameters from \mathbb{R} . $\exists, \forall, \land, \lor, \neg, =$

Examples.

- $\{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$ has the first-order definition $\exists z(z^2 + x = y)$.
- $\blacksquare \{(x_1,\ldots,x_n)\in\mathbb{R}^n\mid a_1x_1+\cdots+a_nx_n\leq a_0\}.$
- $\blacksquare \{(x, y) \in \mathbb{R}^2 \mid y \ge x^2\}.$

A set $S \subseteq \mathbb{R}^n$ is called semialgebraic if it is first-order definable in $(\mathbb{R}; +, *)$ with parameters from \mathbb{R} . $\exists, \forall, \land, \lor, \neg, =$

Examples.

- $\{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$ has the first-order definition $\exists z(z^2 + x = y)$.
- $\blacksquare \{(x_1,\ldots,x_n) \in \mathbb{R}^n \mid a_1x_1 + \cdots + a_nx_n \leq a_0\}.$
- $\blacksquare \{(x,y) \in \mathbb{R}^2 \mid y \ge x^2\}.$
- $\blacksquare \{(x, y) \in \{0, 1, 2\}^2 \mid x \neq y\}.$

A set $S \subseteq \mathbb{R}^n$ is called semialgebraic if it is first-order definable in $(\mathbb{R}; +, *)$ with parameters from \mathbb{R} . $\exists, \forall, \land, \lor, \neg, =$

Examples.

• $\{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$ has the first-order definition $\exists z(z^2 + x = y)$.

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n\mid a_1x_1+\cdots+a_nx_n\leq a_0\}.$$

- $\blacksquare \{(x, y) \in \mathbb{R}^2 \mid y \ge x^2\}.$
- { $(x, y) \in \{0, 1, 2\}^2 \mid x \neq y$ }.

Geometric perspective (Tarski-Seidenberg quantifier elimination):

A set $S \subseteq \mathbb{R}^n$ is called semialgebraic if it is first-order definable in $(\mathbb{R}; +, *)$ with parameters from \mathbb{R} . $\exists, \forall, \land, \lor, \neg, =$

Examples.

- $\{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$ has the first-order definition $\exists z(z^2 + x = y)$.
- $\blacksquare \{(x_1,\ldots,x_n)\in\mathbb{R}^n\mid a_1x_1+\cdots+a_nx_n\leq a_0\}.$
- $\blacksquare \{(x,y) \in \mathbb{R}^2 \mid y \ge x^2\}.$
- { $(x, y) \in \{0, 1, 2\}^2 \mid x \neq y$ }.

Geometric perspective (Tarski-Seidenberg quantifier elimination):

 $S \subseteq \mathbb{R}^n$ is semialgebraic if and only if

S is a union of intersections of (strict and weak) polynomial inequalities.

A set $S \subseteq \mathbb{R}^n$ is called semialgebraic if it is first-order definable in $(\mathbb{R}; +, *)$ with parameters from \mathbb{R} . $\exists, \forall, \land, \lor, \neg, =$

Examples.

• $\{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$ has the first-order definition $\exists z(z^2 + x = y)$.

$$= \{ (x_1,\ldots,x_n) \in \mathbb{R}^n \mid a_1x_1 + \cdots + a_nx_n \leq a_0 \}.$$

- $\blacksquare \{(x, y) \in \mathbb{R}^2 \mid y \ge x^2\}.$
- { $(x, y) \in \{0, 1, 2\}^2 \mid x \neq y$ }.

Geometric perspective (Tarski-Seidenberg quantifier elimination):

 $S \subseteq \mathbb{R}^n$ is semialgebraic if and only if

S is a union of intersections of (strict and weak) polynomial inequalities.

Satisfiability of constraints of the form $x \neq y$ over $\{0, 1, 2\}$:

A set $S \subseteq \mathbb{R}^n$ is called semialgebraic if it is first-order definable in $(\mathbb{R}; +, *)$ with parameters from \mathbb{R} . $\exists, \forall, \land, \lor, \neg, =$

Examples.

• $\{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$ has the first-order definition $\exists z(z^2 + x = y)$.

$$= \{ (x_1,\ldots,x_n) \in \mathbb{R}^n \mid a_1x_1 + \cdots + a_nx_n \leq a_0 \}.$$

- $\blacksquare \{(x, y) \in \mathbb{R}^2 \mid y \ge x^2\}.$
- { $(x, y) \in \{0, 1, 2\}^2 \mid x \neq y$ }.

Geometric perspective (Tarski-Seidenberg quantifier elimination):

 $S \subseteq \mathbb{R}^n$ is semialgebraic if and only if

S is a union of intersections of (strict and weak) polynomial inequalities.

Satisfiability of constraints of the form $x \neq y$ over {0, 1, 2}: NP-hard (no polynomial-time algorithm unless P=NP).

* 🔷

A set $S \subseteq \mathbb{R}^n$ is called convex if for all $a, b \in S$ we have

$$\left\{ lpha a + (1-lpha)b \mid lpha \in \{0,1\}
ight\} \subseteq S.$$

* 🔷

A set $S \subseteq \mathbb{R}^n$ is called convex if for all $a, b \in S$ we have

$$\left\{ lpha a + (1 - lpha) b \mid lpha \in \{0, 1\} \right\} \subseteq S.$$

Equivalently, if S is semialgebraic: for all $a, b \in S$ we have

(*a*+*b*)/2 ∈ *S*.

* 🔷

A set $S \subseteq \mathbb{R}^n$ is called convex if for all $a, b \in S$ we have

$$\left\{ \alpha a + (1-\alpha)b \mid \alpha \in \{0,1\} \right\} \subseteq S.$$

Equivalently, if S is semialgebraic: for all $a, b \in S$ we have

(*a*+*b*)/2 ∈ *S*.

Thus, *S* has a 'binary symmetric polymorphism': a universal-algebraic obstruction to standard hardness proofs.

* 🔷

A set $S \subseteq \mathbb{R}^n$ is called convex if for all $a, b \in S$ we have

$$\left\{ \alpha a + (1-\alpha)b \mid \alpha \in \{0,1\} \right\} \subseteq S.$$

Equivalently, if S is semialgebraic: for all $a, b \in S$ we have

(*a*+*b*)/2 ∈ *S*.

Thus, *S* has a 'binary symmetric polymorphism': a universal-algebraic obstruction to standard hardness proofs.

Example of semialgebraic convex set:

$$\{(x,y)\in\mathbb{R}^2\mid y\geq x^2\}$$

Satisfiability problem for convex semialgebraic sets:

Satisfiability problem for convex semialgebraic sets:

input representation?

Satisfiability problem for convex semialgebraic sets:

input representation?

Options: each of the sets is given as a

Satisfiability problem for convex semialgebraic sets:

input representation?

Options: each of the sets is given as a

Disjunction of conjunctions of polynomial inequalities

Satisfiability problem for convex semialgebraic sets:

input representation?

Options: each of the sets is given as a

- Disjunction of conjunctions of polynomial inequalities
- Conjunction of disjunctions of polynomial inequalities

. . . .

Satisfiability problem for convex semialgebraic sets:

input representation?

Options: each of the sets is given as a

- Disjunction of conjunctions of polynomial inequalities
- Conjunction of disjunctions of polynomial inequalities

Satisfiability problem for convex semialgebraic sets:

input representation?

Options: each of the sets is given as a

- Disjunction of conjunctions of polynomial inequalities
- Conjunction of disjunctions of polynomial inequalities

• • • •

Representation of coefficients?

Satisfiability problem for convex semialgebraic sets:

input representation?

Options: each of the sets is given as a

- Disjunction of conjunctions of polynomial inequalities
- Conjunction of disjunctions of polynomial inequalities

• • • •

Representation of coefficients?

Note. If there are only finitely many types of allowed constraints, representability questions are trivial.

Satisfiability problem for convex semialgebraic sets:

input representation?

Options: each of the sets is given as a

- Disjunction of conjunctions of polynomial inequalities
- Conjunction of disjunctions of polynomial inequalities

• • • •

Representation of coefficients?

Note. If there are only finitely many types of allowed constraints, representability questions are trivial.

Example. All constraints of the form

$$x + y = z$$
$$x \le y$$
$$x = 1$$
A primitive positive (pp) formula is a formula of the form

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$

where ψ_1, \ldots, ψ_m are atomic formulas (no parameters unless mentioned).

A primitive positive (pp) formula is a formula of the form

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$

where ψ_1, \ldots, ψ_m are atomic formulas (no parameters unless mentioned). If \mathfrak{B} is a structure and $\phi(y_1, \ldots, y_k)$ is a formula over the signature of \mathfrak{B} , then ϕ defines the relation

$$\{(a_1,\ldots,a_k)\in B^k\mid \mathfrak{B}\models \phi(a_1,\ldots,a_k)\}.$$

A primitive positive (pp) formula is a formula of the form

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$

where ψ_1, \ldots, ψ_m are atomic formulas (no parameters unless mentioned). If \mathfrak{B} is a structure and $\phi(y_1, \ldots, y_k)$ is a formula over the signature of \mathfrak{B} , then ϕ defines the relation

$$\{(a_1,\ldots,a_k)\in B^k\mid\mathfrak{B}\models\varphi(a_1,\ldots,a_k)\}.$$

A set S is pp-definable in \mathfrak{B} if there exists a pp formula ϕ that defines S in \mathfrak{B} .

A primitive positive (pp) formula is a formula of the form

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$

where ψ_1, \ldots, ψ_m are atomic formulas (no parameters unless mentioned). If \mathfrak{B} is a structure and $\phi(y_1, \ldots, y_k)$ is a formula over the signature of \mathfrak{B} , then ϕ defines the relation

$$\{(a_1,\ldots,a_k)\in B^k\mid\mathfrak{B}\models\varphi(a_1,\ldots,a_k)\}.$$

A set S is pp-definable in \mathfrak{B} if there exists a pp formula ϕ that defines S in \mathfrak{B} .

Notes.

If all relations of B are semialgebraic, then every relation with a pp-definition in B is semialgebraic.

A primitive positive (pp) formula is a formula of the form

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$

where ψ_1, \ldots, ψ_m are atomic formulas (no parameters unless mentioned). If \mathfrak{B} is a structure and $\phi(y_1, \ldots, y_k)$ is a formula over the signature of \mathfrak{B} , then ϕ defines the relation

$$\{(a_1,\ldots,a_k)\in B^k\mid\mathfrak{B}\models\varphi(a_1,\ldots,a_k)\}.$$

A set S is pp-definable in \mathfrak{B} if there exists a pp formula ϕ that defines S in \mathfrak{B} .

Notes.

- If all relations of B are semialgebraic, then every relation with a pp-definition in B is semialgebraic.
- If all relations of B are convex, then every relation with a pp-definition in B is convex.

Lemma. For every $a_0, a_1, \ldots, a_k \in \mathbb{Q}$, the set

$$\{(x_1,\ldots,x_k)\mid a_1x_1+\cdots+a_kx_k\leq a_0\}$$

has a primitive positive definition in

$$\mathfrak{B} = (\mathbb{R}; R_+, \leq, 1)$$
 where $R_+ = \{(x, y, z) \mid x + y = z\}$

Lemma. For every $a_0, a_1, \ldots, a_k \in \mathbb{Q}$, the set

$$\{(x_1,\ldots,x_k)\mid a_1x_1+\cdots+a_kx_k\leq a_0\}$$

has a primitive positive definition in

$$\mathfrak{B} = (\mathbb{R}; R_+, \leq, 1)$$
 where $R_+ = \{(x, y, z) \mid x + y = z\}$

The size of the formula is linear in the representation size of a_0, a_1, \ldots, a_k .

Lemma. For every $a_0, a_1, \ldots, a_k \in \mathbb{Q}$, the set

$$\{(x_1,\ldots,x_k)\mid a_1x_1+\cdots+a_kx_k\leq a_0\}$$

has a primitive positive definition in

$$\mathfrak{B} = (\mathbb{R}; R_+, \leq, 1)$$
 where $R_+ = \{(x, y, z) \mid x + y = z\}$

The size of the formula is linear in the representation size of a_0, a_1, \ldots, a_k .

Corollary. Satisfaction problem for given linear inequalities reduces to satisfaction problem for relations from \mathfrak{B} .

Lemma. For every $a_0, a_1, \ldots, a_k \in \mathbb{Q}$, the set

$$\{(x_1,\ldots,x_k)\mid a_1x_1+\cdots+a_kx_k\leq a_0\}$$

has a primitive positive definition in

$$\mathfrak{B} = (\mathbb{R}; R_+, \leq, 1)$$
 where $R_+ = \{(x, y, z) \mid x + y = z\}$

The size of the formula is linear in the representation size of a_0, a_1, \ldots, a_k .

Corollary. Satisfaction problem for given linear inequalities reduces to satisfaction problem for relations from \mathfrak{B} .

Question. Is there a set of 'basic' convex semialgebraic sets that can pp-define all others?

 $A \in \mathbb{R}^{k \times k}$ real symmetric matrix.

 $A \in \mathbb{R}^{k \times k}$ real symmetric matrix.

 $A \succeq 0$: A is positive semidefinite, i.e., $y^{\top}Ay \ge 0$ for all $y \in \mathbb{R}^k$.

 $A \in \mathbb{R}^{k \times k}$ real symmetric matrix.

 $A \succeq 0$: A is positive semidefinite, i.e., $y^{\top}Ay \ge 0$ for all $y \in \mathbb{R}^k$. $S \subseteq \mathbb{R}^n$ is called a spectrahedron if

$$S = \{(x_1,\ldots,x_n) \mid \underbrace{A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0}_{0}\}$$

'linear matrix inequality (LMI)'

for some symmetric $A_0, A_1, \ldots, A_n \in \mathbb{R}^{k \times k}$.

 $A \in \mathbb{R}^{k \times k}$ real symmetric matrix.

 $A \succeq 0$: A is positive semidefinite, i.e., $y^{\top}Ay \ge 0$ for all $y \in \mathbb{R}^k$. $S \subseteq \mathbb{R}^n$ is called a spectrahedron if

$$S = \{(x_1,\ldots,x_n) \mid \underbrace{A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0}_{0}\}$$

'linear matrix inequality (LMI)'

for some symmetric $A_0, A_1, \ldots, A_n \in \mathbb{R}^{k \times k}$. Feasible regions of semidefinite programs (SDP).

 $A \in \mathbb{R}^{k \times k}$ real symmetric matrix.

 $A \succeq 0$: A is positive semidefinite, i.e., $y^{\top}Ay \ge 0$ for all $y \in \mathbb{R}^k$. $S \subseteq \mathbb{R}^n$ is called a spectrahedron if

$$S = \{(x_1,\ldots,x_n) \mid \underbrace{A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0}_{0}\}$$

'linear matrix inequality (LMI)'

for some symmetric $A_0, A_1, \ldots, A_n \in \mathbb{R}^{k \times k}$. Feasible regions of semidefinite programs (SDP).

Example.

$$S = \left\{ (x, y) \mid \begin{pmatrix} 1 & x \\ x & y \end{pmatrix} \succeq 0 \right\} = \left\{ (x, y) \mid y - x^2 \ge 0 \right\}$$

 $A \in \mathbb{R}^{k \times k}$ real symmetric matrix.

 $A \succeq 0$: A is positive semidefinite, i.e., $y^{\top}Ay \ge 0$ for all $y \in \mathbb{R}^k$. $S \subseteq \mathbb{R}^n$ is called a spectrahedron if

$$S = \{(x_1,\ldots,x_n) \mid \underbrace{A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0}_{0}\}$$

'linear matrix inequality (LMI)'

for some symmetric $A_0, A_1, \ldots, A_n \in \mathbb{R}^{k \times k}$. Feasible regions of semidefinite programs (SDP).

Example.

$$S = \left\{ (x, y) \mid \begin{pmatrix} 1 & x \\ x & y \end{pmatrix} \succeq 0 \right\} = \left\{ (x, y) \mid y - x^2 \ge 0 \right\}$$

Obs. Spectrahedra are

semialgebraic,

 $A \in \mathbb{R}^{k \times k}$ real symmetric matrix.

 $A \succeq 0$: A is positive semidefinite, i.e., $y^{\top}Ay \ge 0$ for all $y \in \mathbb{R}^k$. $S \subseteq \mathbb{R}^n$ is called a spectrahedron if

$$S = \{(x_1,\ldots,x_n) \mid \underbrace{A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0}_{0}\}$$

'linear matrix inequality (LMI)'

for some symmetric $A_0, A_1, \ldots, A_n \in \mathbb{R}^{k \times k}$. Feasible regions of semidefinite programs (SDP).

Example.

$$S = \left\{ (x, y) \mid \begin{pmatrix} 1 & x \\ x & y \end{pmatrix} \succeq 0 \right\} = \left\{ (x, y) \mid y - x^2 \ge 0 \right\}$$

Obs. Spectrahedra are

- semialgebraic,
- convex,

 $A \in \mathbb{R}^{k \times k}$ real symmetric matrix.

 $A \succeq 0$: A is positive semidefinite, i.e., $y^{\top}Ay \ge 0$ for all $y \in \mathbb{R}^k$. $S \subseteq \mathbb{R}^n$ is called a spectrahedron if

$$S = \{(x_1,\ldots,x_n) \mid \underbrace{A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0}_{0}\}$$

'linear matrix inequality (LMI)'

for some symmetric $A_0, A_1, \ldots, A_n \in \mathbb{R}^{k \times k}$. Feasible regions of semidefinite programs (SDP).

Example.

$$S = \left\{ (x, y) \mid \begin{pmatrix} 1 & x \\ x & y \end{pmatrix} \succeq 0 \right\} = \left\{ (x, y) \mid y - x^2 \ge 0 \right\}$$

Obs. Spectrahedra are

- semialgebraic,
- convex,
- closed under finite intersections.

Question. Is every convex semialgebraic set pp-definable over spectrahedra?

Question. Is every convex semialgebraic set pp-definable over spectrahedra?

Equivalently. Is every such set a shadow (projection) of a spectrahedron?

Question. Is every convex semialgebraic set pp-definable over spectrahedra?

Equivalently. Is every such set a shadow (projection) of a spectrahedron?

History:

Asked by Nemirovski in ICM plenary address, Madrid 2006.

Question. Is every convex semialgebraic set pp-definable over spectrahedra?

Equivalently. Is every such set a shadow (projection) of a spectrahedron?

- Asked by Nemirovski in ICM plenary address, Madrid 2006.
- Set of spectrahedral shadows closed under

Question. Is every convex semialgebraic set pp-definable over spectrahedra?

Equivalently. Is every such set a shadow (projection) of a spectrahedron?

- Asked by Nemirovski in ICM plenary address, Madrid 2006.
- Set of spectrahedral shadows closed under convex hulls of finite unions,

Question. Is every convex semialgebraic set pp-definable over spectrahedra?

Equivalently. Is every such set a shadow (projection) of a spectrahedron?

- Asked by Nemirovski in ICM plenary address, Madrid 2006.
- Set of spectrahedral shadows closed under convex hulls of finite unions, topological closure,

Question. Is every convex semialgebraic set pp-definable over spectrahedra?

Equivalently. Is every such set a shadow (projection) of a spectrahedron?

- Asked by Nemirovski in ICM plenary address, Madrid 2006.
- Set of spectrahedral shadows closed under convex hulls of finite unions, topological closure, convex duality, ... (many authors)

Question. Is every convex semialgebraic set pp-definable over spectrahedra?

Equivalently. Is every such set a shadow (projection) of a spectrahedron?

- Asked by Nemirovski in ICM plenary address, Madrid 2006.
- Set of spectrahedral shadows closed under convex hulls of finite unions, topological closure, convex duality, ... (many authors)
- Positive answer conjectured by Helton and Nie 2009

Question. Is every convex semialgebraic set pp-definable over spectrahedra?

Equivalently. Is every such set a shadow (projection) of a spectrahedron?

- Asked by Nemirovski in ICM plenary address, Madrid 2006.
- Set of spectrahedral shadows closed under convex hulls of finite unions, topological closure, convex duality, ... (many authors)
- Positive answer conjectured by Helton and Nie 2009
- Scheiderer 2018a: question confirmed for n = 2.

Question. Is every convex semialgebraic set pp-definable over spectrahedra?

Equivalently. Is every such set a shadow (projection) of a spectrahedron?

- Asked by Nemirovski in ICM plenary address, Madrid 2006.
- Set of spectrahedral shadows closed under convex hulls of finite unions, topological closure, convex duality, ... (many authors)
- Positive answer conjectured by Helton and Nie 2009
- Scheiderer 2018a: question confirmed for n = 2.
- Scheiderer 2018b: question refuted (for n = 14).

Question. Is every convex semialgebraic set pp-definable over spectrahedra?

Equivalently. Is every such set a shadow (projection) of a spectrahedron?

- Asked by Nemirovski in ICM plenary address, Madrid 2006.
- Set of spectrahedral shadows closed under convex hulls of finite unions, topological closure, convex duality, ... (many authors)
- Positive answer conjectured by Helton and Nie 2009
- Scheiderer 2018a: question confirmed for n = 2.
- Scheiderer 2018b: question refuted (for n = 14).
- Scheiderer 2018b: "What are alternative characterizations of spectrahedral shadows that are easier to work with"?

Question. Is every convex semialgebraic set pp-definable over spectrahedra?

Equivalently. Is every such set a shadow (projection) of a spectrahedron?

- Asked by Nemirovski in ICM plenary address, Madrid 2006.
- Set of spectrahedral shadows closed under convex hulls of finite unions, topological closure, convex duality, ... (many authors)
- Positive answer conjectured by Helton and Nie 2009
- Scheiderer 2018a: question confirmed for n = 2.
- Scheiderer 2018b: question refuted (for n = 14).
- Scheiderer 2018b: "What are alternative characterizations of spectrahedral shadows that are easier to work with"?
- Concretely, for example: "is the set of all copositive A ∈ ℝ^{5×5} a spectrahedral shadow?" (Scheiderer 2018b)

Question. Is every convex semialgebraic set pp-definable over spectrahedra?

Equivalently. Is every such set a shadow (projection) of a spectrahedron?

- Asked by Nemirovski in ICM plenary address, Madrid 2006.
- Set of spectrahedral shadows closed under convex hulls of finite unions, topological closure, convex duality, ... (many authors)
- Positive answer conjectured by Helton and Nie 2009
- Scheiderer 2018a: question confirmed for n = 2.
- Scheiderer 2018b: question refuted (for n = 14).
- Scheiderer 2018b: "What are alternative characterizations of spectrahedral shadows that are easier to work with"?
- Concretely, for example: "is the set of all copositive A ∈ ℝ^{5×5} a spectrahedral shadow?" (Scheiderer 2018b)
 A is copositive if x[⊤]Ax ≥ 0 for every non-negative real vector x.

Question. Is every convex semialgebraic set pp-definable over spectrahedra?

Equivalently. Is every such set a shadow (projection) of a spectrahedron?

History:

- Asked by Nemirovski in ICM plenary address, Madrid 2006.
- Set of spectrahedral shadows closed under convex hulls of finite unions, topological closure, convex duality, ... (many authors)
- Positive answer conjectured by Helton and Nie 2009
- Scheiderer 2018a: question confirmed for n = 2.
- Scheiderer 2018b: question refuted (for n = 14).
- Scheiderer 2018b: "What are alternative characterizations of spectrahedral shadows that are easier to work with"?
- Concretely, for example: "is the set of all copositive A ∈ ℝ^{5×5} a spectrahedral shadow?" (Scheiderer 2018b)
 A is copositive if x[⊤]Ax ≥ 0 for every non-negative real vector x.

This talk: model-theoretic approach to these questions.

Model Theoretic Approach

Model Theoretic Approach

■ Use preservation theorems to study (non-) definability

Model Theoretic Approach

- Use preservation theorems to study (non-) definability
- Often obtain stronger results: non-definability by
 - existential positive formulas $\exists, \land, \lor, =$ or by
 - positive formulas \forall , \exists , \land , \lor , =.
- Use preservation theorems to study (non-) definability
- Often obtain stronger results: non-definability by
 - existential positive formulas $\exists, \land, \lor, =$ or by
 - positive formulas $\forall, \exists, \land, \lor, =$.
- Tarski principle for real closed field: may equivalently study the question over any real-closed field extension *R* of ℝ instead of ℝ.

- Use preservation theorems to study (non-) definability
- Often obtain stronger results: non-definability by
 - existential positive formulas $\exists, \land, \lor, =$ or by
 - positive formulas $\forall, \exists, \land, \lor, =$.
- Tarski principle for real closed field: may equivalently study the question over any real-closed field extension *R* of ℝ instead of ℝ.

- Use preservation theorems to study (non-) definability
- Often obtain stronger results: non-definability by
 - existential positive formulas $\exists, \land, \lor, =$ or by
 - positive formulas $\forall, \exists, \land, \lor, =$.
- Tarski principle for real closed field: may equivalently study the question over any real-closed field extension *R* of ℝ instead of ℝ.

Definition. $\mathfrak{A}, \mathfrak{B}$: structures with the same domain.

• \mathfrak{B} is reduct of \mathfrak{A} if \mathfrak{B} is obtained from \mathfrak{A} by dropping relations.

- Use preservation theorems to study (non-) definability
- Often obtain stronger results: non-definability by
 - existential positive formulas $\exists, \land, \lor, =$ or by
 - positive formulas $\forall, \exists, \land, \lor, =$.
- Tarski principle for real closed field: may equivalently study the question over any real-closed field extension *R* of ℝ instead of ℝ.

- \mathfrak{B} is reduct of \mathfrak{A} if \mathfrak{B} is obtained from \mathfrak{A} by dropping relations.
- **\square** \mathfrak{B} is expansion of \mathfrak{A} if \mathfrak{A} is reduct of \mathfrak{B} .

- Use preservation theorems to study (non-) definability
- Often obtain stronger results: non-definability by
 - existential positive formulas $\exists, \land, \lor, =$ or by
 - positive formulas $\forall, \exists, \land, \lor, =$.
- Tarski principle for real closed field: may equivalently study the question over any real-closed field extension *R* of ℝ instead of ℝ.

- \mathfrak{B} is reduct of \mathfrak{A} if \mathfrak{B} is obtained from \mathfrak{A} by dropping relations.
- **\square** \mathfrak{B} is expansion of \mathfrak{A} if \mathfrak{A} is reduct of \mathfrak{B} .
- B is first-order expansion of A if B is expansion of A and all relations of B are first-order definable in A.

- Use preservation theorems to study (non-) definability
- Often obtain stronger results: non-definability by
 - existential positive formulas $\exists, \land, \lor, =$ or by
 - positive formulas $\forall, \exists, \land, \lor, =$.
- Tarski principle for real closed field: may equivalently study the question over any real-closed field extension *R* of ℝ instead of ℝ.

- \mathfrak{B} is reduct of \mathfrak{A} if \mathfrak{B} is obtained from \mathfrak{A} by dropping relations.
- **\square** \mathfrak{B} is expansion of \mathfrak{A} if \mathfrak{A} is reduct of \mathfrak{B} .
- B is first-order expansion of A if B is expansion of A and all relations of B are first-order definable in A.
- \mathfrak{B} is first-order reduct of \mathfrak{A} if \mathfrak{B} is reduct of first-order expansion of \mathfrak{A} .

- Use preservation theorems to study (non-) definability
- Often obtain stronger results: non-definability by
 - existential positive formulas $\exists, \land, \lor, =$ or by
 - positive formulas $\forall, \exists, \land, \lor, =$.
- Tarski principle for real closed field: may equivalently study the question over any real-closed field extension *R* of ℝ instead of ℝ.

Definition. $\mathfrak{A}, \mathfrak{B}$: structures with the same domain.

- \mathfrak{B} is reduct of \mathfrak{A} if \mathfrak{B} is obtained from \mathfrak{A} by dropping relations.
- **\square** \mathfrak{B} is expansion of \mathfrak{A} if \mathfrak{A} is reduct of \mathfrak{B} .
- B is first-order expansion of A if B is expansion of A and all relations of B are first-order definable in A.
- \mathfrak{B} is first-order reduct of \mathfrak{A} if \mathfrak{B} is reduct of first-order expansion of \mathfrak{A} .

Example. (\mathbb{R} ;{(x, y) | $y \ge x^2$ }) is a first-order reduct of (\mathbb{R} ;+,·,1).

Classic versions

A first-order formula ϕ is equivalent to an existential positive formula in \mathfrak{B}

∃,∧,∨,=

Classic versions

A first-order formula ϕ is equivalent to an existential positive formula in \mathfrak{B}

```
if and only if (Lyndon-Łoś-Tarski)
```

 φ is preserved by homomorphisms between models of $\mathsf{Th}(\mathfrak{B})$

 $\exists . \land . \lor . =$

Classic versions

A first-order formula ϕ is equivalent to an existential positive formula in \mathfrak{B}

∃,∧,∨,=

if and only if (Lyndon-Łoś-Tarski) ϕ is preserved by homomorphisms between models of Th(\mathfrak{B})

A first-order formula ϕ is equivalent to a positive formula in \mathfrak{B}

if and only if (Lyndon)

Classic versions

A first-order formula ϕ is equivalent to an existential positive formula in \mathfrak{B}

∃,∧,∨,=

if and only if (Lyndon-Łoś-Tarski) ϕ is preserved by homomorphisms between models of Th(\mathfrak{B})

A first-order formula ϕ is equivalent to a positive formula in \mathfrak{B}

if and only if (Lyndon)

 φ is preserved by surjective homomorphisms between models of $\mathsf{Th}(\mathfrak{B})$

Classic versions

A first-order formula ϕ is equivalent to an existential positive formula in \mathfrak{B}

∃,∧,∨,=

if and only if (Lyndon-Łoś-Tarski) ϕ is preserved by homomorphisms between models of Th(\mathfrak{B})

A first-order formula ϕ is equivalent to a positive formula in \mathfrak{B}

if and only if (Lyndon)

 φ is preserved by surjective homomorphisms between models of $\mathsf{Th}(\mathfrak{B})$

Problem: what are the models of $Th(\mathfrak{B})$ if $\mathfrak{B} = (\mathbb{R}; all spectrahedra)?$

Classic versions

A first-order formula ϕ is equivalent to an existential positive formula in \mathfrak{B}

∃,∧,∨,=

if and only if (Lyndon-Łoś-Tarski) ϕ is preserved by homomorphisms between models of Th(\mathfrak{B})

A first-order formula ϕ is equivalent to a positive formula in \mathfrak{B}

if and only if (Lyndon)

 φ is preserved by surjective homomorphisms between models of $\mathsf{Th}(\mathfrak{B})$

Problem: what are the models of $Th(\mathfrak{B})$ if $\mathfrak{B} = (\mathbb{R}; all spectrahedra)?$

Idea:

• We do know the models of $Th(\mathbb{R}; +, \cdot, 1)$: real-closed fields.

Classic versions

A first-order formula ϕ is equivalent to an existential positive formula in \mathfrak{B}

∃,∧,∨,=

if and only if (Lyndon-Łoś-Tarski) ϕ is preserved by homomorphisms between models of Th(\mathfrak{B})

A first-order formula ϕ is equivalent to a positive formula in \mathfrak{B}

if and only if (Lyndon)

 φ is preserved by surjective homomorphisms between models of $\mathsf{Th}(\mathfrak{B})$

Problem: what are the models of $Th(\mathfrak{B})$ if $\mathfrak{B} = (\mathbb{R}; all spectrahedra)?$

Idea:

- We do know the models of $Th(\mathbb{R}; +, \cdot, 1)$: real-closed fields.
- Instead of homomorphisms between models of Th(𝔅) we work within an appropriate real-closed field.

∀.∃,∧,∨,=

Classic versions

A first-order formula ϕ is equivalent to an existential positive formula in \mathfrak{B}

∃,∧,∨,=

if and only if (Lyndon-Łoś-Tarski) ϕ is preserved by homomorphisms between models of Th(\mathfrak{B})

A first-order formula ϕ is equivalent to a positive formula in \mathfrak{B}

if and only if (Lyndon)

 φ is preserved by surjective homomorphisms between models of $\mathsf{Th}(\mathfrak{B})$

Problem: what are the models of $Th(\mathfrak{B})$ if $\mathfrak{B} = (\mathbb{R}; all spectrahedra)?$

Idea:

- We do know the models of $Th(\mathbb{R}; +, \cdot, 1)$: real-closed fields.
- Instead of homomorphisms between models of Th(𝔅) we work within an appropriate real-closed field.
- 'Tarski (transfer) principle'

 $\forall . \exists, \land, \lor, =$

 \mathfrak{A} : a structure. Let \mathfrak{A}^* be an elementary extension of \mathfrak{A} ,

 \mathfrak{A} : a structure. Let \mathfrak{A}^* be an elementary extension of \mathfrak{A} , i.e., \mathfrak{A} is a substructure of \mathfrak{A}^* such that for every first-order formula $\phi(x_1, \ldots, x_k)$ and $a \in A^k$ we have $\mathfrak{A} \models \phi(a)$ if and only if $\mathfrak{A}^* \models \phi(a)$.

 \mathfrak{A} : a structure. Let \mathfrak{A}^* be an elementary extension of \mathfrak{A} ,

i.e., ${\mathfrak A}$ is a substructure of ${\mathfrak A}^*$ such that for every first-order formula

 $\phi(x_1, \ldots, x_k)$ and $a \in A^k$ we have $\mathfrak{A} \models \phi(a)$ if and only if $\mathfrak{A}^* \models \phi(a)$.

If S is first-order definable in 𝔄, then S^{*} denotes the set defined by the same formula over 𝔄^{*}.

 \mathfrak{A} : a structure. Let \mathfrak{A}^* be an elementary extension of \mathfrak{A} ,

i.e., ${\mathfrak A}$ is a substructure of ${\mathfrak A}^*$ such that for every first-order formula

 $\phi(x_1, \ldots, x_k)$ and $a \in A^k$ we have $\mathfrak{A} \models \phi(a)$ if and only if $\mathfrak{A}^* \models \phi(a)$.

- If *S* is first-order definable in 𝔅, then *S*^{*} denotes the set defined by the same formula over 𝔅^{*}.
- If B is a reduct of A, then B* denotes the first-order reduct defined by the same first-order formulas over A*.

 \mathfrak{A} : a structure. Let \mathfrak{A}^* be an elementary extension of \mathfrak{A} ,

i.e., ${\mathfrak A}$ is a substructure of ${\mathfrak A}^*$ such that for every first-order formula

 $\phi(x_1,\ldots,x_k)$ and $a \in A^k$ we have $\mathfrak{A} \models \phi(a)$ if and only if $\mathfrak{A}^* \models \phi(a)$.

- If S is first-order definable in 𝔄, then S^{*} denotes the set defined by the same formula over 𝔅^{*}.
- If B is a reduct of A, then B* denotes the first-order reduct defined by the same first-order formulas over A*.

Theorem. \mathfrak{A} has an elementary extension \mathfrak{A}^* such that the following holds.

 \mathfrak{A} : a structure. Let \mathfrak{A}^* be an elementary extension of \mathfrak{A} ,

i.e., ${\mathfrak A}$ is a substructure of ${\mathfrak A}^*$ such that for every first-order formula

 $\phi(x_1,\ldots,x_k)$ and $a \in A^k$ we have $\mathfrak{A} \models \phi(a)$ if and only if $\mathfrak{A}^* \models \phi(a)$.

- If S is first-order definable in 𝔄, then S^{*} denotes the set defined by the same formula over 𝔅^{*}.
- If B is a reduct of A, then B* denotes the first-order reduct defined by the same first-order formulas over A*.

 \mathfrak{A} : a structure. Let \mathfrak{A}^* be an elementary extension of \mathfrak{A} ,

i.e., ${\mathfrak A}$ is a substructure of ${\mathfrak A}^*$ such that for every first-order formula

 $\phi(x_1,\ldots,x_k)$ and $a \in A^k$ we have $\mathfrak{A} \models \phi(a)$ if and only if $\mathfrak{A}^* \models \phi(a)$.

- If *S* is first-order definable in 𝔅, then *S*^{*} denotes the set defined by the same formula over 𝔅^{*}.
- If B is a reduct of A, then B* denotes the first-order reduct defined by the same first-order formulas over A*.

Theorem. \mathfrak{A} has an elementary extension \mathfrak{A}^* such that the following holds. If \mathfrak{B} is a first-order reduct of \mathfrak{A} and $S \subseteq A^k$ is first-order definable in \mathfrak{A} , then

S has an existential positive definition in \mathfrak{B} if and only if

 \mathfrak{A} : a structure. Let \mathfrak{A}^* be an elementary extension of \mathfrak{A} ,

i.e., ${\mathfrak A}$ is a substructure of ${\mathfrak A}^*$ such that for every first-order formula

 $\phi(x_1,\ldots,x_k)$ and $a \in A^k$ we have $\mathfrak{A} \models \phi(a)$ if and only if $\mathfrak{A}^* \models \phi(a)$.

- If S is first-order definable in 𝔄, then S^{*} denotes the set defined by the same formula over 𝔅^{*}.
- If B is a reduct of A, then B* denotes the first-order reduct defined by the same first-order formulas over A*.

- S has an existential positive definition in B if and only if S* is preserved by all endemorphisms of R*
 - S^* is preserved by all endomorphisms of \mathfrak{B}^* .

 \mathfrak{A} : a structure. Let \mathfrak{A}^* be an elementary extension of \mathfrak{A} ,

i.e., ${\mathfrak A}$ is a substructure of ${\mathfrak A}^*$ such that for every first-order formula

 $\phi(x_1,\ldots,x_k)$ and $a \in A^k$ we have $\mathfrak{A} \models \phi(a)$ if and only if $\mathfrak{A}^* \models \phi(a)$.

- If S is first-order definable in 𝔄, then S^{*} denotes the set defined by the same formula over 𝔅^{*}.
- If B is a reduct of A, then B* denotes the first-order reduct defined by the same first-order formulas over A*.

- S has an existential positive definition in B if and only if S* is preserved by all endomorphisms of B*.
- K has a positive definition in \mathfrak{B} if and only if

 \mathfrak{A} : a structure. Let \mathfrak{A}^* be an elementary extension of \mathfrak{A} ,

i.e., ${\mathfrak A}$ is a substructure of ${\mathfrak A}^*$ such that for every first-order formula

 $\phi(x_1,\ldots,x_k)$ and $a \in A^k$ we have $\mathfrak{A} \models \phi(a)$ if and only if $\mathfrak{A}^* \models \phi(a)$.

- If S is first-order definable in 𝔄, then S^{*} denotes the set defined by the same formula over 𝔅^{*}.
- If B is a reduct of A, then B* denotes the first-order reduct defined by the same first-order formulas over A*.

- S has an existential positive definition in B if and only if
 S* is preserved by all endomorphisms of B*.
- K has a positive definition in \mathfrak{B} if and only if
 - S^* is preserved by all surjective endomorphisms of \mathfrak{B}^* .

 \mathfrak{A} : a structure. Let \mathfrak{A}^* be an elementary extension of \mathfrak{A} ,

i.e., ${\mathfrak A}$ is a substructure of ${\mathfrak A}^*$ such that for every first-order formula

 $\phi(x_1,\ldots,x_k)$ and $a \in A^k$ we have $\mathfrak{A} \models \phi(a)$ if and only if $\mathfrak{A}^* \models \phi(a)$.

- If S is first-order definable in 𝔄, then S^{*} denotes the set defined by the same formula over 𝔄^{*}.
- If B is a reduct of A, then B* denotes the first-order reduct defined by the same first-order formulas over A*.

- S has an existential positive definition in B if and only if S* is preserved by all endomorphisms of B*.
- K has a positive definition in B if and only if
 S* is preserved by all surjective endomorphisms of B*.
- S has a first-order definition in 𝔅 if and only if

 \mathfrak{A} : a structure. Let \mathfrak{A}^* be an elementary extension of \mathfrak{A} ,

i.e., ${\mathfrak A}$ is a substructure of ${\mathfrak A}^*$ such that for every first-order formula

 $\phi(x_1, \ldots, x_k)$ and $a \in A^k$ we have $\mathfrak{A} \models \phi(a)$ if and only if $\mathfrak{A}^* \models \phi(a)$.

- If S is first-order definable in 𝔄, then S^{*} denotes the set defined by the same formula over 𝔄^{*}.
- If B is a reduct of A, then B* denotes the first-order reduct defined by the same first-order formulas over A*.

- S has an existential positive definition in B if and only if S* is preserved by all endomorphisms of B*.
- K has a positive definition in B if and only if
 S* is preserved by all surjective endomorphisms of B*.
- S has a first-order definition in B if and only if S* is preserved by all automorphisms of B*.

R: some elementary extension of $(\mathbb{R}; +, \cdot)$.

R: some elementary extension of $(\mathbb{R}; +, \cdot)$.

Definition. $f: R \rightarrow R$

• unital if it preserves the formula x = 1,

R: some elementary extension of $(\mathbb{R}; +, \cdot)$.

Definition. $f: R \rightarrow R$

- unital if it preserves the formula x = 1,
- **R**-linear if it preserves the formula $z = \alpha x + \beta y$ for all $\alpha, \beta \in \mathbb{R}$.

R: some elementary extension of $(\mathbb{R}; +, \cdot)$.

Definition. $f: R \rightarrow R$

- unital if it preserves the formula x = 1,
- **R**-linear if it preserves the formula $z = \alpha x + \beta y$ for all $\alpha, \beta \in \mathbb{R}$.
- completely positive if for every $k \in \mathbb{N}$ and symmetric $A \in \mathbb{R}^{k \times k}$, if $A \succeq 0$ then $f(A) \succeq 0$.

R: some elementary extension of $(\mathbb{R}; +, \cdot)$.

Definition. $f: R \rightarrow R$

- unital if it preserves the formula x = 1,
- **R**-linear if it preserves the formula $z = \alpha x + \beta y$ for all $\alpha, \beta \in \mathbb{R}$.
- completely positive if for every $k \in \mathbb{N}$ and symmetric $A \in \mathbb{R}^{k \times k}$, if $A \succeq 0$ then $f(A) \succeq 0$.
- $\mathfrak{B} := (\mathbb{R}; all \text{ spectrahedra}) \text{ (a first-order reduct of } (\mathbb{R}; +, \cdot)\text{)}.$

R: some elementary extension of $(\mathbb{R}; +, \cdot)$.

Definition. $f: R \rightarrow R$

- unital if it preserves the formula x = 1,
- **R**-linear if it preserves the formula $z = \alpha x + \beta y$ for all $\alpha, \beta \in \mathbb{R}$.
- completely positive if for every $k \in \mathbb{N}$ and symmetric $A \in \mathbb{R}^{k \times k}$, if $A \succeq 0$ then $f(A) \succeq 0$.
- $\mathfrak{B} := (\mathbb{R}; all spectrahedra)$ (a first-order reduct of $(\mathbb{R}; +, \cdot)$).

Lemma. $f: R \to R$ is an endomorphism of \mathfrak{B}^* if and only if

R: some elementary extension of $(\mathbb{R}; +, \cdot)$.

Definition. $f: R \rightarrow R$

- unital if it preserves the formula x = 1,
- **ℝ**-linear if it preserves the formula $z = \alpha x + \beta y$ for all $\alpha, \beta \in \mathbb{R}$.
- completely positive if for every $k \in \mathbb{N}$ and symmetric $A \in \mathbb{R}^{k \times k}$, if $A \succeq 0$ then $f(A) \succeq 0$.
- $\mathfrak{B} := (\mathbb{R}; all \text{ spectrahedra}) \text{ (a first-order reduct of } (\mathbb{R}; +, \cdot)\text{)}.$

Lemma. $f: R \to R$ is an endomorphism of \mathfrak{B}^* if and only if f is unital, \mathbb{R} -linear, and completely positive.
Λ : divisible ordered abelian group.

 Λ : divisible ordered abelian group.

Examples: $\Lambda = \mathbb{R}$,

 Λ : divisible ordered abelian group.

Examples: $\Lambda = \mathbb{R}$,

 $\Lambda = \mathbb{Q}^n$ with componentwise addition and the lexicographic order.

 Λ : divisible ordered abelian group.

Examples: $\Lambda = \mathbb{R}$,

 $\Lambda = \mathbb{Q}^n$ with componentwise addition and the lexicographic order.

 $H = R[[\epsilon^{\Lambda}]]$: Hahn series over *R* with value group Λ .

 Λ : divisible ordered abelian group.

Examples: $\Lambda = \mathbb{R}$,

 $\Lambda = \mathbb{Q}^n$ with componentwise addition and the lexicographic order.

 $H = R[[\epsilon^{\Lambda}]]$: Hahn series over *R* with value group Λ . Valuation $v: H \to \Lambda \cup \{\infty\}$ given by

$$v\big(\sum_{e\in\Lambda}c_e\epsilon^e\big):=\min\big\{(e\in\Lambda\mid c_e
eq 0\big\}.$$

 Λ : divisible ordered abelian group.

Examples: $\Lambda = \mathbb{R}$,

 $\Lambda = \mathbb{Q}^n$ with componentwise addition and the lexicographic order.

 $H = R[[\epsilon^{\Lambda}]]$: Hahn series over *R* with value group Λ . Valuation $v: H \to \Lambda \cup \{\infty\}$ given by

$$v\big(\sum_{e\in\Lambda}c_e\epsilon^e\big):=\min\big\{(e\in\Lambda\mid c_e
eq 0\big\}.$$

H is real closed.

 Λ : divisible ordered abelian group.

Examples: $\Lambda = \mathbb{R}$,

 $\Lambda = \mathbb{Q}^n$ with componentwise addition and the lexicographic order.

 $H = R[[\epsilon^{\Lambda}]]$: Hahn series over *R* with value group Λ . Valuation $v: H \to \Lambda \cup \{\infty\}$ given by

$$v\big(\sum_{e\in\Lambda}c_e\epsilon^e\big):=\min\big\{(e\in\Lambda\mid c_e
eq 0\big\}.$$

H is real closed.

 $R[\Lambda]$: subring of *H* of series with finite support.

 Λ : divisible ordered abelian group.

Examples: $\Lambda = \mathbb{R}$,

 $\Lambda = \mathbb{Q}^n$ with componentwise addition and the lexicographic order.

 $H = R[[\epsilon^{\Lambda}]]$: Hahn series over *R* with value group Λ . Valuation $v: H \to \Lambda \cup \{\infty\}$ given by

$$v\big(\sum_{e\in\Lambda}c_e\epsilon^e\big):=\min\big\{(e\in\Lambda\mid c_e
eq 0\big\}.$$

H is real closed.

 $R[\Lambda]$: subring of *H* of series with finite support. Fix $f: \Lambda \to R$.

 Λ : divisible ordered abelian group.

Examples: $\Lambda = \mathbb{R}$,

 $\Lambda = \mathbb{Q}^n$ with componentwise addition and the lexicographic order.

 $H = R[[\epsilon^{\Lambda}]]$: Hahn series over *R* with value group Λ . Valuation $v: H \to \Lambda \cup \{\infty\}$ given by

$$v\Big(\sum_{e\in\Lambda}c_e\epsilon^e\Big):=\min\{(e\in\Lambda\mid c_e\neq 0\}.$$

H is real closed.

 $R[\Lambda]$: subring of *H* of series with finite support. Fix $f: \Lambda \to R$.

$$L_{f} \colon H \to H, \quad \sum_{e \in \Lambda} c_{e} \epsilon^{e} \mapsto \sum_{e \in \Lambda} f(e) c_{e} \epsilon^{e}$$

 Λ : divisible ordered abelian group.

Examples: $\Lambda = \mathbb{R}$,

 $\Lambda = \mathbb{Q}^n$ with componentwise addition and the lexicographic order.

 $H = R[[\epsilon^{\Lambda}]]$: Hahn series over *R* with value group Λ . Valuation $v: H \to \Lambda \cup \{\infty\}$ given by

$$v\big(\sum_{e\in\Lambda}c_e\epsilon^e\big):=\min\big\{(e\in\Lambda\mid c_e
eq 0\big\}.$$

H is real closed.

 $R[\Lambda]$: subring of *H* of series with finite support. Fix $f: \Lambda \to R$.

$$L_{f} \colon H \to H, \quad \sum_{e \in \Lambda} c_{e} \epsilon^{e} \mapsto \sum_{e \in \Lambda} f(e) c_{e} \epsilon^{e}$$

Want to choose f so that L_f is unital, (\mathbb{R} -linear,) and completely positive.

 $f: \Lambda \to R.$

 $f: \Lambda \to R.$

Lemma. Suppose $L_f: H \to H$ is unital and completely positive.

 $f: \Lambda \to R.$

Lemma. Suppose $L_f: H \to H$ is unital and completely positive. Then L_f is bijective.

 $f: \Lambda \rightarrow R.$

Lemma. Suppose $L_f: H \to H$ is unital and completely positive. Then L_f is bijective.

Proof. Let $a \in \Lambda$.

 $f: \Lambda \to R.$

Lemma. Suppose $L_f: H \to H$ is unital and completely positive. Then L_f is bijective.

Proof. Let $a \in \Lambda$.

$$A := \begin{pmatrix} \epsilon^a & 1 \\ 1 & \epsilon^{-a} \end{pmatrix} \succeq 0$$

 $f: \Lambda \to R.$

Lemma. Suppose $L_f: H \to H$ is unital and completely positive. Then L_f is bijective.

Proof. Let $a \in \Lambda$.

$$A := \begin{pmatrix} \epsilon^a & 1 \\ 1 & \epsilon^{-a} \end{pmatrix} \succeq 0$$

L_f unital and completely positive:

$$L_f(A) = \begin{pmatrix} f(a)e^a & 1\\ 1 & f(-a)e^{-a} \end{pmatrix} \succeq 0$$

 $f: \Lambda \to R.$

Lemma. Suppose $L_f: H \to H$ is unital and completely positive. Then L_f is bijective.

Proof. Let $a \in \Lambda$.

$$A := \begin{pmatrix} \epsilon^a & 1 \\ 1 & \epsilon^{-a} \end{pmatrix} \succeq 0$$

L_f unital and completely positive:

$$L_f(A) = \begin{pmatrix} f(a)e^a & 1\\ 1 & f(-a)e^{-a} \end{pmatrix} \succeq 0$$

Hence, $f(a)f(-a) \ge 1$,

 $f: \Lambda \to R.$

Lemma. Suppose $L_f: H \to H$ is unital and completely positive. Then L_f is bijective.

Proof. Let $a \in \Lambda$.

$$A := \begin{pmatrix} \epsilon^a & 1 \\ 1 & \epsilon^{-a} \end{pmatrix} \succeq 0$$

L_f unital and completely positive:

$$L_f(A) = \begin{pmatrix} f(a)e^a & 1\\ 1 & f(-a)e^{-a} \end{pmatrix} \succeq 0$$

Hence, $f(a)f(-a) \ge 1$, so $f(a) \ne 0$.

 $f: \Lambda \to R.$

Lemma. Suppose $L_f: H \to H$ is unital and completely positive. Then L_f is bijective.

Proof. Let $a \in \Lambda$.

$$A := \begin{pmatrix} \epsilon^a & 1 \\ 1 & \epsilon^{-a} \end{pmatrix} \succeq 0$$

L_f unital and completely positive:

$$L_f(A) = \begin{pmatrix} f(a)e^a & 1\\ 1 & f(-a)e^{-a} \end{pmatrix} \succeq 0$$

Hence, $f(a)f(-a) \ge 1$, so $f(a) \ne 0$. Define

$$g \colon \Lambda o R, \quad a \mapsto rac{1}{f(a)}$$

 $f: \Lambda \to R.$

Lemma. Suppose $L_f: H \to H$ is unital and completely positive. Then L_f is bijective.

Proof. Let $a \in \Lambda$.

$$A := \begin{pmatrix} \epsilon^a & 1 \\ 1 & \epsilon^{-a} \end{pmatrix} \succeq 0$$

L_f unital and completely positive:

$$L_f(A) = \begin{pmatrix} f(a)e^a & 1\\ 1 & f(-a)e^{-a} \end{pmatrix} \succeq 0$$

Hence, $f(a)f(-a) \ge 1$, so $f(a) \ne 0$. Define

$$g: \Lambda \to R, \quad a \mapsto rac{1}{f(a)}$$

$$L_f \circ L_g = L_g \circ L_f = \mathrm{id}_H.$$

Spectrahedral Shadows

4

How to choose f so that L_f is interesting?

How to choose f so that L_f is interesting?

Definition. $f: \Lambda \to R$ is positive definite if for distinct $a_1, \ldots, a_k \in \Lambda$ the matrix $(f(a_i + a_j))_{i,j}$ is positive definite.

How to choose f so that L_f is interesting?

Definition. $f: \Lambda \to R$ is positive definite if for distinct $a_1, \ldots, a_k \in \Lambda$ the matrix $(f(a_i + a_j))_{i,j}$ is positive definite.

Lemma. If *f* is positive definite, then L_f is completely positive.

How to choose f so that L_f is interesting?

Definition. $f: \Lambda \to R$ is positive definite if for distinct $a_1, \ldots, a_k \in \Lambda$ the matrix $(f(a_i + a_j))_{i,j}$ is positive definite.

Lemma. If *f* is positive definite, then L_f is completely positive.

 $f: \Lambda \to \mathbb{R}$ can be extended linearly to *R*-linear map $T_f: R[\Lambda] \to R$.

How to choose f so that L_f is interesting?

Definition. $f: \Lambda \to R$ is positive definite if for distinct $a_1, \ldots, a_k \in \Lambda$ the matrix $(f(a_i + a_j))_{i,j}$ is positive definite.

Lemma. If *f* is positive definite, then L_f is completely positive.

 $f: \Lambda \to \mathbb{R}$ can be extended linearly to *R*-linear map $T_f: R[\Lambda] \to R$. Every $b \in R[\Lambda]$ can be written as $b = \sum_{i=1}^{k} c_i e^{a_i}$ for $k \in \mathbb{N}, (c_1, \dots, c_k) \in R^k$, and $(a_1, \dots, a_k) \in \Lambda^k$.

How to choose f so that L_f is interesting?

Definition. $f: \Lambda \to R$ is positive definite if for distinct $a_1, \ldots, a_k \in \Lambda$ the matrix $(f(a_i + a_j))_{i,j}$ is positive definite.

Lemma. If *f* is positive definite, then L_f is completely positive.

 $f: \Lambda \to \mathbb{R}$ can be extended linearly to *R*-linear map $T_f: R[\Lambda] \to R$. Every $b \in R[\Lambda]$ can be written as $b = \sum_{i=1}^{k} c_i e^{a_i}$ for $k \in \mathbb{N}, (c_1, \dots, c_k) \in R^k$, and $(a_1, \dots, a_k) \in \Lambda^k$.

$$T_f(b^2) = \sum_{i,j} c_i c_j f(a_i + a_j) = (c_1, \dots, c_k) \cdot (f(a_i + a_j))_{1 \le i,j \le k} \cdot \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix}$$

How to choose f so that L_f is interesting?

Definition. $f: \Lambda \to R$ is positive definite if for distinct $a_1, \ldots, a_k \in \Lambda$ the matrix $(f(a_i + a_j))_{i,j}$ is positive definite.

Lemma. If *f* is positive definite, then L_f is completely positive.

 $f: \Lambda \to \mathbb{R}$ can be extended linearly to *R*-linear map $T_f: R[\Lambda] \to R$. Every $b \in R[\Lambda]$ can be written as $b = \sum_{i=1}^{k} c_i e^{a_i}$ for $k \in \mathbb{N}$, $(c_1, \ldots, c_k) \in R^k$, and $(a_1, \ldots, a_k) \in \Lambda^k$.

$$T_f(\boldsymbol{b}^2) = \sum_{i,j} c_i c_j f(\boldsymbol{a}_i + \boldsymbol{a}_j) = (c_1, \dots, c_k) \cdot (f(\boldsymbol{a}_i + \boldsymbol{a}_j))_{1 \le i,j \le k} \cdot \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix}$$

So: *f* positive definite iff $T_f(b^2) > 0$ for all $b \in R[\Lambda] \setminus \{0\}$.

Example for $\Lambda = \mathbb{R}$.

Example for $\Lambda = \mathbb{R}$. $\mathcal{H}(\mathbb{C})$: ring of holomorphic functions on \mathbb{C} .

Example for $\Lambda = \mathbb{R}$. $\mathcal{H}(\mathbb{C})$: ring of holomorphic functions on \mathbb{C} . Define $\Psi : \mathbb{R}[\Lambda] \to \mathcal{H}(\mathbb{C})$ by setting for $a \in \mathbb{R}$

 $\Psi(\epsilon^a) := (z \mapsto \exp(az))$

and extending linearly to all of $\mathbb{R}[\Lambda]$.

Example for $\Lambda = \mathbb{R}$. $\mathcal{H}(\mathbb{C})$: ring of holomorphic functions on \mathbb{C} . Define $\Psi : \mathbb{R}[\Lambda] \to \mathcal{H}(\mathbb{C})$ by setting for $a \in \mathbb{R}$

 $\Psi(\epsilon^a) := (z \mapsto \exp(az))$

and extending linearly to all of $\mathbb{R}[\Lambda]$.

Note. If $\Psi(g)$ vanishes on [a, b] for a < b, then g = 0.

Example for $\Lambda = \mathbb{R}$. $\mathcal{H}(\mathbb{C})$: ring of holomorphic functions on \mathbb{C} . Define $\Psi : \mathbb{R}[\Lambda] \to \mathcal{H}(\mathbb{C})$ by setting for $a \in \mathbb{R}$

 $\Psi(\epsilon^a) := (z \mapsto \exp(az))$

and extending linearly to all of $\mathbb{R}[\Lambda]$.

Note. If $\Psi(g)$ vanishes on [a, b] for a < b, then g = 0.

 μ : measure on \mathbb{R} obtained as pushforward of Lebesgue measure on [a, b].

Example for $\Lambda = \mathbb{R}$. $\mathcal{H}(\mathbb{C})$: ring of holomorphic functions on \mathbb{C} . Define $\Psi : \mathbb{R}[\Lambda] \to \mathcal{H}(\mathbb{C})$ by setting for $a \in \mathbb{R}$

 $\Psi(\epsilon^a) := (z \mapsto \exp(az))$

and extending linearly to all of $\mathbb{R}[\Lambda]$.

Note. If $\Psi(g)$ vanishes on [a, b] for a < b, then g = 0.

 μ : measure on \mathbb{R} obtained as pushforward of Lebesgue measure on [a, b].

$$T \colon \mathbb{R}[\Lambda] \to \mathbb{R}, \boldsymbol{g} \mapsto \int \Psi(\boldsymbol{g})(\boldsymbol{x}) \boldsymbol{d} \mu(\boldsymbol{x})$$

Example for $\Lambda = \mathbb{R}$. $\mathcal{H}(\mathbb{C})$: ring of holomorphic functions on \mathbb{C} . Define $\Psi : \mathbb{R}[\Lambda] \to \mathcal{H}(\mathbb{C})$ by setting for $a \in \mathbb{R}$

 $\Psi(\epsilon^a) := (z \mapsto \exp(az))$

and extending linearly to all of $\mathbb{R}[\Lambda]$.

Note. If $\Psi(g)$ vanishes on [a, b] for a < b, then g = 0.

 μ : measure on \mathbb{R} obtained as pushforward of Lebesgue measure on [a, b].

$$\mathcal{T}\colon \mathbb{R}[\Lambda] o \mathbb{R}, oldsymbol{g} \mapsto \int \Psi(oldsymbol{g})(oldsymbol{x}) oldsymbol{d} \mu(oldsymbol{x})$$

satisfies $T(g^2) \ge 0$,

Example for $\Lambda = \mathbb{R}$. $\mathcal{H}(\mathbb{C})$: ring of holomorphic functions on \mathbb{C} . Define $\Psi : \mathbb{R}[\Lambda] \to \mathcal{H}(\mathbb{C})$ by setting for $a \in \mathbb{R}$

 $\Psi(\epsilon^a) := (z \mapsto \exp(az))$

and extending linearly to all of $\mathbb{R}[\Lambda]$.

Note. If $\Psi(g)$ vanishes on [a, b] for a < b, then g = 0.

 μ : measure on \mathbb{R} obtained as pushforward of Lebesgue measure on [a, b].

$$T \colon \mathbb{R}[\Lambda] \to \mathbb{R}, g \mapsto \int \Psi(g)(x) d\mu(x)$$

satisfies $T(g^2) \ge 0$, and $T(g^2) > 0$ for all $g \in \mathbb{R}[\Lambda] \setminus \{0\}$.
Example of Positive Definite Map

Example for $\Lambda = \mathbb{R}$. $\mathcal{H}(\mathbb{C})$: ring of holomorphic functions on \mathbb{C} . Define $\Psi : \mathbb{R}[\Lambda] \to \mathcal{H}(\mathbb{C})$ by setting for $a \in \mathbb{R}$

 $\Psi(\epsilon^a) := (z \mapsto \exp(az))$

and extending linearly to all of $\mathbb{R}[\Lambda]$.

Note. If $\Psi(g)$ vanishes on [a, b] for a < b, then g = 0.

 μ : measure on \mathbb{R} obtained as pushforward of Lebesgue measure on [a, b].

$$T \colon \mathbb{R}[\Lambda] \to \mathbb{R}, g \mapsto \int \Psi(g)(x) d\mu(x)$$

satisfies $T(g^2) \ge 0$, and $T(g^2) > 0$ for all $g \in \mathbb{R}[\Lambda] \setminus \{0\}$.

Define $f: \mathbb{R} \to \mathbb{R}$ by $f(a) = T(e^a)$ for $a \in \mathbb{R}$.

Example of Positive Definite Map

Example for $\Lambda = \mathbb{R}$. $\mathcal{H}(\mathbb{C})$: ring of holomorphic functions on \mathbb{C} . Define $\Psi : \mathbb{R}[\Lambda] \to \mathcal{H}(\mathbb{C})$ by setting for $a \in \mathbb{R}$

 $\Psi(\epsilon^a) := (z \mapsto \exp(az))$

and extending linearly to all of $\mathbb{R}[\Lambda]$.

Note. If $\Psi(g)$ vanishes on [a, b] for a < b, then g = 0.

 μ : measure on \mathbb{R} obtained as pushforward of Lebesgue measure on [a, b].

$$T \colon \mathbb{R}[\Lambda] \to \mathbb{R}, g \mapsto \int \Psi(g)(x) d\mu(x)$$

satisfies $T(g^2) \ge 0$, and $T(g^2) > 0$ for all $g \in \mathbb{R}[\Lambda] \setminus \{0\}$.

Define $f: \mathbb{R} \to \mathbb{R}$ by $f(a) = T(e^a)$ for $a \in \mathbb{R}$. Then $T = T_f$ and f is positive definite.

SOS

if it can be written as sum of squares of polynomials from $\mathbb{R}[x_1, \ldots, x_n]$.

if it can be written as sum of squares of polynomials from $\mathbb{R}[x_1, \ldots, x_n]$.

If p is SOS, then $p(x) \ge 0$ for all $x \in \mathbb{R}^n$.

if it can be written as sum of squares of polynomials from $\mathbb{R}[x_1, \ldots, x_n]$.

If p is SOS, then $p(x) \ge 0$ for all $x \in \mathbb{R}^n$.

Hilbert 1888: converse need not be true.

if it can be written as sum of squares of polynomials from $\mathbb{R}[x_1, \ldots, x_n]$.

If *p* is SOS, then $p(x) \ge 0$ for all $x \in \mathbb{R}^n$.

Hilbert 1888: converse need not be true.

If $f \in \mathbb{R}[\mathbb{Q}^n]$ is SOS in $\mathbb{R}[\mathbb{Q}^n]$, it need not be nonnegative on all of \mathbb{R}^n :

if it can be written as sum of squares of polynomials from $\mathbb{R}[x_1, \ldots, x_n]$.

If p is SOS, then $p(x) \ge 0$ for all $x \in \mathbb{R}^n$.

Hilbert 1888: converse need not be true.

If $f \in \mathbb{R}[\mathbb{Q}^n]$ is SOS in $\mathbb{R}[\mathbb{Q}^n]$, it need not be nonnegative on all of \mathbb{R}^n : $\epsilon \in \mathbb{R}[\mathbb{Q}]$ takes negative values on R, but equals $(\epsilon^{\frac{1}{2}})^2$.

if it can be written as sum of squares of polynomials from $\mathbb{R}[x_1, \ldots, x_n]$.

If p is SOS, then $p(x) \ge 0$ for all $x \in \mathbb{R}^n$.

Hilbert 1888: converse need not be true.

If $f \in \mathbb{R}[\mathbb{Q}^n]$ is SOS in $\mathbb{R}[\mathbb{Q}^n]$, it need not be nonnegative on all of \mathbb{R}^n : $\epsilon \in \mathbb{R}[\mathbb{Q}]$ takes negative values on R, but equals $(\epsilon^{\frac{1}{2}})^2$.

Observation. $p \in \mathbb{R}[x_1, \dots, x_n]$ is SOS in $\mathbb{R}[\mathbb{Q}^n]$ if and only if

if it can be written as sum of squares of polynomials from $\mathbb{R}[x_1, \ldots, x_n]$.

If p is SOS, then $p(x) \ge 0$ for all $x \in \mathbb{R}^n$.

Hilbert 1888: converse need not be true.

If $f \in \mathbb{R}[\mathbb{Q}^n]$ is SOS in $\mathbb{R}[\mathbb{Q}^n]$, it need not be nonnegative on all of \mathbb{R}^n : $\epsilon \in \mathbb{R}[\mathbb{Q}]$ takes negative values on R, but equals $(\epsilon^{\frac{1}{2}})^2$.

Observation. $p \in \mathbb{R}[x_1, ..., x_n]$ is SOS in $\mathbb{R}[\mathbb{Q}^n]$ if and only if $p(x_1^m, ..., x_n^m)$ is SOS in $\mathbb{R}[x_1, ..., x_n]$ for some $m \ge 1$.

if it can be written as sum of squares of polynomials from $\mathbb{R}[x_1, \ldots, x_n]$.

If p is SOS, then $p(x) \ge 0$ for all $x \in \mathbb{R}^n$.

Hilbert 1888: converse need not be true.

If $f \in \mathbb{R}[\mathbb{Q}^n]$ is SOS in $\mathbb{R}[\mathbb{Q}^n]$, it need not be nonnegative on all of \mathbb{R}^n : $\epsilon \in \mathbb{R}[\mathbb{Q}]$ takes negative values on R, but equals $(\epsilon^{\frac{1}{2}})^2$.

Observation. $p \in \mathbb{R}[x_1, ..., x_n]$ is SOS in $\mathbb{R}[\mathbb{Q}^n]$ if and only if $p(x_1^m, ..., x_n^m)$ is SOS in $\mathbb{R}[x_1, ..., x_n]$ for some $m \ge 1$.

Question. Is there $p \in \mathbb{R}[x_1, \ldots, x_n]$ such that

• $p(\bar{x}) \ge 0$ for all $\bar{x} \in \mathbb{R}^n$,

for all $m \ge 1$, the polynomial $p(x_1^m, \ldots, x_n^m)$ is not SOS in $\mathbb{R}[\bar{x}]$?

$$m(x_1, x_2, x_3) := x_3^6 - 3x_1^2 x_2^2 x_3^2 + x_1^4 x_2^2 + x_1^4 x_2^2 \in \mathbb{R}[x_1, x_2, x_3]$$

$$\begin{split} \textbf{\textit{m}}(x_1,x_2,x_3) &:= x_3^6 - 3x_1^2x_2^2x_3^2 + x_1^4x_2^2 + x_1^4x_2^2 \in \mathbb{R}[x_1,x_2,x_3] \\ \text{has support}\,\{(0,0,6),(2,2,2),(2,4,0),(4,2,0)\}. \end{split}$$

$$\begin{split} m(x_1,x_2,x_3) &:= x_3^6 - 3x_1^2x_2^2x_3^2 + x_1^4x_2^2 + x_1^4x_2^2 \in \mathbb{R}[x_1,x_2,x_3] \\ \text{has support} \, \{(0,0,6),(2,2,2),(2,4,0),(4,2,0)\}. \end{split}$$

Facts.

■ $m(x_1, x_2, x_3) \ge 0$ for all $x_1, x_2, x_3 \in \mathbb{R}$.

$$\begin{split} \textbf{\textit{m}}(x_1,x_2,x_3) &:= x_3^6 - 3x_1^2x_2^2x_3^2 + x_1^4x_2^2 + x_1^4x_2^2 \in \mathbb{R}[x_1,x_2,x_3] \\ \text{has support}\,\{(0,0,6),(2,2,2),(2,4,0),(4,2,0)\}. \end{split}$$

Facts.

• $m(x_1, x_2, x_3) \ge 0$ for all $x_1, x_2, x_3 \in \mathbb{R}$. Proof: use inequality of arithmetic and geometric means. For $0 \le \lambda_1, \dots, \lambda_n \le 1$ such that $\lambda_1 + \dots + \lambda_n = 1$ have

$$\lambda_1 t_1 + \cdots + \lambda_n t_n \geq t_1^{\lambda_1} \cdots t_n^{\lambda_n}$$

$$\begin{split} \textbf{\textit{m}}(x_1,x_2,x_3) &:= x_3^6 - 3x_1^2x_2^2x_3^2 + x_1^4x_2^2 + x_1^4x_2^2 \in \mathbb{R}[x_1,x_2,x_3] \\ \text{has support}\,\{(0,0,6),(2,2,2),(2,4,0),(4,2,0)\}. \end{split}$$

Facts.

• $m(x_1, x_2, x_3) \ge 0$ for all $x_1, x_2, x_3 \in \mathbb{R}$. Proof: use inequality of arithmetic and geometric means. For $0 \le \lambda_1, \dots, \lambda_n \le 1$ such that $\lambda_1 + \dots + \lambda_n = 1$ have

$$\lambda_1 t_1 + \cdots + \lambda_n t_n \geq t_1^{\lambda_1} \cdots t_n^{\lambda_n}$$

■ *m* is not SOS (Motzkin, Reznik).

$$\begin{split} \textbf{\textit{m}}(x_1,x_2,x_3) &:= x_3^6 - 3x_1^2x_2^2x_3^2 + x_1^4x_2^2 + x_1^4x_2^2 \in \mathbb{R}[x_1,x_2,x_3] \\ \text{has support}\,\{(0,0,6),(2,2,2),(2,4,0),(4,2,0)\}. \end{split}$$

Facts.

• $m(x_1, x_2, x_3) \ge 0$ for all $x_1, x_2, x_3 \in \mathbb{R}$. Proof: use inequality of arithmetic and geometric means. For $0 \le \lambda_1, \dots, \lambda_n \le 1$ such that $\lambda_1 + \dots + \lambda_n = 1$ have

$$\lambda_1 t_1 + \cdots + \lambda_n t_n \geq t_1^{\lambda_1} \cdots t_n^{\lambda_n}$$

- *m* is not SOS (Motzkin, Reznik).
- $m(y_1^2, y_2^2, y_3^2)$ is SOS.

$$h = (x_1 + \dots + x_5)^2 - 4(x_1x_2 + x_2x_3 + x_3x_4 + x_4x_5 + x_5x_1)$$

$$h = (x_1 + \dots + x_5)^2 - 4(x_1x_2 + x_2x_3 + x_3x_4 + x_4x_5 + x_5x_1)$$

1 $h(\bar{x}) \ge 0$ for all $\bar{x} \in \mathbb{R}^5_{\ge 0}$ (Hall+Newman 1963)

$$h = (x_1 + \dots + x_5)^2 - 4(x_1x_2 + x_2x_3 + x_3x_4 + x_4x_5 + x_5x_1)$$

1 $h(\bar{x}) \ge 0$ for all $\bar{x} \in \mathbb{R}^5_{>0}$ (Hall+Newman 1963)

2 For every k > 0, the polynomial $h(x_1^k, ..., x_5^k)$ is not SOS (Powers+Reznik 2021)

$$h = (x_1 + \dots + x_5)^2 - 4(x_1x_2 + x_2x_3 + x_3x_4 + x_4x_5 + x_5x_1)$$

1 $h(\bar{x}) \ge 0$ for all $\bar{x} \in \mathbb{R}^5_{>0}$ (Hall+Newman 1963)

2 For every k > 0, the polynomial $h(x_1^k, ..., x_5^k)$ is not SOS (Powers+Reznik 2021)

Part 1 can be generalised from C_5 to every graph, based on the following principle by Motzkin+Straus 1964:

$$h = (x_1 + \dots + x_5)^2 - 4(x_1x_2 + x_2x_3 + x_3x_4 + x_4x_5 + x_5x_1)$$

1 $h(\bar{x}) \ge 0$ for all $\bar{x} \in \mathbb{R}^5_{>0}$ (Hall+Newman 1963)

2 For every k > 0, the polynomial $h(x_1^k, ..., x_5^k)$ is not SOS (Powers+Reznik 2021)

Part 1 can be generalised from C_5 to every graph, based on the following principle by Motzkin+Straus 1964: For every graph G = ([n], E), the expression

$$\max_{\substack{0 \leq \lambda_1, \dots, \lambda_{|V|} \leq 1 \\ \lambda_1 + \dots + \lambda_n = 1}} \sum_{\{u, v\} \in E} \lambda_u \lambda_v$$

$$h = (x_1 + \dots + x_5)^2 - 4(x_1x_2 + x_2x_3 + x_3x_4 + x_4x_5 + x_5x_1)$$

1 $h(\bar{x}) \ge 0$ for all $\bar{x} \in \mathbb{R}^5_{>0}$ (Hall+Newman 1963)

2 For every k > 0, the polynomial $h(x_1^k, ..., x_5^k)$ is not SOS (Powers+Reznik 2021)

Part 1 can be generalised from C_5 to every graph, based on the following principle by Motzkin+Straus 1964: For every graph G = ([n], E), the expression

$$\max_{\substack{0 \le \lambda_1, \dots, \lambda_{|V|} \le 1 \\ \lambda_1 + \dots + \lambda_n = 1}} \sum_{\{u, v\} \in E} \lambda_u \lambda_v$$

has value $\frac{1}{2}(1-\frac{1}{k})$ where k is the size of the largest clique in G.

 $\mathcal{S} \subset \mathbb{Z}^n_{\geq 0}$ finite.

 $\mathcal{S} \subset \mathbb{Z}^n_{\geq 0}$ finite.

 $P_+(S) := \left\{ p \in \mathbb{R}[x_1, \dots, x_n] \mid p \text{ has support } S, \text{ and } p(x) \ge 0 \text{ for all } x \in \mathbb{R}^n \right\}$

 $\mathcal{S} \subset \mathbb{Z}_{>0}^n$ finite.

 $P_+(S) := \left\{ p \in \mathbb{R}[x_1, \dots, x_n] \mid p \text{ has support } S, \text{ and } p(x) \ge 0 \text{ for all } x \in \mathbb{R}^n
ight\}$

May view $P_+(S)$ as a (semialgebraic) relation:

 $\mathcal{S} \subset \mathbb{Z}_{>0}^n$ finite.

 ${m P}_+({m S}):=\left\{ {m p}\in \mathbb{R}[x_1,\ldots,x_n] \mid {m p} ext{ has support } {m S}, ext{ and } {m p}(x)\geq 0 ext{ for all } x\in \mathbb{R}^n
ight\}$

May view $P_+(S)$ as a (semialgebraic) relation:

$$\{c \in \mathbb{R}^{|S|} \mid \forall x_1, \ldots, x_n \sum_{s \in S} c_s \prod_{i=1}^n x_i^{s_i} \ge 0\}.$$

 $\mathcal{S} \subset \mathbb{Z}_{>0}^n$ finite.

 ${m P}_+({m S}):=\left\{ p\in \mathbb{R}[x_1,\ldots,x_n] \mid p ext{ has support } {m S}, ext{ and } p(x)\geq 0 ext{ for all } x\in \mathbb{R}^n
ight\}$

May view $P_+(S)$ as a (semialgebraic) relation:

$$\{c \in \mathbb{R}^{|S|} \mid \forall x_1, \ldots, x_n \sum_{s \in S} c_s \prod_{i=1}^n x_i^{s_i} \ge 0\}.$$

Theorem. TFAE:

1 $P_+(S)$ is spectrahedral shadow.

 $\mathcal{S} \subset \mathbb{Z}_{>0}^n$ finite.

 ${\it P}_+({\it S}):=\left\{ p\in \mathbb{R}[x_1,\ldots,x_n] \mid p ext{ has support } {\it S}, ext{ and } p(x)\geq 0 ext{ for all } x\in \mathbb{R}^n
ight\}$

May view $P_+(S)$ as a (semialgebraic) relation:

$$\{c \in \mathbb{R}^{|S|} \mid \forall x_1, \ldots, x_n \sum_{s \in S} c_s \prod_{i=1}^n x_i^{s_i} \ge 0\}.$$

- **1** $P_+(S)$ is spectrahedral shadow.
- **2** $P_+(S)$ has a positive definition in (\mathfrak{B}, \neq) .

 $\mathcal{S} \subset \mathbb{Z}_{>0}^n$ finite.

 ${\it P}_+({\it S}):=\left\{ p\in \mathbb{R}[x_1,\ldots,x_n] \mid p ext{ has support } {\it S}, ext{ and } p(x)\geq 0 ext{ for all } x\in \mathbb{R}^n
ight\}$

May view $P_+(S)$ as a (semialgebraic) relation:

$$\{c \in \mathbb{R}^{|S|} \mid \forall x_1, \ldots, x_n \sum_{s \in S} c_s \prod_{i=1}^n x_i^{s_i} \ge 0\}.$$

- **1** $P_+(S)$ is spectrahedral shadow.
- **2** $P_+(S)$ has a positive definition in (\mathfrak{B}, \neq) .
- **3** there exists $d \ge 1$ such that for every $p \in P_+(S)$: $p(x_1^d, \ldots, x_n^d) \in SOS$.

 $\mathcal{S} \subset \mathbb{Z}_{>0}^n$ finite.

 ${\it P}_+({\it S}):=\left\{ p\in \mathbb{R}[x_1,\ldots,x_n] \mid p ext{ has support } {\it S}, ext{ and } p(x)\geq 0 ext{ for all } x\in \mathbb{R}^n
ight\}$

May view $P_+(S)$ as a (semialgebraic) relation:

$$\{c \in \mathbb{R}^{|S|} \mid \forall x_1, \ldots, x_n \sum_{s \in S} c_s \prod_{i=1}^n x_i^{s_i} \ge 0\}.$$

- **1** $P_+(S)$ is spectrahedral shadow.
- **2** $P_+(S)$ has a positive definition in (\mathfrak{B}, \neq) .
- **3** there exists $d \ge 1$ such that for every $p \in P_+(S)$: $p(x_1^d, \ldots, x_n^d) \in SOS$.
- $1 \Rightarrow 2$: trivial.

 $\mathcal{S} \subset \mathbb{Z}_{>0}^n$ finite.

 ${m P}_+({m S}):=ig\{ p\in \mathbb{R}[x_1,\ldots,x_n] \mid p ext{ has support } {m S}, ext{ and } p(x)\geq 0 ext{ for all } x\in \mathbb{R}^n ig\}$

May view $P_+(S)$ as a (semialgebraic) relation:

$$\{c \in \mathbb{R}^{|S|} \mid \forall x_1, \ldots, x_n \sum_{s \in S} c_s \prod_{i=1}^n x_i^{s_i} \ge 0\}.$$

- **1** $P_+(S)$ is spectrahedral shadow.
- **2** $P_+(S)$ has a positive definition in (\mathfrak{B}, \neq) .
- **3** there exists $d \ge 1$ such that for every $p \in P_+(S)$: $p(x_1^d, \ldots, x_n^d) \in SOS$.
- $1 \Rightarrow 2$: trivial.
- $2 \Rightarrow 3$: hardest part. Need a new separation result.

 $\mathcal{S} \subset \mathbb{Z}_{>0}^n$ finite.

 ${m P}_+({m S}):=ig\{ p\in \mathbb{R}[x_1,\ldots,x_n] \mid p ext{ has support } {m S}, ext{ and } p(x)\geq 0 ext{ for all } x\in \mathbb{R}^n ig\}$

May view $P_+(S)$ as a (semialgebraic) relation:

$$\{c \in \mathbb{R}^{|S|} \mid \forall x_1, \ldots, x_n \sum_{s \in S} c_s \prod_{i=1}^n x_i^{s_i} \ge 0\}.$$

- **1** $P_+(S)$ is spectrahedral shadow.
- **2** $P_+(S)$ has a positive definition in (\mathfrak{B}, \neq) .
- **3** there exists $d \ge 1$ such that for every $p \in P_+(S)$: $p(x_1^d, \ldots, x_n^d) \in SOS$.
- $1 \Rightarrow 2$: trivial.
- 2 \Rightarrow 3: hardest part. Need a new separation result.
- $3 \Rightarrow 1$: well-known for d = 1.

Consequences

Corollary. For $n \ge 5$, the set of all copositive matrices $A \in \mathbb{R}^{n \times n}$ is not a spectrahedral shadow.
Corollary. For $n \ge 5$, the set of all copositive matrices $A \in \mathbb{R}^{n \times n}$ is not a spectrahedral shadow.

Answers question of Scheiderer (2018).

Corollary. For $n \ge 5$, the set of all copositive matrices $A \in \mathbb{R}^{n \times n}$ is **not** a spectrahedral shadow.

Answers question of Scheiderer (2018).

Proof. Set of copositive matrices

 \longleftrightarrow Set of all homogeneous $q \in \mathbb{R}[x_1, \dots, x_n]$ of degree 2 such that

 $q(x_1^2,\ldots,x_n^2) \ge 0$ for all $x_1,\ldots,x_n \in \mathbb{R}$

Corollary. For $n \ge 5$, the set of all copositive matrices $A \in \mathbb{R}^{n \times n}$ is **not** a spectrahedral shadow.

Answers question of Scheiderer (2018).

Proof. Set of copositive matrices \longleftrightarrow Set of all homogeneous $q \in \mathbb{R}[x_1, \ldots, x_n]$ of degree 2 such that

 $q(x_1^2,\ldots,x_n^2) \ge 0$ for all $x_1,\ldots,x_n \in \mathbb{R}$

 $\longleftrightarrow P_+(S) \text{ for } S = \{2s \in \mathbb{Z}_{\geq 0}^n \mid s_1 + \cdots + s_n = 2\}.$

Corollary. For $n \ge 5$, the set of all copositive matrices $A \in \mathbb{R}^{n \times n}$ is **not** a spectrahedral shadow.

Answers question of Scheiderer (2018).

Proof. Set of copositive matrices \longleftrightarrow Set of all homogeneous $q \in \mathbb{R}[x_1, \ldots, x_n]$ of degree 2 such that

 $q(x_1^2,\ldots,x_n^2) \ge 0$ for all $x_1,\ldots,x_n \in \mathbb{R}$

 $\longleftrightarrow P_+(S) \text{ for } S = \{2s \in \mathbb{Z}_{>0}^n \mid s_1 + \cdots + s_n = 2\}.$

Define $p := h(x_1^2, \dots, x_n^2)$ for Horn polynomial *h*.

Corollary. For $n \ge 5$, the set of all copositive matrices $A \in \mathbb{R}^{n \times n}$ is **not** a spectrahedral shadow.

Answers question of Scheiderer (2018).

Proof. Set of copositive matrices \longleftrightarrow Set of all homogeneous $q \in \mathbb{R}[x_1, \ldots, x_n]$ of degree 2 such that

$$q(x_1^2,\ldots,x_n^2) \ge 0$$
 for all $x_1,\ldots,x_n \in \mathbb{R}$

$$\longleftrightarrow P_+(S) \text{ for } S = \{2s \in \mathbb{Z}_{\geq 0}^n \mid s_1 + \cdots + s_n = 2\}.$$

Define $p := h(x_1^2, \dots, x_n^2)$ for Horn polynomial *h*. $p \in P_+(S)$,

Corollary. For $n \ge 5$, the set of all copositive matrices $A \in \mathbb{R}^{n \times n}$ is **not** a spectrahedral shadow.

Answers question of Scheiderer (2018).

Proof. Set of copositive matrices \longleftrightarrow Set of all homogeneous $q \in \mathbb{R}[x_1, \ldots, x_n]$ of degree 2 such that

$$q(x_1^2,\ldots,x_n^2) \ge 0$$
 for all $x_1,\ldots,x_n \in \mathbb{R}$

 $\longleftrightarrow P_+(S) \text{ for } S = \{2s \in \mathbb{Z}_{\geq 0}^n \mid s_1 + \dots + s_n = 2\}.$

Define $p := h(x_1^2, \dots, x_n^2)$ for Horn polynomial *h*.

 $\blacksquare \ p \in P_+(S),$

• $p(x_1^d, \ldots, x_n^d)$ not SOS for all d > 0.

Corollary. For $n \ge 5$, the set of all copositive matrices $A \in \mathbb{R}^{n \times n}$ is **not** a spectrahedral shadow.

Answers question of Scheiderer (2018).

Proof. Set of copositive matrices \longleftrightarrow Set of all homogeneous $q \in \mathbb{R}[x_1, \ldots, x_n]$ of degree 2 such that

$$q(x_1^2,\ldots,x_n^2) \ge 0$$
 for all $x_1,\ldots,x_n \in \mathbb{R}$

 $\longleftrightarrow P_+(S) \text{ for } S = \{2s \in \mathbb{Z}_{\geq 0}^n \mid s_1 + \dots + s_n = 2\}.$

Define $p := h(x_1^2, \dots, x_n^2)$ for Horn polynomial *h*.

 $\blacksquare \ p \in P_+(S),$

• $p(x_1^d, \ldots, x_n^d)$ not SOS for all d > 0.

Theorem implies: $P_+(S)$ not spectrahedral shadow.

Outline of proof of the hard direction.

Outline of proof of the hard direction. Suppose $p \in P_+(S)$ is not SOS.

1 Construct real closed field *R* and *R*-linear $T: R[\mathbb{Q}^n] \to R$ such that (a) $T(a^2) > 0$ for all $a \in R[\mathbb{Q}^n] \setminus \{0\}$, and

Outline of proof of the hard direction. Suppose $p \in P_+(S)$ is not SOS.

Construct real closed field *R* and *R*-linear *T*: *R*[ℚⁿ] → *R* such that
(a) *T*(*a*²) > 0 for all *a* ∈ *R*[ℚⁿ] \ {0}, and
(b) *T*(*p*) < 0.

- Construct real closed field R and R-linear $T: R[\mathbb{Q}^n] \to R$ such that (a) $T(a^2) > 0$ for all $a \in R[\mathbb{Q}^n] \setminus \{0\}$, and (b) T(p) < 0.
- **2** Define $f: \mathbb{Q}^n \to R$ by $f(w) := T(\epsilon_1^{w_1} \cdots \epsilon_n^{w_n})$.

- Construct real closed field R and R-linear $T: R[\mathbb{Q}^n] \to R$ such that (a) $T(a^2) > 0$ for all $a \in R[\mathbb{Q}^n] \setminus \{0\}$, and (b) T(p) < 0.
- **2** Define $f: \mathbb{Q}^n \to R$ by $f(w) := T(\epsilon_1^{w_1} \cdots \epsilon_n^{w_n})$.
- **3** Have $T = T_f$ by the *R*-linearity of *T*.

- Construct real closed field R and R-linear $T: R[\mathbb{Q}^n] \to R$ such that (a) $T(a^2) > 0$ for all $a \in R[\mathbb{Q}^n] \setminus \{0\}$, and (b) T(p) < 0.
- **2** Define $f: \mathbb{Q}^n \to R$ by $f(w) := T(\epsilon_1^{w_1} \cdots \epsilon_n^{w_n})$.
- **3** Have $T = T_f$ by the *R*-linearity of *T*.
- 4 (a) implies that *f* is positive definite.

- Construct real closed field *R* and *R*-linear *T*: *R*[ℚⁿ] → *R* such that
 (a) *T*(*a*²) > 0 for all *a* ∈ *R*[ℚⁿ] \ {0}, and
 (b) *T*(*p*) < 0.
- **2** Define $f: \mathbb{Q}^n \to R$ by $f(w) := T(\epsilon_1^{w_1} \cdots \epsilon_n^{w_n})$.
- **3** Have $T = T_f$ by the *R*-linearity of *T*.
- 4 (a) implies that *f* is positive definite.
- **5** Replacing *T* by T/T(1), may assume f(0) = 1, so that L_f is unital.

- Construct real closed field *R* and *R*-linear *T*: *R*[ℚⁿ] → *R* such that
 (a) *T*(*a*²) > 0 for all *a* ∈ *R*[ℚⁿ] \ {0}, and
 (b) *T*(*p*) < 0.
- **2** Define $f: \mathbb{Q}^n \to R$ by $f(w) := T(\epsilon_1^{w_1} \cdots \epsilon_n^{w_n})$.
- **3** Have $T = T_f$ by the *R*-linearity of *T*.
- 4 (a) implies that *f* is positive definite.
- **5** Replacing *T* by T/T(1), may assume f(0) = 1, so that L_f is unital.
- **6** $L_f: R[[\epsilon^{\mathbb{Q}^n}]] \to R[[\epsilon^{\mathbb{Q}^n}]]$ is (\mathbb{R} -linear and) completely positive.

- Construct real closed field *R* and *R*-linear *T*: *R*[ℚⁿ] → *R* such that
 (a) *T*(*a*²) > 0 for all *a* ∈ *R*[ℚⁿ] \ {0}, and
 (b) *T*(*p*) < 0.
- **2** Define $f: \mathbb{Q}^n \to R$ by $f(w) := T(\epsilon_1^{w_1} \cdots \epsilon_n^{w_n})$.
- **3** Have $T = T_f$ by the *R*-linearity of *T*.
- 4 (a) implies that *f* is positive definite.
- **5** Replacing *T* by T/T(1), may assume f(0) = 1, so that L_f is unital.
- **6** $L_f: R[[\epsilon^{\mathbb{Q}^n}]] \to R[[\epsilon^{\mathbb{Q}^n}]]$ is (\mathbb{R} -linear and) completely positive.
- **7** $q := p(\epsilon_1 x_1, \ldots, \epsilon_n x_n)$ polynomial with coefficients in $R[[\epsilon^{\mathbb{Q}^n}]]$.

- Construct real closed field *R* and *R*-linear *T*: *R*[ℚⁿ] → *R* such that
 (a) *T*(*a*²) > 0 for all *a* ∈ *R*[ℚⁿ] \ {0}, and
 (b) *T*(*p*) < 0.
- **2** Define $f: \mathbb{Q}^n \to R$ by $f(w) := T(\epsilon_1^{w_1} \cdots \epsilon_n^{w_n})$.
- **3** Have $T = T_f$ by the *R*-linearity of *T*.
- 4 (a) implies that *f* is positive definite.
- **5** Replacing *T* by T/T(1), may assume f(0) = 1, so that L_f is unital.
- **6** $L_f: R[[\epsilon^{\mathbb{Q}^n}]] \to R[[\epsilon^{\mathbb{Q}^n}]]$ is (\mathbb{R} -linear and) completely positive.
- **7** $q := p(\epsilon_1 x_1, \ldots, \epsilon_n x_n)$ polynomial with coefficients in $R[[\epsilon^{\mathbb{Q}^n}]]$.
- 8 $q(\bar{b}) \ge 0$ for all \bar{b} , since $p \in P_+(S)$.

- Construct real closed field *R* and *R*-linear *T*: *R*[ℚⁿ] → *R* such that
 (a) *T*(*a*²) > 0 for all *a* ∈ *R*[ℚⁿ] \ {0}, and
 (b) *T*(*p*) < 0.
- **2** Define $f: \mathbb{Q}^n \to R$ by $f(w) := T(\epsilon_1^{w_1} \cdots \epsilon_n^{w_n})$.
- **3** Have $T = T_f$ by the *R*-linearity of *T*.
- 4 (a) implies that *f* is positive definite.
- **5** Replacing *T* by T/T(1), may assume f(0) = 1, so that L_f is unital.
- **6** $L_f: R[[\epsilon^{\mathbb{Q}^n}]] \to R[[\epsilon^{\mathbb{Q}^n}]]$ is (\mathbb{R} -linear and) completely positive.
- **7** $q := p(\epsilon_1 x_1, \ldots, \epsilon_n x_n)$ polynomial with coefficients in $R[[\epsilon^{\mathbb{Q}^n}]]$.
- 8 $q(\overline{b}) \ge 0$ for all \overline{b} , since $p \in P_+(S)$.
- 9 $L_f(q)(\epsilon_1^{-1},\ldots,\epsilon_n^{-1}) = T_f(p) < 0.$

- Construct real closed field *R* and *R*-linear *T*: *R*[ℚⁿ] → *R* such that
 (a) *T*(*a*²) > 0 for all *a* ∈ *R*[ℚⁿ] \ {0}, and
 (b) *T*(*p*) < 0.
- **2** Define $f: \mathbb{Q}^n \to R$ by $f(w) := T(\epsilon_1^{w_1} \cdots \epsilon_n^{w_n})$.
- **3** Have $T = T_f$ by the *R*-linearity of *T*.
- 4 (a) implies that *f* is positive definite.
- **5** Replacing *T* by T/T(1), may assume f(0) = 1, so that L_f is unital.
- **6** $L_f: R[[\epsilon^{\mathbb{Q}^n}]] \to R[[\epsilon^{\mathbb{Q}^n}]]$ is (\mathbb{R} -linear and) completely positive.
- **7** $q := p(\epsilon_1 x_1, \ldots, \epsilon_n x_n)$ polynomial with coefficients in $R[[\epsilon^{\mathbb{Q}^n}]]$.
- 8 $q(\overline{b}) \ge 0$ for all \overline{b} , since $p \in P_+(S)$.
- 9 $L_f(q)(\epsilon_1^{-1},\ldots,\epsilon_n^{-1})=T_f(p)<0.$
- 10 Thus, L_f preserves all relations of \mathfrak{B} , but not the formula defining $P_+(S)$.

1 What is the computational complexity of SDP feasibility,

What is the computational complexity of SDP feasibility, i.e., the problem of determining whether a

 $\{(x_1,\ldots,x_n) \mid A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0\} = \emptyset$

for given symmetric $A_0, A_1, \ldots, A_n \in \mathbb{Q}^{k \times k}$?

 What is the computational complexity of SDP feasibility, i.e., the problem of determining whether a

 $\{(x_1,\ldots,x_n) \mid A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0\} = \emptyset$

for given symmetric $A_0, A_1, \ldots, A_n \in \mathbb{Q}^{k \times k}$? Is it in P?

 What is the computational complexity of SDP feasibility, i.e., the problem of determining whether a

 $\{(x_1,\ldots,x_n) \mid A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0\} = \emptyset$

for given symmetric $A_0, A_1, \ldots, A_n \in \mathbb{Q}^{k \times k}$? Is it in P? Is in $\exists \mathbb{R} \subseteq \mathsf{PSPACE}$.

 What is the computational complexity of SDP feasibility, i.e., the problem of determining whether a

 $\{(x_1,\ldots,x_n) \mid A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0\} = \emptyset$

for given symmetric $A_0, A_1, \ldots, A_n \in \mathbb{Q}^{k \times k}$? Is it in P? Is in $\exists \mathbb{R} \subseteq$ PSPACE. If it is in NP, then NP = coNP.

 What is the computational complexity of SDP feasibility, i.e., the problem of determining whether a

 $\{(x_1,\ldots,x_n) \mid A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0\} = \emptyset$

for given symmetric $A_0, A_1, \ldots, A_n \in \mathbb{Q}^{k \times k}$? Is it in P? Is in $\exists \mathbb{R} \subseteq \mathsf{PSPACE}$. If it is in NP, then NP = coNP.

2 'Sums-of-square-roots-problem': What is the complexity of deciding $\sqrt{a_1} + \cdots + \sqrt{a_n} \le a_0$ for given $a_0, a_1, \ldots, a_n \in \mathbb{Q}$?

 What is the computational complexity of SDP feasibility, i.e., the problem of determining whether a

 $\{(x_1,\ldots,x_n) \mid A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0\} = \emptyset$

for given symmetric $A_0, A_1, \ldots, A_n \in \mathbb{Q}^{k \times k}$? Is it in P? Is in $\exists \mathbb{R} \subseteq \mathsf{PSPACE}$. If it is in NP, then NP = coNP.

 Sums-of-square-roots-problem': What is the complexity of deciding √a₁ + · · · + √a_n ≤ a₀ for given a₀, a₁, . . . , a_n ∈ Q? Reduces to semidefinite program feasibility.

 What is the computational complexity of SDP feasibility, i.e., the problem of determining whether a

 $\{(x_1,\ldots,x_n) \mid A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0\} = \emptyset$

for given symmetric $A_0, A_1, \ldots, A_n \in \mathbb{Q}^{k \times k}$? Is it in P? Is in $\exists \mathbb{R} \subseteq \mathsf{PSPACE}$. If it is in NP, then NP = coNP.

- 2 'Sums-of-square-roots-problem': What is the complexity of deciding $\sqrt{a_1} + \cdots + \sqrt{a_n} \le a_0$ for given $a_0, a_1, \ldots, a_n \in \mathbb{Q}$? Reduces to semidefinite program feasibility.
- 3 Prove that the constraint satisfaction problem for every non-linear convex semi-algebraic expansion of (ℝ; +, 1, ≤) is at least as hard as the sums-of-square-roots problem.

 What is the computational complexity of SDP feasibility, i.e., the problem of determining whether a

 $\{(x_1,\ldots,x_n) \mid A_0 + A_1x_1 + \cdots + A_nx_n \succeq 0\} = \emptyset$

for given symmetric $A_0, A_1, \ldots, A_n \in \mathbb{Q}^{k \times k}$? Is it in P? Is in $\exists \mathbb{R} \subseteq \mathsf{PSPACE}$. If it is in NP, then NP = coNP.

- 2 'Sums-of-square-roots-problem': What is the complexity of deciding $\sqrt{a_1} + \cdots + \sqrt{a_n} \le a_0$ for given $a_0, a_1, \ldots, a_n \in \mathbb{Q}$? Reduces to semidefinite program feasibility.
- 3 Prove that the constraint satisfaction problem for every non-linear convex semi-algebraic expansion of (ℝ; +, 1, ≤) is at least as hard as the sums-of-square-roots problem.
- **4** Does { $(x, y) | y \ge x^6$ } have a primitive positive definition in $(\mathbb{R}; +, 1, \{(x, y) | y \ge x^2)$?