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Overview

Spatial Reasoning Formalism RCC5

Complexity Dichotomy
Tools:

1 Universal algebra (Polymorphisms)
2 Model theory (Homogeneous Structures)
3 Ramsey theory (Extreme Amenability)
4 Finite-domain CSP dichotomy of Bulatov and Zhuk.

Outlook
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RCC5
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x PP y x PO y x DR y

One of the fundamental formalisms for spatial reasoning

RCC stands for region connection calculus.

Formally, a relation algebra with 5 atoms.

Idea: variables denote non-empty regions in space.
5 binary relations between regions:

x PP y : x is a proper part of y .
x DR y : x is disjoint region to y .
x PO y : x properly overlaps with y .
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A Spatial Reasoning Problem

x

y

u v

x DR y

u PO v

v PP x
u PP y

Input: Finite set of variables,
conjunction of constraints of the form x PP y , x DR y , or x PO y .

Task: Decide whether there are non-empty regions that satisfy all the
constraints.

Question: What is the computational complexity of this problem?
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Formalisation 1

Let S be the following relational structure:

The domain is the set S of all non-empty subsets of N.

The signature is {PP,PO,DR}

PPS := {(x , y) | x ⊂ y }.

PRS := {(x , y) | x ∩ y = ∅}.
POS := {(x , y) | x 6⊂ y ∧ y 6⊂ y ∧ x ∩ y 6= ∅}.

The constraint satisfaction problem (CSP) for S:
Input: a finite conjunction φ of atomic {PP,PR,PO}-formulas.
Question: Is φ satisfiable in S?

For R ⊆ S2, write R^ for {(y , x) | (x , y) ∈ R}.

Note. {PPS, (PPS)^,DRS,POS
,=︸ ︷︷ ︸

5 basic relations

} partition S2.
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Path Consistency and Datalog

x

y

u v

x DR y

u PO v

v PP xu PP y u DR x

u DR v
Path Consistency (PC):
prominent algorithmic method
in Artificial Intelligence

Can be phrased using Datalog:

x1 DR’ x2 :− x1 DR x2

x1 DR’ x3 :− x PP x2, x2 DR’ x3

goal :− x1 DR’ x2, x1 PO x2

. . .

Datalog more general than PC:
allow auxiliary predicates of arbitrary arity
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Other Spatial Reasoning Problems

E

S

T
Network satisfaction problem for RCC5:
additionally allow constraints of the form∨

R∈R x R y for R ⊆ {PP,PP^,PO,DR,=}.

Can be modelled as CSP(T)
where T is an expansion of S
by all unions of the 5 basic relations.

Nebel+Renz’97: CSP(T) is NP-complete.

Nebel+Renz’97:
There is a unique expansion E of S
with maximally many relations of T
such that CSP(E) is in P.

How about higher-ary relations?
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Classification Task

B: expansion of S by relations R
with a quantifier-free definition in S.

x y

z zExamples of such relations R:

{(x , y , z) ∈ S3 | z PP x ∨ z PP y }.

{(x , y ,u, v) ∈ S4 | x = y ⇒ u = v }.

Questions: When is CSP(B)

in P?

in Datalog?

NP-hard?

B.+Bodor’24: Provide complete answer to all these questions.

Dichotomy: CSP(B) is in P or NP-complete.

If CSP(B) is in P, then it is in Datalog, unless P = NP.

Complexity Classification Manuel Bodirsky, joint work with Bertalan Bodor 8
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Tool 1: Polymorphisms

Polymorphisms generalise automorphisms.

A function f : Bk → B preserves R ⊆ Bm if for all a1, . . . ,ak ∈ R(
f (a1

1, . . . ,a
k
1), . . . , f (a

1
m, . . . ,ak

m)
)
∈ R.

Examples:

(x , y) 7→ (x + y)/2 preserves all convex relations R ⊆ Rm.

(x , y) 7→ x preserves all relations.

f is called a polymorphism of B if f preserves all relations of B.
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Tool 2: Finite-Domain Dichotomy

Let B be a structure with a finite domain B.

Theorem (Bulatov’17, Zhuk’17/20).

If B has a polymoprhism f : Bk → B which is cyclic, i.e., k ≥ 2 and for all
x1, . . . , xk ∈ B

f (x1, . . . , xk ) = f (x2, . . . , xk , x1)

then CSP(B) is in P.
Otherwise, CSP(B) is NP-hard.

Examples.

(x , y) 7→ max(x , y) is a polymorphism of ({1, . . . ,n};<).
Hence, CSP({1, . . . ,n};<) can be solved in polynomial time.

For for n ≥ 3, every polymorphism of ({1, . . . ,n}; 6=) is of the form
(x1, . . . , xk ) 7→ g(xi) for some i ∈ {1, . . . , k } and some g ∈ Sn.
Hence, CSP({1, . . . ,n}; 6=) is NP-hard.

Remark: Similar condition exists for solvability of Datalog (Barto+Kozik’10).
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Infinite Domains

How about B with infinite domains?

The polymorphisms of B determine the complexity of CSP(B)
if B is ω-categorical (B+Nešetřil’03):

all countable models of the first-order theory of B are isomorphic.
equivalent: componentwise action of Aut(B) on Bn has finitely many orbits,
for every n ∈ N.

Problem: S = (S;PP, DR, PO) and all of its expansions
are not ω-categorical.
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Tool 3: Model Theory

xy

u v

y DR x

u DR v

v PP xu PP y

y DR v

u DR x

Solution to problem:
Find an ω-categorical structure S ′

with the same CSP as S!

Age(S): class of all finite structures
that embed into S.

Age(S) has the amalgamation property.

By Fraı̈ssé’s theorem, there exists an
(up to isomorphism unique!) homogeneous
structure S ′ with the same age as S: isomorphisms between finite
substructures of S ′ extend to automorphisms of S ′.

Homogeneous structures with finitely many relations have
quantifier-elimination and are ω-categorical.

All expansions of ω-categorical structures by first-order definable
relations are ω-categorical.

Expansion of S by quantifier-free definable relations has the same CSP
as the expansion of S ′ by relations defined by the same formulas.

Complexity Classification Manuel Bodirsky, joint work with Bertalan Bodor 12
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Tool 4: Canonical Functions and Ramsey Theory

Replace S by S ′. Task: Classify all first-order expansions B of S.

Definition. f : Sk → S is called canonical (with respect to S)
if f preserves the equivalence relations on S2 defined by

PP(x , y)⇔ PP(u, v)

PO(x , y)⇔ PO(u, v)

DR(x , y)⇔ DR(u, v)

Note: If f is canonical, then it induces a function

ξ(f ) : {PP,PP^,DR,PO,=}k → {PP,PP^,DR,PO,=}.

Theorem (B.+Mottet’16). If B has a canonical polymorphism f such that ξ(f )
is cyclic, then CSP(B) is in P.

Theorem (B.+Bodor’24). Otherwise, CSP(B) is NP-hard.

Complexity Classification Manuel Bodirsky, joint work with Bertalan Bodor 13
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Canonisation

A permutation group G is called extremely amenable if every continuous
action of G on a compact Hausdorff space has a fixed point.

Aut(B): the automorphism group of B.

Lemma (Canonisation lemma; B.+Pinsker+Tsankov’11).

Suppose B is ω-categorical and Aut(B) is extremely amenable.
Then for any f : Bk → B, the set{

(x1, . . . , xk ) 7→ a0(f (a1(x1), . . . ,ak (xk ))) | a0,a1, . . . ,ak ∈ Aut(B)
}

contains a function g that is canonical wrt B. (g is ‘canonisation’ of f )

Problem: The automorphism group of S is not extremely amenable.

But (B.+Bodor’24): S has homogeneous expansion (S;<) by a linear order <
such that Aut(S;<) is extremely amenable.
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Proof: Ramsey Theory

For structures L and S, write
(
L
S

)
for the set of all embeddings of S ↪→ L.

Definition.
Write

L→ (M)Sc

iff for all χ :
(
L
S

)→ [c] there exists an e ∈
(
L
M

)
such that |χ(e ◦

(
M
S

)
)| ≤ 1.

S

S

L

M

S

S

S

S

S

S

S S

Complexity Classification Manuel Bodirsky, joint work with Bertalan Bodor 15



Proof: Ramsey Theory

For structures L and S, write
(
L
S

)
for the set of all embeddings of S ↪→ L.

Definition.
Write

L→ (M)Sc

iff for all χ :
(
L
S

)→ [c] there exists an e ∈
(
L
M

)
such that |χ(e ◦

(
M
S

)
)| ≤ 1.

S

S

L

M

S

S

S

S

S

S

S S

Complexity Classification Manuel Bodirsky, joint work with Bertalan Bodor 15



Proof: Ramsey Theory

For structures L and S, write
(
L
S

)
for the set of all embeddings of S ↪→ L.

Definition.
Write

L→ (M)Sc

iff for all χ :
(
L
S

)→ [c] there exists an e ∈
(
L
M

)
such that |χ(e ◦

(
M
S

)
)| ≤ 1.

S

S

L

M

S

S

S

S

S

S

S S

Complexity Classification Manuel Bodirsky, joint work with Bertalan Bodor 15



The Ramsey Property

Definition [Nešetřil].
A structure B is Ramsey
iff B→ (M)Sc for all finite S,M ↪→ B

and for every c ∈ N.

Example. (Q;<) is Ramsey.
(Q;<)→ (M)Sc for all M := ([m];<), S := ([s];<), c ∈ N.
Reformulation of Ramsey’s theorem!

Theorem (Kechris, Pestov, Todorcevic’05).

A ctble homogeneous structure B is Ramsey
if and only if Aut(B) is extremely amenable,
i.e., every continuous action on a compact
Hausdorff space has a fixed point.

Complexity Classification Manuel Bodirsky, joint work with Bertalan Bodor 16
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A structure B is Ramsey
iff B→ (M)Sc for all finite S,M ↪→ B

and for every c ∈ N.

Example. (Q;<) is Ramsey.
(Q;<)→ (M)Sc for all M := ([m];<), S := ([s];<), c ∈ N.
Reformulation of Ramsey’s theorem!

Theorem (Kechris, Pestov, Todorcevic’05).

A ctble homogeneous structure B is Ramsey
if and only if Aut(B) is extremely amenable,
i.e., every continuous action on a compact
Hausdorff space has a fixed point.

Complexity Classification Manuel Bodirsky, joint work with Bertalan Bodor 16



The Ramsey Property

Definition [Nešetřil].
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Finding the Ramsey Expansion

Definition. C: class of all expansions of structures from Age(S)

by a binary relation < which denotes a linear extension of PP.

Proposition.

1 C is an amalgamation class.

2 By Fraı̈ssé’s theorem there exists a homogeneous structure (S, <)

whose age is C.
3 (S, <) has the Ramsey property.

Complexity Classification Manuel Bodirsky, joint work with Bertalan Bodor 17
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Proving the Ramsey Property

Use the fact that the ordered countable atomless Boolean algebra
(A;∩,∪, ·,0,1, <) is Ramsey (Graham+Rotschild’71,KPT’05).

Define

PP’(x , y) as x ∩ y = x ∧ x 6= y

DR’(x , y) as x ∩ y = ∅
PO’(x , y) as ¬PP’(x , y)∧ ¬PP’(y , x)∧ ¬DR’(x , y)∧ x 6= y .

The structure (A;PP’,DR’,PO’) is not isomorphic to S,
but homomorphically equivalent to it.

Use a Ramsey transfer technique from Mottet+Pinsker’21.

Complexity Classification Manuel Bodirsky, joint work with Bertalan Bodor 18
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NP-hardness

The set Pol(B) of all polymorphisms of B is a minion:
if f ∈ Pol(B) has arity k and α : {1, . . . ,n}→ {1, . . . , k }, then the minor

fα : (x1, . . . , xn) 7→ f (xα(1), . . . , xα(n))

is also in Pol(B).
A function µ : Pol(B)→ Pol(C) is called a minion homomorphism if

µ(fα) = µ(f )α

for all f ∈ Pol(B), α : {1, . . . ,n}→ {1, . . . , k }.

Theorem. Let B be structure with finite domain.

If Pol(B) has a minion homomorphism to Pol(K3), then CSP(B) is
NP-hard.

If B has no minion homomorphism to Pol(K3), then it has a cyclic
polymorphism (and CSP(B) is in P).
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is also in Pol(B).
A function µ : Pol(B)→ Pol(C) is called a minion homomorphism if

µ(fα) = µ(f )α

for all f ∈ Pol(B), α : {1, . . . ,n}→ {1, . . . , k }.

Theorem. Let B be structure with finite domain.

If Pol(B) has a minion homomorphism to Pol(K3), then CSP(B) is
NP-hard.
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NP-hardness for Infinite-domain CSPs

Theorem (B.+Pinsker’11, Barto+Opršal+Pinsker’15):
if Pol(B) has a uniformly continuous
minion homomorphism to Pol(K3),
then CSP(B) is NP-hard.

Note:

The set C of all polymorphisms of S that are canonical wrt S is a minion.

The map ξ defined on C is a uniformly continuous minion homomorphism
to the polymorphisms of some finite structure F.

Classification strategy:

If F has a cyclic polymorphism, then CSP(B) is in P.

Otherwise, Pol(F) has minion homomorphism µ to Pol(K3).

Goal: use µ to find uniformly continuous minion homomorphism from
Pol(B) to Pol(K3).
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if Pol(B) has a uniformly continuous
minion homomorphism to Pol(K3),
then CSP(B) is NP-hard.

Note:

The set C of all polymorphisms of S that are canonical wrt S is a minion.

The map ξ defined on C is a uniformly continuous minion homomorphism
to the polymorphisms of some finite structure F.

Classification strategy:

If F has a cyclic polymorphism, then CSP(B) is in P.

Otherwise, Pol(F) has minion homomorphism µ to Pol(K3).

Goal: use µ to find uniformly continuous minion homomorphism from
Pol(B) to Pol(K3).

Complexity Classification Manuel Bodirsky, joint work with Bertalan Bodor 20



NP-hardness for Infinite-domain CSPs

Theorem (B.+Pinsker’11, Barto+Opršal+Pinsker’15):
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Unique Interpolation Property

C: set of all polymorphisms of B that are canonical with respect to S.
µ : C→ Pol(K3) has the unique interpolation property (UIP) if for all f ∈ Pol(B),
if g and h are canonisations of f , then µ(g) = µ(h).

Appears implicitly in B.+Mottet’16 and explicitly in B.+Bodor’24.

Extension Lemma (B.+Bodor’24). If µ : C→ Pol(K3) has the UIP,
then µ can be extended to a uniformly continuous minor-preserving map
from Pol(B) to Pol(K3).

Disclaimer. Many complications:

Canonisation lemma only for the order expansion of S.

How to prove the UIP?

Extra work for our Datalog result.
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Open Problem

zy

x

y DR z

x PP y
x PP z

zy

x

y PP z

x PP y
z PP x

x

y

x PP y x PO y

The structure S is an example of a finitely bounded homogeneous structure.

Conjecture (B.+Pinsker’11): Every reduct B of a finitely bounded
homogeneous structure has a CSP which is in P or NP-complete.

Tractability Conjecture (B.+Pinsker’11,
Barto+Kompatscher+Olšak+VanPham+Pinsker’16): If Pol(B) has no
uniformly continuous minor-preserving map to Pol(K3), then CSP(B) is in P.
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