A Complexity Dichotomy in Spatial Reasoning via Ramsey Theory

Manuel Bodirsky, joint work with Bertalan Bodor

Institut für Algebra, TU Dresden

May 2024

ERC Synergy Grant POCOCOP (GA 101071674).

[Complexity Classification](#page-138-0) Manuel Bodirsky, ioint work with Bertalan Bodor 1 1

■ Spatial Reasoning Formalism RCC5

-
-
-
-

Overview

■ Spatial Reasoning Formalism RCC5

Complexity Dichotomy П

Tools:

-
-
-
-

Overview

■ Spatial Reasoning Formalism RCC5

Complexity Dichotomy

Tools:

- **1** Universal algebra (Polymorphisms)
-
-
-

- Spatial Reasoning Formalism RCC5
- Complexity Dichotomy
- **Tools:**
	- **1** Universal algebra (Polymorphisms)
	- **2** Model theory (Homogeneous Structures)
	-
	-
-
- Spatial Reasoning Formalism RCC5
- Complexity Dichotomy
- **Tools:**
	- **1** Universal algebra (Polymorphisms)
	- **2** Model theory (Homogeneous Structures)
	- **3** Ramsey theory (Extreme Amenability)
	-
-
- Spatial Reasoning Formalism RCC5
- Complexity Dichotomy
- **Tools:**
	- **1** Universal algebra (Polymorphisms)
	- **2** Model theory (Homogeneous Structures)
	- **3** Ramsey theory (Extreme Amenability)
	- **4** Finite-domain CSP dichotomy of Bulatov and Zhuk.
-
- Spatial Reasoning Formalism RCC5
- Complexity Dichotomy
- **Tools:**
	- **1** Universal algebra (Polymorphisms)
	- **2** Model theory (Homogeneous Structures)
	- **3** Ramsey theory (Extreme Amenability)
	- **4** Finite-domain CSP dichotomy of Bulatov and Zhuk.

Outlook

- Spatial Reasoning Formalism RCC5
- Complexity Dichotomy
- **Tools:**
	- **1** Universal algebra (Polymorphisms)
	- **2** Model theory (Homogeneous Structures)
	- **3** Ramsey theory (Extreme Amenability)
	- **4** Finite-domain CSP dichotomy of Bulatov and Zhuk.
- Outlook

- One of the fundamental formalisms for spatial reasoning
- RCC stands for region connection calculus.
- **Formally, a relation algebra with 5 atoms.**
-
- -
	-
	-

- One of the fundamental formalisms for spatial reasoning
- RCC stands for region connection calculus.
- Formally, a relation algebra with 5 atoms.
-
- -
	-
	-

- One of the fundamental formalisms for spatial reasoning
- RCC stands for region connection calculus.
- Formally, a relation algebra with 5 atoms.
- Idea: variables denote non-empty regions in space. \blacksquare
- 5 binary relations between regions:
	-
	-
	-

- One of the fundamental formalisms for spatial reasoning
- RCC stands for region connection calculus.
- Formally, a relation algebra with 5 atoms.
- Idea: variables denote non-empty regions in space.
- 5 binary relations between regions:
	- *x* PP *y*: *x* is a proper part of *y*.
	-
	-

- One of the fundamental formalisms for spatial reasoning
- RCC stands for region connection calculus.
- Formally, a relation algebra with 5 atoms.
- Idea: variables denote non-empty regions in space.
- 5 binary relations between regions:
	- *x* PP *y*: *x* is a proper part of *y*.
	- *x* DR *y*: *x* is disjoint region to *y*.
	-

- One of the fundamental formalisms for spatial reasoning
- RCC stands for region connection calculus.
- Formally, a relation algebra with 5 atoms.
- Idea: variables denote non-empty regions in space.
- 5 binary relations between regions:
	- \blacksquare *x* PP *y*: *x* is a proper part of *y*.
	- *x* DR *y*: *x* is disjoint region to *y*.
	- *x* PO *y*: *x* properly overlaps with *y*.

- One of the fundamental formalisms for spatial reasoning
- RCC stands for region connection calculus.
- Formally, a relation algebra with 5 atoms.
- Idea: variables denote non-empty regions in space.
- 5 binary relations between regions:
	- \blacksquare *x* PP *y*: *x* is a proper part of *y*.
	- *x* DR *y*: *x* is disjoint region to *y*.
	- *x* PO *y*: *x* properly overlaps with *y*.

- One of the fundamental formalisms for spatial reasoning
- RCC stands for region connection calculus.
- Formally, a relation algebra with 5 atoms.
- Idea: variables denote non-empty regions in space.
- 5 binary relations between regions:
	- \blacksquare *x* PP *y*: *x* is a proper part of *y*.
	- *x* DR *y*: *x* is disjoint region to *y*.
	- *x* PO *y*: *x* properly overlaps with *y*.

Input: Finite set of variables,

conjunction of constraints of the form *x* PP *y*, *x* DR *y*, or *x* PO *y*.

Input: Finite set of variables, conjunction of constraints of the form *x* PP *y*, *x* DR *y*, or *x* PO *y*.

Task: Decide whether there are non-empty regions that satisfy all the constraints.

Input: Finite set of variables,

conjunction of constraints of the form *x* PP *y*, *x* DR *y*, or *x* PO *y*.

Task: Decide whether there are non-empty regions that satisfy all the constraints.

Question: What is the computational complexity of this problem?

Input: Finite set of variables,

conjunction of constraints of the form *x* PP *y*, *x* DR *y*, or *x* PO *y*.

Task: Decide whether there are non-empty regions that satisfy all the constraints.

Question: What is the computational complexity of this problem?

- \blacksquare The domain is the set *S* of all non-empty subsets of N.
- \blacksquare The signature is $\{PP, PO, DR\}$
-
-
-

- П The domain is the set *S* of all non-empty subsets of N.
- \blacksquare The signature is $\{PP, PO, DR\}$
- $PP^{\mathfrak{S}} := \{(x, y) \mid x \subset y\}.$
-
-

- \blacksquare The domain is the set *S* of all non-empty subsets of N.
- \blacksquare The signature is $\{PP, PO, DR\}$
- $PP^{\mathfrak{S}} := \{(x, y) \mid x \subset y\}.$
- $PR^{\mathfrak{S}} := \{ (x, y) \mid x \cap y = \emptyset \}.$
-

- \blacksquare The domain is the set *S* of all non-empty subsets of N.
- \blacksquare The signature is $\{PP, PO, DR\}$
- $PP^{\mathfrak{S}} := \{ (x, y) \mid x \subset y \}.$
- $\mathsf{PR}^{\mathfrak{S}} := \{ (x, y) \mid x \cap y = \emptyset \}.$
- $PO^{S} := \{(x, y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset\}.$

- \blacksquare The domain is the set *S* of all non-empty subsets of N.
- \blacksquare The signature is $\{PP, PO, DR\}$
- $PP^{\mathfrak{S}} := \{ (x, y) \mid x \subset y \}.$
- $PR^{\mathfrak{S}} := \{ (x, y) \mid x \cap y = \emptyset \}.$
- $PO^{S} := \{(x, y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset\}.$

Let $\mathfrak S$ be the following relational structure:

- \blacksquare The domain is the set *S* of all non-empty subsets of N.
- \blacksquare The signature is $\{PP, PO, DR\}$
- $PP^{\mathfrak{S}} := \{ (x, y) \mid x \subset y \}.$

$$
\blacksquare \mathsf{PR}^{\mathfrak{S}} := \{ (x, y) \mid x \cap y = \emptyset \}.
$$

$$
\blacksquare \mathsf{PO}^{\mathfrak{S}} := \{ (x,y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset \}.
$$

The constraint satisfaction problem (CSP) for \Im : **Input:** a finite conjunction φ of atomic {PP, PR, PO}-formulas.

Let $\mathfrak S$ be the following relational structure:

- \blacksquare The domain is the set *S* of all non-empty subsets of N.
- \blacksquare The signature is $\{PP, PO, DR\}$
- $PP^{\mathfrak{S}} := \{ (x, y) \mid x \subset y \}.$
- $PR^{\mathfrak{S}} := \{ (x, y) \mid x \cap y = \emptyset \}.$
- $PO^{S} := \{(x, y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset\}.$

The constraint satisfaction problem (CSP) for \Im :

Input: a finite conjunction φ of atomic {PP, PR, PO}-formulas.

Let $\mathfrak S$ be the following relational structure:

- \blacksquare The domain is the set *S* of all non-empty subsets of N.
- \blacksquare The signature is $\{PP, PO, DR\}$
- $PP^{\mathfrak{S}} := \{ (x, y) \mid x \subset y \}.$
- $\mathsf{PR}^{\mathfrak{S}} := \{ (x, y) \mid x \cap y = \emptyset \}.$
- $PO^{S} := \{(x, y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset\}.$

The constraint satisfaction problem (CSP) for \Im : **Input:** a finite conjunction φ of atomic {PP, PR, PO}-formulas. **Question:** Is φ satisfiable in G?

For $R \subseteq S^2$, write R^{\smile} for $\{(y, x) \mid (x, y) \in R\}$.

Let $\mathfrak S$ be the following relational structure:

- \blacksquare The domain is the set *S* of all non-empty subsets of $\mathbb N$.
- \blacksquare The signature is $\{PP, PO, DR\}$
- $PP^{\mathfrak{S}} := \{ (x, y) \mid x \subset y \}.$

$$
\blacksquare \mathsf{PR}^{\mathfrak{S}} := \{ (x, y) \mid x \cap y = \emptyset \}.
$$

$$
\blacksquare \mathsf{PO}^{\mathfrak{S}} := \{ (x,y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset \}.
$$

The constraint satisfaction problem (CSP) for \Im : **Input:** a finite conjunction φ of atomic {PP, PR, PO}-formulas. **Question:** Is ϕ satisfiable in *G*?

For
$$
R \subseteq S^2
$$
, write R^{\sim} for $\{(y, x) \mid (x, y) \in R\}$. **Note.** $\{PP^{\mathfrak{S}}, (PP^{\mathfrak{S}})^{\sim}, DR^{\mathfrak{S}}, PO^{\mathfrak{S}}, =\}$ partition S^2 . **5** basic relations

Let $\mathfrak S$ be the following relational structure:

- \blacksquare The domain is the set *S* of all non-empty subsets of N.
- \blacksquare The signature is $\{PP, PO, DR\}$
- $PP^{\mathfrak{S}} := \{ (x, y) \mid x \subset y \}.$

$$
\blacksquare \mathsf{PR}^{\mathfrak{S}} := \{ (x, y) \mid x \cap y = \emptyset \}.
$$

$$
\blacksquare \mathsf{PO}^{\mathfrak{S}} := \{ (x,y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset \}.
$$

The constraint satisfaction problem (CSP) for \Im : **Input:** a finite conjunction φ of atomic {PP, PR, PO}-formulas.

Question: Is φ satisfiable in \Im ?

For $R \subseteq S^2$, write R ^{\sim} for {(*y*, *x*) | (*x*, *y*) \in *R*}.

Note.
$$
\{PP^{\mathfrak{S}}, (PP^{\mathfrak{S}})^{\sim}, DR^{\mathfrak{S}}, PO^{\mathfrak{S}}, =\}
$$
 partition S^2 . $\frac{1}{5 \text{ basic relations}}$

Let $\mathfrak S$ be the following relational structure:

- \blacksquare The domain is the set *S* of all non-empty subsets of N.
- \blacksquare The signature is $\{PP, PO, DR\}$
- $PP^{\mathfrak{S}} := \{ (x, y) \mid x \subset y \}.$

$$
\blacksquare \mathsf{PR}^{\mathfrak{S}} := \{ (x, y) \mid x \cap y = \emptyset \}.
$$

$$
\blacksquare \mathsf{PO}^{\mathfrak{S}} := \{ (x,y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset \}.
$$

The constraint satisfaction problem (CSP) for \Im :

Input: a finite conjunction φ of atomic {PP, PR, PO}-formulas. **Question:** Is φ satisfiable in \Im ?

For
$$
R \subseteq S^2
$$
, write R^{\sim} for $\{(y, x) \mid (x, y) \in R\}$. **Note.** $\{PP^{\mathfrak{S}}, (PP^{\mathfrak{S}})^{\sim}, DR^{\mathfrak{S}}, PO^{\mathfrak{S}}, =\}$ partition S^2 . **5** basic relations

*x*₁ DR' *x*₃ :− *x* PP *x*₂, *x*₂ DR' *x*₃

*x*₁ DR' *x*₂ :− *x*₁ DR *x*₂ *x*₁ DR' *x*₃ :− *x* PP *x*₂, *x*₂ DR' *x*₃ goal :− *x*¹ DR' *x*2, *x*¹ PO *x*²

Datalog more general than PC:

$$
x_1 \, \text{DR'} \, x_2 \; := \; x_1 \, \text{DR} \, x_2
$$
\n
$$
x_1 \, \text{DR'} \, x_3 \; := \; x \, \text{PP} \, x_2, \, x_2 \, \text{DR'} \, x_3
$$
\n
$$
\text{goal} \; := \; x_1 \, \text{DR'} \, x_2, \, x_1 \, \text{PO} \, x_2
$$

. . .

Datalog more general than PC: \blacksquare allow auxiliary predicates of arbitrary arity

$$
x_1 \, \text{DR}' \, x_2 \; := \; x_1 \, \text{DR} \, x_2
$$
\n
$$
x_1 \, \text{DR}' \, x_3 \; := \; x \, \text{PP} \, x_2, \, x_2 \, \text{DR}' \, x_3
$$
\n
$$
\text{goal} \; := \; x_1 \, \text{DR}' \, x_2, \, x_1 \, \text{PO} \, x_2
$$

. . .

Datalog more general than PC: allow auxiliary predicates of arbitrary arity
■ Network satisfaction problem for RCC5: additionally allow constraints of the form $\bigvee_{R \in \mathcal{R}} x R y$ for $\mathcal{R} \subseteq \{\textsf{PP}, \textsf{PP}^{\smile}, \textsf{PO}, \textsf{DR}, \textsf{=} \}.$ Gan be modelled as $CSP(\mathfrak{T})$

Network satisfaction problem for RCC5: additionally allow constraints of the form $\bigvee_{R \in \mathcal{R}} x R y$ for $\mathcal{R} \subseteq \{\textsf{PP}, \textsf{PP}^{\smile}, \textsf{PO}, \textsf{DR}, \textsf{=}\}.$

- Gan be modelled as $CSP(\mathfrak{T})$ where $\mathfrak T$ is an expansion of $\mathfrak S$ by all unions of the 5 basic relations.
- Nebel+Renz'97: $CSP(\mathfrak{T})$ is NP-complete.

- Network satisfaction problem for RCC5: additionally allow constraints of the form $\bigvee_{R \in \mathcal{R}} x R y$ for $\mathcal{R} \subseteq \{\textsf{PP}, \textsf{PP}^{\smile}, \textsf{PO}, \textsf{DR}, \textsf{=}\}.$
- Gan be modelled as $CSP(\mathfrak{T})$ where $\mathfrak T$ is an expansion of $\mathfrak S$ by all unions of the 5 basic relations.
- Nebel+Renz'97: $CSP(\mathfrak{T})$ is NP-complete.

- Network satisfaction problem for RCC5: additionally allow constraints of the form $\bigvee_{R \in \mathcal{R}} x R y$ for $\mathcal{R} \subseteq \{\textsf{PP}, \textsf{PP}^{\smile}, \textsf{PO}, \textsf{DR}, \textsf{=}\}.$
- Gan be modelled as $CSP(\mathfrak{T})$ where $\mathfrak T$ is an expansion of $\mathfrak S$ by all unions of the 5 basic relations.
- Nebel+Renz'97: CSP (\mathfrak{T}) is NP-complete.

Nebel+Renz'97:

There is a unique expansion $\mathfrak E$ of $\mathfrak S$ with maximally many relations of $\mathfrak T$ such that $CSP(E)$ is in P.

- Network satisfaction problem for RCC5: additionally allow constraints of the form $\bigvee_{R \in \mathcal{R}} x R y$ for $\mathcal{R} \subseteq \{\textsf{PP}, \textsf{PP}^{\smile}, \textsf{PO}, \textsf{DR}, \textsf{=}\}.$
- Gan be modelled as $CSP(\mathfrak{T})$ where $\mathfrak T$ is an expansion of $\mathfrak S$ by all unions of the 5 basic relations.
- Nebel+Renz'97: CSP (\mathfrak{T}) is NP-complete.
- \blacksquare Nebel+Renz'97:

There is a unique expansion $\mathfrak E$ of $\mathfrak S$ with maximally many relations of $\mathfrak T$ such that $CSP(E)$ is in P.

How about higher-ary relations?

- Network satisfaction problem for RCC5: additionally allow constraints of the form $\bigvee_{R \in \mathcal{R}} x R y$ for $\mathcal{R} \subseteq \{\textsf{PP}, \textsf{PP}^{\smile}, \textsf{PO}, \textsf{DR}, \textsf{=}\}.$
- Gan be modelled as $CSP(\mathfrak{T})$ where $\mathfrak T$ is an expansion of $\mathfrak S$ by all unions of the 5 basic relations.
- Nebel+Renz'97: CSP (\mathfrak{T}) is NP-complete.
- \blacksquare Nebel+Renz'97:

There is a unique expansion $\mathfrak E$ of $\mathfrak S$ with maximally many relations of $\mathfrak T$ such that $CSP(E)$ is in P.

How about higher-ary relations?

B: expansion of S by relations *R* with a quantifier-free definition in $\mathfrak{S}.$

Examples of such relations *R* :

-
-
-

-
-

B: expansion of S by relations *R* with a quantifier-free definition in $\mathfrak{S}.$

Examples of such relations *R* :

{(*x*, *y*, *z*) ∈ *S* 3 | *z* PP *x* ∨ *z* PP *y*}. $\{(x, y, u, v) \in S^4 \mid x = y \Rightarrow u = v\}.$

-
-
-

-
-

B: expansion of S by relations *R* with a quantifier-free definition in $\mathfrak{S}.$

Examples of such relations *R* :

 $\{(x, y, z) \in S^3 \mid z \text{ PP } x \lor z \text{ PP } y\}.$

 $\{(x, y, u, v) \in S^4 \mid x = y \Rightarrow u = v\}.$

B: expansion of S by relations *R* with a quantifier-free definition in $\mathfrak{S}.$

Examples of such relations *R* :

 $\{(x, y, z) \in S^3 \mid z \text{ PP } x \lor z \text{ PP } y\}.$

$$
\blacksquare \{(x,y,u,v)\in S^4\mid x=y\Rightarrow u=v\}.
$$

Questions: When is CSP(\mathfrak{B})

B: expansion of S by relations *R* with a quantifier-free definition in $\mathfrak{S}.$

Examples of such relations *R* :

 $\{(x, y, z) \in S^3 \mid z \text{ PP } x \lor z \text{ PP } y\}.$

$$
\blacksquare \{(x,y,u,v)\in S^4\mid x=y\Rightarrow u=v\}.
$$

Questions: When is CSP(\mathfrak{B})

 \blacksquare in P?

in Datalog?

B: expansion of S by relations *R* with a quantifier-free definition in $\mathfrak{S}.$

Examples of such relations *R* :

 $\{(x, y, z) \in S^3 \mid z \text{ PP } x \lor z \text{ PP } y\}.$

$$
\blacksquare \{(x,y,u,v)\in S^4\mid x=y\Rightarrow u=v\}.
$$

Questions: When is CSP(\mathfrak{B})

 \blacksquare in P?

in Datalog?

-
-

B: expansion of S by relations *R* with a quantifier-free definition in $\mathfrak{S}.$

Examples of such relations *R* :

 $\{(x, y, z) \in S^3 \mid z \text{ PP } x \lor z \text{ PP } y\}.$

$$
\blacksquare \{(x,y,u,v)\in S^4\mid x=y\Rightarrow u=v\}.
$$

Questions: When is CSP(\mathfrak{B})

- \blacksquare in P?
- in Datalog?
- NP-hard?

B: expansion of S by relations *R* with a quantifier-free definition in G.

Examples of such relations *R* :

 $\{(x, y, z) \in S^3 \mid z \text{ PP } x \lor z \text{ PP } y\}.$

$$
\blacksquare \{(x,y,u,v)\in S^4\mid x=y\Rightarrow u=v\}.
$$

Questions: When is CSP(\mathfrak{B})

- \blacksquare in P?
- in Datalog?
- NP-hard?

B.+Bodor'24: Provide complete answer to all these questions.

■ **Dichotomy:** CSP(³) is in P or NP-complete.

B: expansion of S by relations *R* with a quantifier-free definition in G.

Examples of such relations *R* :

 $\{(x, y, z) \in S^3 \mid z \text{ PP } x \lor z \text{ PP } y\}.$

$$
\blacksquare \{(x,y,u,v)\in S^4\mid x=y\Rightarrow u=v\}.
$$

Questions: When is CSP(\mathfrak{B})

- \blacksquare in P?
- in Datalog?
- NP-hard?
- B.+Bodor'24: Provide complete answer to all these questions.
	- **Dichotomy:** CSP(\mathfrak{B}) is in P or NP-complete.

B: expansion of S by relations *R* with a quantifier-free definition in G.

Examples of such relations *R* :

 $\{(x, y, z) \in S^3 \mid z \text{ PP } x \lor z \text{ PP } y\}.$

$$
\blacksquare \{(x,y,u,v)\in S^4\mid x=y\Rightarrow u=v\}.
$$

Questions: When is CSP(\mathfrak{B})

- \blacksquare in P?
- in Datalog?
- NP-hard?
- B.+Bodor'24: Provide complete answer to all these questions.
	- **Dichotomy:** CSP(³) is in P or NP-complete.

If $CSP(B)$ is in P, then it is in Datalog, unless $P = NP$.

B: expansion of S by relations *R* with a quantifier-free definition in G.

Examples of such relations *R* :

 $\{(x, y, z) \in S^3 \mid z \text{ PP } x \lor z \text{ PP } y\}.$

$$
\blacksquare \{(x,y,u,v)\in S^4\mid x=y\Rightarrow u=v\}.
$$

Questions: When is CSP(\mathfrak{B})

- \blacksquare in P?
- in Datalog?
- NP-hard?
- B.+Bodor'24: Provide complete answer to all these questions.
	- **Dichotomy:** CSP(³) is in P or NP-complete.
	- If $CSP(\mathfrak{B})$ is in P, then it is in Datalog, unless P = NP.

Polymorphisms generalise automorphisms.

A function *f* : B^k → *B* preserves $B \subseteq B^m$ if for all $a^1, \ldots, a^k \in B$
(*k*(\leq ⁴ \leq \leq $(f(a_1^1, \ldots, a_1^k), \ldots, f(a_m^1, \ldots, a_m^k)) \in R$.

- $(x, y) \mapsto (x + y)/2$ preserves all convex relations $R \subseteq \mathbb{R}^m$.
-

Polymorphisms generalise automorphisms.

A function *f* : B^k → *B* preserves $B \subseteq B^m$ if for all $a^1, \ldots, a^k \in B$
(*f*(≤ 1 , $\leq k$)) $\leq R$ $(f(a_1^1, \ldots, a_1^k), \ldots, f(a_m^1, \ldots, a_m^k)) \in R$.

Examples:

- $(x, y) \mapsto (x + y)/2$ preserves all convex relations $R \subseteq \mathbb{R}^m$.
- $(x, y) \mapsto x$ preserves all relations.

Polymorphisms generalise automorphisms.

A function *f* : B^k → *B* preserves $B \subseteq B^m$ if for all $a^1, \ldots, a^k \in B$
(*f*(≤ 1 , $\leq k$)) $\leq R$ $(f(a_1^1, \ldots, a_1^k), \ldots, f(a_m^1, \ldots, a_m^k)) \in R$.

Examples:

 $(x, y) \mapsto (x + y)/2$ preserves all convex relations $R \subseteq \mathbb{R}^m$.

 $(x, y) \mapsto x$ preserves all relations.

f is called a polymorphism of $\mathfrak B$ if *f* preserves all relations of $\mathfrak B$.

Polymorphisms generalise automorphisms.

A function *f* : B^k → *B* preserves $B \subseteq B^m$ if for all $a^1, \ldots, a^k \in B$
(*f*(≤ 1 , $\leq k$)) $\leq R$ $(f(a_1^1, \ldots, a_1^k), \ldots, f(a_m^1, \ldots, a_m^k)) \in R$.

Examples:

- $(x, y) \mapsto (x + y)/2$ preserves all convex relations $R \subseteq \mathbb{R}^m$.
- $(x, y) \mapsto x$ preserves all relations.

f is called a polymorphism of $\mathfrak B$ if *f* preserves all relations of $\mathfrak B$.

Polymorphisms generalise automorphisms.

A function *f* : B^k → *B* preserves $B \subseteq B^m$ if for all $a^1, \ldots, a^k \in B$
(*f*(≤ 1 , $\leq k$)) $\leq R$ $(f(a_1^1, \ldots, a_1^k), \ldots, f(a_m^1, \ldots, a_m^k)) \in R$.

Examples:

- $(x, y) \mapsto (x + y)/2$ preserves all convex relations $R \subseteq \mathbb{R}^m$.
- $(x, y) \mapsto x$ preserves all relations.

f is called a polymorphism of $\mathfrak B$ if *f* preserves all relations of $\mathfrak B$.

Let $\mathfrak B$ be a structure with a finite domain *B*.

If $\mathfrak B$ has a polymoprhism $f\colon B^k\to B$ which is cyclic, i.e., $k\geq 2$ and for all $x_1, \ldots, x_k \in B$

$$
f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)
$$

then $CSP(B)$ is in P. Otherwise, $CSP(B)$ is NP-hard.

-
-

Let $\mathfrak B$ be a structure with a finite domain *B*.

Theorem (Bulatov'17, Zhuk'17/20).

If $\mathfrak B$ has a polymoprhism $f\colon B^k\to B$ which is cyclic, i.e., $k\geq 2$ and for all $x_1, \ldots, x_k \in B$

$$
f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)
$$

then $CSP(\mathfrak{B})$ is in P. Otherwise, $CSP(B)$ is NP-hard.

- (x, y) \mapsto max (x, y) is a polymorphism of $({1, \ldots, n}; <)$.
-

Let $\mathfrak B$ be a structure with a finite domain *B*.

Theorem (Bulatov'17, Zhuk'17/20).

If $\mathfrak B$ has a polymoprhism $f\colon B^k\to B$ which is cyclic, i.e., $k\geq 2$ and for all $x_1, \ldots, x_k \in B$

$$
f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)
$$

then $CSP(\mathfrak{B})$ is in P. Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

Examples.

- $(x, y) \mapsto \max(x, y)$ is a polymorphism of $(\{1, \ldots, n\}; <)$.
-

Let $\mathfrak B$ be a structure with a finite domain *B*.

Theorem (Bulatov'17, Zhuk'17/20).

If $\mathfrak B$ has a polymoprhism $f\colon B^k\to B$ which is cyclic, i.e., $k\geq 2$ and for all $x_1, \ldots, x_k \in B$

$$
f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)
$$

then $CSP(\mathfrak{B})$ is in P. Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

Examples.

 $(x, y) \mapsto \max(x, y)$ is a polymorphism of $({1, \ldots, n}; <)$. Hence, $CSP({1, \ldots, n}; <)$ can be solved in polynomial time. **For for** $n > 3$ **, every polymorphism of** $(\{1, \ldots, n\}; \neq)$ is of the form

Let $\mathfrak B$ be a structure with a finite domain *B*.

Theorem (Bulatov'17, Zhuk'17/20).

If $\mathfrak B$ has a polymoprhism $f\colon B^k\to B$ which is cyclic, i.e., $k\geq 2$ and for all $x_1, \ldots, x_k \in B$

$$
f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)
$$

then $CSP(\mathfrak{B})$ is in P. Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

Examples.

- $(x, y) \mapsto \max(x, y)$ is a polymorphism of $({1, \ldots, n}; <)$. Hence, $CSP({1, \ldots, n}; <)$ can be solved in polynomial time.
- For for $n \geq 3$, every polymorphism of $(\{1, \ldots, n\}; \neq)$ is of the form $(x_1, \ldots, x_k) \mapsto g(x_i)$ for some $i \in \{1, \ldots, k\}$ and some $g \in S_n$.

Let $\mathfrak B$ be a structure with a finite domain *B*.

Theorem (Bulatov'17, Zhuk'17/20).

If $\mathfrak B$ has a polymoprhism $f\colon B^k\to B$ which is cyclic, i.e., $k\geq 2$ and for all $x_1, \ldots, x_k \in B$

$$
f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)
$$

then $CSP(\mathfrak{B})$ is in P. Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

Examples.

- $(x, y) \mapsto \max(x, y)$ is a polymorphism of $({1, \ldots, n}; <)$. Hence, $CSP({1, \ldots, n}; <)$ can be solved in polynomial time.
- For for $n > 3$, every polymorphism of $(\{1, \ldots, n\}; \neq)$ is of the form $(x_1, \ldots, x_k) \mapsto g(x_i)$ for some $i \in \{1, \ldots, k\}$ and some $g \in S_n$. Hence, $CSP(\{1, \ldots, n\}; \neq)$ is NP-hard.

Let $\mathfrak B$ be a structure with a finite domain *B*.

Theorem (Bulatov'17, Zhuk'17/20).

If $\mathfrak B$ has a polymoprhism $f\colon B^k\to B$ which is cyclic, i.e., $k\geq 2$ and for all $x_1, \ldots, x_k \in B$

$$
f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)
$$

then $CSP(\mathfrak{B})$ is in P. Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

Examples.

- $(x, y) \mapsto \max(x, y)$ is a polymorphism of $({1, \ldots, n}; <)$. Hence, $CSP({1, \ldots, n}; <)$ can be solved in polynomial time.
- For for $n > 3$, every polymorphism of $(\{1, \ldots, n\}; \neq)$ is of the form $(x_1, \ldots, x_k) \mapsto g(x_i)$ for some $i \in \{1, \ldots, k\}$ and some $g \in S_n$. Hence, $CSP({1, \ldots, n}; \neq)$ is NP-hard.

Remark: Similar condition exists for solvability of Datalog (Barto+Kozik'10).

Let $\mathfrak B$ be a structure with a finite domain *B*.

Theorem (Bulatov'17, Zhuk'17/20).

If $\mathfrak B$ has a polymoprhism $f\colon B^k\to B$ which is cyclic, i.e., $k\geq 2$ and for all $x_1, \ldots, x_k \in B$

$$
f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)
$$

then $CSP(\mathfrak{B})$ is in P. Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

Examples.

- $(x, y) \mapsto \max(x, y)$ is a polymorphism of $({1, \ldots, n}; <)$. Hence, $CSP({1, \ldots, n}; <)$ can be solved in polynomial time.
- For for $n > 3$, every polymorphism of $(\{1, \ldots, n\}; \neq)$ is of the form $(x_1, \ldots, x_k) \mapsto g(x_i)$ for some $i \in \{1, \ldots, k\}$ and some $g \in S_n$. Hence, $CSP({1, \ldots, n}; \neq)$ is NP-hard.

Remark: Similar condition exists for solvability of Datalog (Barto+Kozik'10).

- **The polymorphisms of B determine the complexity of CSP(B)**
	-
	-
	-

Infinite Domains

- **The polymorphisms of B determine the complexity of CSP(B)** if $\mathfrak B$ is ω -categorical (B+Nešetřil'03):
	-
	-
-

- **The polymorphisms of B determine the complexity of CSP(B)** if $\mathfrak B$ is w-categorical (B+Nešetřil'03):
	- \blacksquare all countable models of the first-order theory of $\mathfrak B$ are isomorphic.
	-
-

- **The polymorphisms of B determine the complexity of CSP(B)** if $\mathfrak B$ is w-categorical (B+Nešetřil'03):
	- all countable models of the first-order theory of $\mathfrak B$ are isomorphic.
	- equivalent: componentwise action of Aut(\mathfrak{B}) on $Bⁿ$ has finitely many orbits, for every $n \in \mathbb{N}$.
- **Problem:** $\mathfrak{S} = (S; PP, DR, PO)$ and all of its expansions

- **The polymorphisms of B determine the complexity of CSP(B)** if $\mathfrak B$ is w-categorical (B+Nešetřil'03):
	- all countable models of the first-order theory of $\mathfrak B$ are isomorphic.
	- equivalent: componentwise action of Aut(\mathfrak{B}) on $Bⁿ$ has finitely many orbits, for every $n \in \mathbb{N}$.
- **Problem:** $\mathfrak{S} = (S; PP, DR, PO)$ and all of its expansions are not ω-categorical.

- **The polymorphisms of B determine the complexity of CSP(B)** if $\mathfrak B$ is w-categorical (B+Nešetřil'03):
	- all countable models of the first-order theory of $\mathfrak B$ are isomorphic.
	- equivalent: componentwise action of Aut(\mathfrak{B}) on $Bⁿ$ has finitely many orbits, for every $n \in \mathbb{N}$.
- **Problem:** $\mathfrak{S} = (S, \text{PP}, \text{DR}, \text{PO})$ and all of its expansions are not ω -categorical.
Solution to problem:

- \blacksquare Age(\mathfrak{S}): class of all finite structures
- - u v u DR v
-
-
-

Solution to problem:

- \blacksquare Age(\mathfrak{S}): class of all finite structures that embed into S.
- \blacksquare Age(\mathfrak{S}) has the amalgamation property.
- u DR v
-
-
-

Solution to problem:

- \blacksquare Age(\mathfrak{S}): class of all finite structures that embed into \mathfrak{S} .
- \blacksquare Age(\mathfrak{S}) has the amalgamation property.
- u v u DR v
-
-
-

Solution to problem:

- \blacksquare Age(\mathfrak{S}): class of all finite structures that embed into \mathfrak{S} .
- \blacksquare Age(\mathfrak{S}) has the amalgamation property.
- u DR v By Fraïssé's theorem, there exists an (up to isomorphism unique!) homogeneous structure \mathfrak{S}' with the same age as \mathfrak{S} : isomorphisms between finite substructures of \mathfrak{S}' extend to automorphisms of \mathfrak{S}' .
- **Homogeneous structures with finitely many relations have**
-
-

Solution to problem:

- \blacksquare Age(\mathfrak{S}): class of all finite structures that embed into \mathfrak{S} .
- \blacksquare Age(\mathfrak{S}) has the amalgamation property.
- u DR v \blacksquare By Fraïssé's theorem, there exists an (up to isomorphism unique!) homogeneous structure \mathfrak{S}' with the same age as \mathfrak{S} : isomorphisms between finite substructures of \mathfrak{S}' extend to automorphisms of \mathfrak{S}' .
- **Homogeneous structures with finitely many relations have** quantifier-elimination and are ω-categorical.
- All expansions of ω -categorical structures by first-order definable
-

Solution to problem:

- \blacksquare Age(\mathfrak{S}): class of all finite structures that embed into \mathfrak{S} .
- \blacksquare Age(\mathfrak{S}) has the amalgamation property.
- u DR v \blacksquare By Fraïssé's theorem, there exists an (up to isomorphism unique!) homogeneous structure \mathfrak{S}' with the same age as \mathfrak{S} : isomorphisms between finite substructures of \mathfrak{S}' extend to automorphisms of \mathfrak{S}' .
- \blacksquare Homogeneous structures with finitely many relations have quantifier-elimination and are ω -categorical.
- \blacksquare All expansions of ω -categorical structures by first-order definable relations are ω-categorical.
- **Expansion of G by quantifier-free definable relations has the same CSP**

Solution to problem:

- \blacksquare Age(\mathfrak{S}): class of all finite structures that embed into \mathfrak{S} .
- \blacksquare Age(\mathfrak{S}) has the amalgamation property.
- u DR v \blacksquare By Fraïssé's theorem, there exists an (up to isomorphism unique!) homogeneous structure \mathfrak{S}' with the same age as \mathfrak{S} : isomorphisms between finite substructures of \mathfrak{S}' extend to automorphisms of \mathfrak{S}' .
- \blacksquare Homogeneous structures with finitely many relations have quantifier-elimination and are ω -categorical.
- All expansions of ω -categorical structures by first-order definable relations are ω -categorical.
- **Expansion of G by quantifier-free definable relations has the same CSP** as the expansion of \mathfrak{S}' by relations defined by the same formulas.

Solution to problem:

- \blacksquare Age(\mathfrak{S}): class of all finite structures that embed into \mathfrak{S} .
- \blacksquare Age(\mathfrak{S}) has the amalgamation property.
- u DR v \blacksquare By Fraïssé's theorem, there exists an (up to isomorphism unique!) homogeneous structure \mathfrak{S}' with the same age as \mathfrak{S} : isomorphisms between finite substructures of \mathfrak{S}' extend to automorphisms of \mathfrak{S}' .
- \blacksquare Homogeneous structures with finitely many relations have quantifier-elimination and are ω -categorical.
- All expansions of ω -categorical structures by first-order definable relations are ω -categorical.
- **Expansion of G by quantifier-free definable relations has the same CSP** as the expansion of \mathfrak{S}' by relations defined by the same formulas.

Replace $\mathfrak S$ by $\mathfrak S'$. Task: Classify all first-order expansions $\mathfrak B$ of $\mathfrak S$.

Definition. $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if *f* preserves the equivalence relations on *S* ² defined by

Replace $\mathfrak S$ by $\mathfrak S'$. Task: Classify all first-order expansions $\mathfrak B$ of $\mathfrak S$. **Definition.** $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if *f* preserves the equivalence relations on *S* ² defined by

Replace $\mathfrak S$ by $\mathfrak S'$. Task: Classify all first-order expansions $\mathfrak B$ of $\mathfrak S$.

Definition. $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if *f* preserves the equivalence relations on *S* ² defined by

 $PP(x, y) \Leftrightarrow PP(u, v)$

Replace $\mathfrak S$ by $\mathfrak S'$. Task: Classify all first-order expansions $\mathfrak B$ of $\mathfrak S$.

Definition. $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if *f* preserves the equivalence relations on *S* ² defined by

> $PP(x, y) \Leftrightarrow PP(u, v)$ $PO(x, y) \Leftrightarrow PO(u, v)$

Replace $\mathfrak S$ by $\mathfrak S'$. Task: Classify all first-order expansions $\mathfrak B$ of $\mathfrak S$.

Definition. $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if *f* preserves the equivalence relations on *S* ² defined by

> $PP(x, y) \Leftrightarrow PP(u, v)$ $PO(x, y) \Leftrightarrow PO(u, v)$ $DR(x, y) \Leftrightarrow DR(u, v)$

Note: If *f* is canonical, then it induces a function

Replace $\mathfrak S$ by $\mathfrak S'$. Task: Classify all first-order expansions $\mathfrak B$ of $\mathfrak S$.

Definition. $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if *f* preserves the equivalence relations on *S* ² defined by

> $PP(x, y) \Leftrightarrow PP(u, v)$ $PO(x, y) \Leftrightarrow PO(u, v)$ $DR(x, y) \Leftrightarrow DR(u, v)$

Note: If *f* is canonical, then it induces a function

 $\xi(f)$: {PP, PP^{\ii}, DR, PO, $=$ }^k → {PP, PP^{\ii}, DR, PO, $=$ }.

Replace $\mathfrak S$ by $\mathfrak S'$. Task: Classify all first-order expansions $\mathfrak B$ of $\mathfrak S$.

Definition. $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if *f* preserves the equivalence relations on *S* ² defined by

> $PP(x, y) \Leftrightarrow PP(u, v)$ $PO(x, y) \Leftrightarrow PO(u, v)$ $DR(x, y) \Leftrightarrow DR(u, v)$

Note: If *f* is canonical, then it induces a function

 $\xi(f)$: {PP, PP['], DR, PO, =}^k → {PP, PP['], DR, PO, =}.

Theorem (B.+Mottet'16). If B has a canonical polymorphism *f* such that $\xi(f)$ is cyclic, then $CSP(\mathfrak{B})$ is in P.

Replace $\mathfrak S$ by $\mathfrak S'$. Task: Classify all first-order expansions $\mathfrak B$ of $\mathfrak S$.

Definition. $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if *f* preserves the equivalence relations on *S* ² defined by

> $PP(x, y) \Leftrightarrow PP(u, v)$ $PO(x, y) \Leftrightarrow PO(u, v)$ $DR(x, y) \Leftrightarrow DR(u, v)$

Note: If *f* is canonical, then it induces a function

 $\xi(f)$: {PP, PP['], DR, PO, =}^k → {PP, PP['], DR, PO, =}.

Theorem (B.+Mottet'16). If \mathfrak{B} has a canonical polymorphism *f* such that $\xi(f)$ is cyclic, then $CSP(\mathfrak{B})$ is in P.

Theorem (B.+Bodor'24). Otherwise, CSP(\mathfrak{B}) is NP-hard.

Replace $\mathfrak S$ by $\mathfrak S'$. Task: Classify all first-order expansions $\mathfrak B$ of $\mathfrak S$.

Definition. $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if *f* preserves the equivalence relations on *S* ² defined by

> $PP(x, y) \Leftrightarrow PP(u, v)$ $PO(x, y) \Leftrightarrow PO(u, v)$ $DR(x, y) \Leftrightarrow DR(u, v)$

Note: If *f* is canonical, then it induces a function

```
\xi(f): {PP, PP<sup>'</sup>, DR, PO, =}<sup>k</sup> → {PP, PP<sup>'</sup>, DR, PO, =}.
```
Theorem (B.+Mottet'16). If \mathfrak{B} has a canonical polymorphism *f* such that $\xi(f)$ is cyclic, then $CSP(\mathfrak{B})$ is in P.

Theorem $(B.+Bodor^24)$. Otherwise, $CSP(\mathcal{B})$ is NP-hard.

A permutation group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

A permutation group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

Aut(\mathfrak{B}): the automorphism group of \mathfrak{B} .

Then for any $f: B^k \to B$, the set

 $\{(x_1, ..., x_k) \mapsto a_0(f(a_1(x_1), ..., a_k(x_k))) \mid a_0, a_1, ..., a_k \in Aut(\mathfrak{B})\}$

A permutation group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

Aut (\mathfrak{B}) : the automorphism group of \mathfrak{B} .

Suppose $\mathfrak B$ is ω -categorical and Aut $(\mathfrak B)$ is extremely amenable. Then for any $f: B^k \to B$, the set

 $\{(x_1, ..., x_k) \mapsto a_0(f(a_1(x_1), ..., a_k(x_k))) \mid a_0, a_1, ..., a_k \in Aut(\mathfrak{B})\}$

contains a function *g* that is canonical wrt B. (*g* is 'canonisation' of *f*)

A permutation group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

Aut (\mathfrak{B}) : the automorphism group of \mathfrak{B} .

Lemma (Canonisation lemma; B.+Pinsker+Tsankov'11).

Suppose $\mathfrak B$ is ω -categorical and Aut $(\mathfrak B)$ is extremely amenable. Then for any $f: B^k \to B$, the set

 $\{(x_1, ..., x_k) \mapsto a_0(f(a_1(x_1), ..., a_k(x_k))) \mid a_0, a_1, ..., a_k \in Aut(\mathfrak{B})\}$

A permutation group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

Aut (\mathfrak{B}) : the automorphism group of \mathfrak{B} .

Lemma (Canonisation lemma; B.+Pinsker+Tsankov'11).

Suppose $\mathfrak B$ is ω -categorical and Aut $(\mathfrak B)$ is extremely amenable. Then for any $f: B^k \to B$, the set

 $\{(x_1, ..., x_k) \mapsto a_0(f(a_1(x_1), ..., a_k(x_k))) \mid a_0, a_1, ..., a_k \in Aut(\mathfrak{B})\}$

contains a function *g* that is canonical wrt B. (*g* is 'canonisation' of *f*)

Problem: The automorphism group of \mathfrak{S} is not extremely amenable.

A permutation group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

Aut (\mathfrak{B}) : the automorphism group of \mathfrak{B} .

Lemma (Canonisation lemma; B.+Pinsker+Tsankov'11).

Suppose $\mathfrak B$ is ω -categorical and Aut $(\mathfrak B)$ is extremely amenable. Then for any $f: B^k \to B$, the set

 $\{(x_1, ..., x_k) \mapsto a_0(f(a_1(x_1), ..., a_k(x_k))) \mid a_0, a_1, ..., a_k \in Aut(\mathfrak{B})\}$

contains a function *g* that is canonical wrt B. (*g* is 'canonisation' of *f*)

Problem: The automorphism group of \mathfrak{S} is not extremely amenable.

But (B.+Bodor'24): \Im has homogeneous expansion (\Im ; <) by a linear order <

A permutation group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

Aut (\mathfrak{B}) : the automorphism group of \mathfrak{B} .

Lemma (Canonisation lemma; B.+Pinsker+Tsankov'11).

Suppose $\mathfrak B$ is ω -categorical and Aut $(\mathfrak B)$ is extremely amenable. Then for any $f: B^k \to B$, the set

 $\{(x_1, ..., x_k) \mapsto a_0(f(a_1(x_1), ..., a_k(x_k))) \mid a_0, a_1, ..., a_k \in Aut(\mathfrak{B})\}$

contains a function *g* that is canonical wrt B. (*g* is 'canonisation' of *f*)

Problem: The automorphism group of \mathfrak{S} is not extremely amenable.

But (B.+Bodor'24): \Im has homogeneous expansion (\Im ; <) by a linear order < such that $Aut(\mathfrak{S};<)$ is extremely amenable.

A permutation group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

Aut (\mathfrak{B}) : the automorphism group of \mathfrak{B} .

Lemma (Canonisation lemma; B.+Pinsker+Tsankov'11).

Suppose $\mathfrak B$ is ω -categorical and Aut $(\mathfrak B)$ is extremely amenable. Then for any $f: B^k \to B$, the set

 $\{(x_1, ..., x_k) \mapsto a_0(f(a_1(x_1), ..., a_k(x_k))) \mid a_0, a_1, ..., a_k \in Aut(\mathfrak{B})\}$

contains a function *g* that is canonical wrt B. (*g* is 'canonisation' of *f*)

Problem: The automorphism group of \mathfrak{S} is not extremely amenable.

But (B.+Bodor'24): \mathfrak{S} has homogeneous expansion ($\mathfrak{S};$ <) by a linear order < such that $Aut(\mathfrak{S};<)$ is extremely amenable.

Proof: Ramsey Theory

For structures $\mathfrak L$ and $\mathfrak S$, write $\binom{\mathfrak L}{\mathfrak S}$ for the set of all embeddings of $\mathfrak S\hookrightarrow\mathfrak L$.

iff for all $\chi: \binom{\mathfrak{L}}{\mathfrak{S}} \to [c]$ there exists an $e \in \binom{\mathfrak{L}}{\mathfrak{M}}$ such that $|\chi(e \circ \binom{\mathfrak{M}}{\mathfrak{S}})| \leq 1$.

Proof: Ramsey Theory

For structures $\mathfrak L$ and $\mathfrak S,$ write $\binom{\mathfrak L}{\mathfrak S}$ for the set of all embeddings of $\mathfrak S\hookrightarrow\mathfrak L.$

Write

 $\mathfrak{L} \to (\mathfrak{M})_c^\mathfrak{S}$

iff for all $\chi: \binom{\mathfrak{L}}{\mathfrak{S}} \to [c]$ there exists an $e \in \binom{\mathfrak{L}}{\mathfrak{M}}$ such that $|\chi(e \circ \binom{\mathfrak{M}}{\mathfrak{S}})| \leq 1$.

Proof: Ramsey Theory

For structures $\mathfrak L$ and $\mathfrak S,$ write $\binom{\mathfrak L}{\mathfrak S}$ for the set of all embeddings of $\mathfrak S\hookrightarrow\mathfrak L.$

Definition.

Write

 $\mathfrak{L} \to (\mathfrak{M})_c^\mathfrak{S}$

iff for all $\chi: \begin{pmatrix} \mathfrak{L} \\ \mathfrak{S} \end{pmatrix} \to [c]$ there exists an $e \in \begin{pmatrix} \mathfrak{L} \\ \mathfrak{M} \end{pmatrix}$ such that $|\chi(e \circ \begin{pmatrix} \mathfrak{M} \\ \mathfrak{S} \end{pmatrix})| \leq 1$.

Definition [Nešetřil]. A structure $\mathfrak B$ is Ramsey iff $\mathfrak{B} \to (\mathfrak{M})_c^{\mathfrak{S}}$ for all finite $\mathfrak{S}, \mathfrak{M} \to \mathfrak{B}$ and for every $c \in \mathbb{N}$.

Definition [Nešetřil].

A structure $\mathfrak B$ is Ramsey iff $\mathfrak{B} \to (\mathfrak{M})^{\mathfrak{S}}_{\mathfrak{S}}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$ and for every $c \in \mathbb{N}$.

Example. $(\mathbb{O};<)$ is Ramsey.

Definition [Nešetřil].

A structure $\mathfrak B$ is Ramsey iff $\mathfrak{B} \to (\mathfrak{M})^{\mathfrak{S}}_{\mathfrak{S}}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$ and for every $c \in \mathbb{N}$.

Example. $(\mathbb{Q}; <)$ is Ramsey.

 $(Q; <) \rightarrow (W)_{c}^{\mathfrak{S}}$ for all $W := ([m]; <), \mathfrak{S} := ([s]; <), c \in \mathbb{N}$.

Definition [Nešetřil].

A structure $\mathfrak B$ is Ramsey iff $\mathfrak{B} \to (\mathfrak{M})^{\mathfrak{S}}_{\mathfrak{S}}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$ and for every $c \in \mathbb{N}$.

Example. $(\mathbb{Q}; <)$ is Ramsey. $(Q; <) \rightarrow (m)_{c}^{\mathfrak{S}}$ for all $m := ([m]; <), \mathfrak{S} := ([s]; <), c \in \mathbb{N}$. Reformulation of Ramsey's theorem!

Definition [Nešetřil].

A structure $\mathfrak B$ is Ramsey iff $\mathfrak{B} \to (\mathfrak{M})^{\mathfrak{S}}_{\mathfrak{S}}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$ and for every $c \in \mathbb{N}$.

Example. $(\mathbb{Q}; <)$ is Ramsey. $(Q; <) \rightarrow (2)^\infty$ for all $2\mathcal{N} := ([m]; <), \mathfrak{S} := ([s]; <), c \in \mathbb{N}$. Reformulation of Ramsey's theorem!

A ctble homogeneous structure $\mathfrak B$ is Ramsey if and only if $Aut(\mathfrak{B})$ is extremely amenable, i.e., every continuous action on a compact Hausdorff space has a fixed point.

Definition [Nešetřil].

A structure $\mathfrak B$ is Ramsey iff $\mathfrak{B} \to (\mathfrak{M})^{\mathfrak{S}}_{\mathfrak{S}}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$ and for every $c \in \mathbb{N}$.

Example. $(\mathbb{Q}; <)$ is Ramsey. $(Q; <) \rightarrow (2)^\infty$ for all $2\mathcal{N} := ([m]; <), \mathfrak{S} := ([s]; <), c \in \mathbb{N}$. Reformulation of Ramsey's theorem!

Theorem (Kechris, Pestov, Todorcevic'05).

A ctble homogeneous structure $\mathfrak B$ is Ramsey if and only if $Aut(\mathfrak{B})$ is extremely amenable, i.e., every continuous action on a compact Hausdorff space has a fixed point.

Definition. C: class of all expansions of structures from Age(\mathfrak{S}) by a binary relation $<$ which denotes a linear extension of PP.

Proposition.

- **1** C is an amalgamation class.
-
-

Definition. C: class of all expansions of structures from Age(\mathfrak{S}) by a binary relation $<$ which denotes a linear extension of PP.

Proposition.

- **1** C is an amalgamation class.
- **2** By Fraïsse's theorem there exists a homogeneous structure $(6, <)$ whose age is \mathcal{C} .
-
Definition. C: class of all expansions of structures from Age(\mathfrak{S}) by a binary relation $<$ which denotes a linear extension of PP.

Proposition.

- **1** C is an amalgamation class.
- **2** By Fraïsse's theorem there exists a homogeneous structure $(\mathfrak{S}, \langle \rangle)$ whose age is C .
- **3** (6, <) has the Ramsey property.

Definition. C: class of all expansions of structures from Age(\mathfrak{S}) by a binary relation $<$ which denotes a linear extension of PP.

Proposition.

- **1** C is an amalgamation class.
- **2** By Fraïsse's theorem there exists a homogeneous structure $(\mathfrak{S}, \langle \rangle)$ whose age is C .
- **³** (S, <) has the Ramsey property.

Use the fact that the ordered countable atomless Boolean algebra (*A*; ∩, ∪, ·, 0, 1, <) is Ramsey (Graham+Rotschild'71,KPT'05).

> $PP'(x, y)$ as $x \cap y = x \land x \neq y$ $PO'(x, y)$ as $\neg PP'(x, y) \wedge \neg PP'(y, x) \wedge \neg DR'(x, y) \wedge x \neq y$.

-
-

Use the fact that the ordered countable atomless Boolean algebra (*A*; ∩, ∪, ·, 0, 1, <) is Ramsey (Graham+Rotschild'71,KPT'05). Define

$$
PP'(x, y) \text{ as } x \cap y = x \land x \neq y
$$

DR'(x, y) as $x \cap y = \emptyset$
PO'(x, y) as $\neg PP'(x, y) \land \neg PP'(y, x) \land \neg DR'(x, y) \land x \neq y$.

- The structure $(A;PP',DR',PO')$ is not isomorphic to \mathfrak{S} ,
-

Use the fact that the ordered countable atomless Boolean algebra (*A*; ∩, ∪, ·, 0, 1, <) is Ramsey (Graham+Rotschild'71,KPT'05).

Define

$$
PP'(x, y) \text{ as } x \cap y = x \land x \neq y
$$

DR'(x, y) as $x \cap y = \emptyset$
PO'(x, y) as $\neg PP'(x, y) \land \neg PP'(y, x) \land \neg DR'(x, y) \land x \neq y$.

The structure $(A;PP',DR',PO')$ is not isomorphic to \mathfrak{S} , but homomorphically equivalent to it.

■ Use a Ramsey transfer technique from Mottet+Pinsker'21.

Use the fact that the ordered countable atomless Boolean algebra (*A*; ∩, ∪, ·, 0, 1, <) is Ramsey (Graham+Rotschild'71,KPT'05).

Define

$$
PP'(x, y) \text{ as } x \cap y = x \land x \neq y
$$

DR'(x, y) as $x \cap y = \emptyset$
PO'(x, y) as $\neg PP'(x, y) \land \neg PP'(y, x) \land \neg DR'(x, y) \land x \neq y$.

The structure $(A;PP',DR',PO')$ is not isomorphic to \mathfrak{S} , but homomorphically equivalent to it.

■ Use a Ramsey transfer technique from Mottet+Pinsker'21.

Use the fact that the ordered countable atomless Boolean algebra (*A*; ∩, ∪, ·, 0, 1, <) is Ramsey (Graham+Rotschild'71,KPT'05).

Define

$$
PP'(x, y) \text{ as } x \cap y = x \land x \neq y
$$

DR'(x, y) as $x \cap y = \emptyset$
PO'(x, y) as $\neg PP'(x, y) \land \neg PP'(y, x) \land \neg DR'(x, y) \land x \neq y$.

- The structure $(A;PP',DR',PO')$ is not isomorphic to \mathfrak{S} , but homomorphically equivalent to it.
- Use a Ramsey transfer technique from Mottet+Pinsker'21.

The set Pol(\mathfrak{B}) of all polymorphisms of \mathfrak{B} is a minion:

if $f \in Pol(\mathfrak{B})$ has arity k and α : $\{1,\ldots,n\} \rightarrow \{1,\ldots,k\}$, then the minor

$$
f_{\alpha}\colon (x_1,\ldots,x_n)\mapsto f(x_{\alpha(1)},\ldots,x_{\alpha(n)})
$$

is also in $Pol(\mathfrak{B})$.

$$
\mu(f_{\alpha})=\mu(f)_{\alpha}
$$

-
-

The set Pol(\mathfrak{B}) of all polymorphisms of \mathfrak{B} is a minion: if $f \in Pol(\mathfrak{B})$ has arity k and α : $\{1,\ldots,n\} \rightarrow \{1,\ldots,k\}$, then the minor

$$
f_{\alpha}\colon (x_1,\ldots,x_n)\mapsto f(x_{\alpha(1)},\ldots,x_{\alpha(n)})
$$

is also in Pol (\mathfrak{B}) .

A function μ : Pol(\mathfrak{B}) \rightarrow Pol(\mathfrak{C}) is called a minion homomorphism if

$$
\mu(f_{\alpha})=\mu(f)_{\alpha}
$$

for all $f \in Pol(\mathfrak{B}), \alpha$: $\{1, \ldots, n\} \rightarrow \{1, \ldots, k\}.$

- If Pol(\mathfrak{B}) has a minion homomorphism to Pol(K_3), then CSP(\mathfrak{B}) is
-

The set Pol(\mathfrak{B}) of all polymorphisms of \mathfrak{B} is a minion: if $f \in Pol(\mathfrak{B})$ has arity k and α : $\{1,\ldots,n\} \rightarrow \{1,\ldots,k\}$, then the minor

$$
f_{\alpha}\colon (x_1,\ldots,x_n)\mapsto f(x_{\alpha(1)},\ldots,x_{\alpha(n)})
$$

is also in Pol (\mathfrak{B}) .

A function μ : Pol $(\mathfrak{B}) \to \text{Pol}(\mathfrak{C})$ is called a minion homomorphism if

$$
\mu(f_\alpha)=\mu(f)_\alpha
$$

for all $f \in Pol(\mathfrak{B}), \alpha$: $\{1, \ldots, n\} \rightarrow \{1, \ldots, k\}.$

Theorem. Let B be structure with finite domain.

- If Pol(\mathfrak{B}) has a minion homomorphism to Pol(K_3), then CSP(\mathfrak{B}) is NP-hard.
- If $\mathfrak B$ has no minion homomorphism to Pol(K_3), then it has a cyclic

The set Pol(\mathfrak{B}) of all polymorphisms of \mathfrak{B} is a minion: if $f \in Pol(\mathfrak{B})$ has arity k and α : $\{1, \ldots, n\} \rightarrow \{1, \ldots, k\}$, then the minor

$$
f_{\alpha}\colon (x_1,\ldots,x_n)\mapsto f(x_{\alpha(1)},\ldots,x_{\alpha(n)})
$$

is also in Pol (\mathfrak{B}) .

A function μ : Pol $(\mathfrak{B}) \to \text{Pol}(\mathfrak{C})$ is called a minion homomorphism if

$$
\mu(f_\alpha)=\mu(f)_\alpha
$$

for all $f \in Pol(\mathfrak{B}), \alpha$: $\{1, \ldots, n\} \rightarrow \{1, \ldots, k\}.$

Theorem. Let \mathfrak{B} be structure with finite domain.

- If Pol(\mathfrak{B}) has a minion homomorphism to Pol(K_3), then CSP(\mathfrak{B}) is NP-hard.
- If $\mathfrak B$ has no minion homomorphism to Pol(K_3), then it has a cyclic polymorphism (and $CSP(\mathfrak{B})$ is in P).

The set Pol(\mathfrak{B}) of all polymorphisms of \mathfrak{B} is a minion: if $f \in Pol(\mathfrak{B})$ has arity k and α : $\{1,\ldots,n\} \rightarrow \{1,\ldots,k\}$, then the minor

$$
f_{\alpha}\colon (x_1,\ldots,x_n)\mapsto f(x_{\alpha(1)},\ldots,x_{\alpha(n)})
$$

is also in Pol (\mathfrak{B}) .

A function μ : Pol $(\mathfrak{B}) \to \text{Pol}(\mathfrak{C})$ is called a minion homomorphism if

$$
\mu(f_\alpha)=\mu(f)_\alpha
$$

for all $f \in Pol(\mathfrak{B}), \alpha$: $\{1, \ldots, n\} \rightarrow \{1, \ldots, k\}.$

Theorem. Let \mathfrak{B} be structure with finite domain.

- If Pol(\mathfrak{B}) has a minion homomorphism to Pol(K_3), then CSP(\mathfrak{B}) is NP-hard.
- If B has no minion homomorphism to $Pol(K_3)$, then it has a cyclic polymorphism (and $CSP(\mathfrak{B})$ is in P).

Theorem (B.+Pinsker'11, Barto+Opršal+Pinsker'15): if $Pol(\mathfrak{B})$ has a uniformly continuous minion homomorphism to $Pol(K_3)$, then $CSP(B)$ is NP-hard.

Note:

- The set C of all polymorphisms of G that are canonical wrt G is a minion.
-

-
-
-

Theorem (B.+Pinsker'11, Barto+Opršal+Pinsker'15): if $Pol(\mathfrak{B})$ has a uniformly continuous minion homomorphism to $Pol(K_3)$, then $CSP(\mathfrak{B})$ is NP-hard.

Note:

- The set C of all polymorphisms of G that are canonical wrt G is a minion.
- **The map ξ defined on C is a uniformly continuous minion homomorphism**

-
-
-

Theorem (B.+Pinsker'11, Barto+Opršal+Pinsker'15): if $Pol(\mathfrak{B})$ has a uniformly continuous minion homomorphism to $Pol(K_3)$, then $CSP(\mathfrak{B})$ is NP-hard.

Note:

- **The set C of all polymorphisms of G that are canonical wrt G is a minion.**
- **The map ξ defined on C is a uniformly continuous minion homomorphism** to the polymorphisms of some finite structure \mathfrak{F} .

-
-
-

Theorem (B.+Pinsker'11, Barto+Opršal+Pinsker'15): if $Pol(\mathfrak{B})$ has a uniformly continuous minion homomorphism to $Pol(K_3)$, then $CSP(\mathfrak{B})$ is NP-hard.

Note:

- **The set C of all polymorphisms of G that are canonical wrt G is a minion.**
- **The map ξ defined on C is a uniformly continuous minion homomorphism** to the polymorphisms of some finite structure \mathfrak{F} .

- If $\mathfrak F$ has a cyclic polymorphism, then CSP($\mathfrak B$) is in P.
-
-

Theorem (B.+Pinsker'11, Barto+Opršal+Pinsker'15): if $Pol(\mathfrak{B})$ has a uniformly continuous minion homomorphism to $Pol(K_3)$, then $CSP(\mathfrak{B})$ is NP-hard.

Note:

- **The set C of all polymorphisms of G that are canonical wrt G is a minion.**
- **The map** ξ **defined on C is a uniformly continuous minion homomorphism** to the polymorphisms of some finite structure \mathfrak{F} .

- If $\mathfrak F$ has a cyclic polymorphism, then CSP($\mathfrak B$) is in P.
-
-

Theorem (B.+Pinsker'11, Barto+Opršal+Pinsker'15): if $Pol(\mathfrak{B})$ has a uniformly continuous minion homomorphism to $Pol(K_3)$, then $CSP(\mathfrak{B})$ is NP-hard.

Note:

- **The set C of all polymorphisms of G that are canonical wrt G is a minion.**
- **The map** ξ **defined on C is a uniformly continuous minion homomorphism** to the polymorphisms of some finite structure \mathfrak{F} .

- If $\mathfrak F$ has a cyclic polymorphism, then CSP($\mathfrak B$) is in P.
- Otherwise, Pol (\mathfrak{F}) has minion homomorphism μ to Pol (K_3) .
-

Theorem (B.+Pinsker'11, Barto+Opršal+Pinsker'15): if $Pol(\mathfrak{B})$ has a uniformly continuous minion homomorphism to $Pol(K_3)$, then $CSP(\mathfrak{B})$ is NP-hard.

Note:

- **The set C of all polymorphisms of G that are canonical wrt G is a minion.**
- **The map** ξ **defined on C is a uniformly continuous minion homomorphism** to the polymorphisms of some finite structure $\tilde{\mathfrak{F}}$.

- If \mathfrak{F} has a cyclic polymorphism, then CSP(\mathfrak{B}) is in P.
- Otherwise, Pol (\mathfrak{F}) has minion homomorphism μ to Pol (K_3) .
- Goal: use μ to find uniformly continuous minion homomorphism from $Pol(\mathfrak{B})$ to $Pol(K_3)$.

Theorem (B.+Pinsker'11, Barto+Opršal+Pinsker'15): if $Pol(\mathfrak{B})$ has a uniformly continuous minion homomorphism to $Pol(K_3)$, then $CSP(\mathfrak{B})$ is NP-hard.

Note:

- **The set C of all polymorphisms of G that are canonical wrt G is a minion.**
- **The map** ξ **defined on C is a uniformly continuous minion homomorphism** to the polymorphisms of some finite structure $\tilde{\mathfrak{F}}$.

- If \mathfrak{F} has a cyclic polymorphism, then CSP(\mathfrak{B}) is in P.
- Otherwise, Pol (\mathfrak{F}) has minion homomorphism μ to Pol (K_3) .
- Goal: use μ to find uniformly continuous minion homomorphism from $Pol(\mathfrak{B})$ to $Pol(K_3)$.

C: set of all polymorphisms of $\mathfrak B$ that are canonical with respect to $\mathfrak S$. µ: $C \rightarrow$ Pol(K_3) has the unique interpolation property (UIP) if for all $f \in$ Pol(\mathfrak{B}), if *g* and *h* are canonisations of *f*, then $\mu(q) = \mu(h)$.

-
-
-

C: set of all polymorphisms of $\mathfrak B$ that are canonical with respect to $\mathfrak S$. $\mu: \mathcal{C} \to \mathsf{Pol}(\mathcal{K}_3)$ has the unique interpolation property (UIP) if for all $f \in \mathsf{Pol}(\mathfrak{B})$, if *g* and *h* are canonisations of *f*, then $\mu(q) = \mu(h)$.

Appears implicitly in B.+Mottet'16 and explicitly in B.+Bodor'24.

-
-
-

C: set of all polymorphisms of $\mathfrak B$ that are canonical with respect to $\mathfrak S$. $\mu: \mathcal{C} \to \mathsf{Pol}(\mathcal{K}_3)$ has the unique interpolation property (UIP) if for all $f \in \mathsf{Pol}(\mathfrak{B})$, if *g* and *h* are canonisations of *f*, then $\mu(q) = \mu(h)$.

Appears implicitly in B.+Mottet'16 and explicitly in B.+Bodor'24.

Extension Lemma (B.+Bodor'24). If $\mu: \mathbb{C} \rightarrow Pol(K_3)$ has the UIP, then μ can be extended to a uniformly continuous minor-preserving map from $Pol(\mathfrak{B})$ to $Pol(K_3)$.

-
-
-

C: set of all polymorphisms of $\mathfrak B$ that are canonical with respect to $\mathfrak S$. $\mu: \mathcal{C} \to \mathsf{Pol}(\mathcal{K}_3)$ has the unique interpolation property (UIP) if for all $f \in \mathsf{Pol}(\mathfrak{B})$, if *g* and *h* are canonisations of *f*, then $\mu(q) = \mu(h)$.

Appears implicitly in B.+Mottet'16 and explicitly in B.+Bodor'24.

Extension Lemma (B.+Bodor'24). If $\mu: \mathbb{C} \to \text{Pol}(K_3)$ has the UIP, then μ can be extended to a uniformly continuous minor-preserving map from Pol(\mathfrak{B}) to Pol(K_3).

- Ganonisation lemma only for the order expansion of \mathfrak{S} .
-
-

C: set of all polymorphisms of $\mathfrak B$ that are canonical with respect to $\mathfrak S$. $\mu: \mathcal{C} \to \mathsf{Pol}(\mathcal{K}_3)$ has the unique interpolation property (UIP) if for all $f \in \mathsf{Pol}(\mathfrak{B})$, if *g* and *h* are canonisations of *f*, then $\mu(q) = \mu(h)$.

Appears implicitly in B.+Mottet'16 and explicitly in B.+Bodor'24.

Extension Lemma (B.+Bodor'24). If $\mu: \mathbb{C} \to \text{Pol}(K_3)$ has the UIP, then μ can be extended to a uniformly continuous minor-preserving map from Pol(\mathfrak{B}) to Pol(K_3).

- Ganonisation lemma only for the order expansion of \mathfrak{S} .
- How to prove the UIP?
-

C: set of all polymorphisms of $\mathfrak B$ that are canonical with respect to $\mathfrak S$. $\mu: \mathcal{C} \to \mathsf{Pol}(\mathcal{K}_3)$ has the unique interpolation property (UIP) if for all $f \in \mathsf{Pol}(\mathfrak{B})$, if *g* and *h* are canonisations of *f*, then $\mu(\mathbf{a}) = \mu(\mathbf{h})$.

Appears implicitly in B.+Mottet'16 and explicitly in B.+Bodor'24.

Extension Lemma (B.+Bodor'24). If $\mu: \mathbb{C} \to \text{Pol}(K_3)$ has the UIP, then μ can be extended to a uniformly continuous minor-preserving map from Pol(\mathfrak{B}) to Pol(K_3).

- Ganonisation lemma only for the order expansion of \mathfrak{S} .
- \blacksquare How to prove the UIP?
-

C: set of all polymorphisms of $\mathfrak B$ that are canonical with respect to $\mathfrak S$. $\mu: \mathcal{C} \to \mathsf{Pol}(\mathcal{K}_3)$ has the unique interpolation property (UIP) if for all $f \in \mathsf{Pol}(\mathfrak{B})$, if *g* and *h* are canonisations of *f*, then $\mu(\mathbf{a}) = \mu(\mathbf{h})$.

Appears implicitly in B.+Mottet'16 and explicitly in B.+Bodor'24.

Extension Lemma (B.+Bodor'24). If $\mu: \mathbb{C} \to \text{Pol}(K_3)$ has the UIP, then μ can be extended to a uniformly continuous minor-preserving map from Pol(\mathfrak{B}) to Pol(K_3).

Disclaimer. Many complications:

- Ganonisation lemma only for the order expansion of \mathfrak{S} .
- \blacksquare How to prove the UIP?

■ Extra work for our Datalog result.

C: set of all polymorphisms of $\mathfrak B$ that are canonical with respect to $\mathfrak S$. $\mu: \mathcal{C} \to \mathsf{Pol}(\mathcal{K}_3)$ has the unique interpolation property (UIP) if for all $f \in \mathsf{Pol}(\mathfrak{B})$, if *g* and *h* are canonisations of *f*, then $\mu(\mathbf{a}) = \mu(\mathbf{h})$.

Appears implicitly in B.+Mottet'16 and explicitly in B.+Bodor'24.

Extension Lemma (B.+Bodor'24). If $\mu: \mathbb{C} \to \text{Pol}(K_3)$ has the UIP, then μ can be extended to a uniformly continuous minor-preserving map from Pol(\mathfrak{B}) to Pol(K_3).

- Ganonisation lemma only for the order expansion of \mathfrak{S} .
- \blacksquare How to prove the UIP?
- Extra work for our Datalog result.

Open Problem

The structure $\mathfrak S$ is an example of a finitely bounded homogeneous structure.

Conjecture (B.+Pinsker'11): Every reduct ⁹³ of a finitely bounded homogeneous structure has a CSP which is in P or NP-complete.

Tractability Conjecture (B.+Pinsker'11,

Open Problem

The structure $\mathfrak S$ is an example of a finitely bounded homogeneous structure.

Conjecture (B.+Pinsker'11): Every reduct \mathfrak{B} of a finitely bounded homogeneous structure has a CSP which is in P or NP-complete.

Tractability Conjecture (B.+Pinsker'11, Barto+Kompatscher+Olšak+VanPham+Pinsker'16): If Pol (\mathfrak{B}) has no uniformly continuous minor-preserving map to $Pol(K_3)$, then $CSP(\mathfrak{B})$ is in P.

Open Problem

The structure $\mathfrak S$ is an example of a finitely bounded homogeneous structure.

Conjecture (B.+Pinsker'11): Every reduct \mathfrak{B} of a finitely bounded homogeneous structure has a CSP which is in P or NP-complete.

Tractability Conjecture (B.+Pinsker'11,

Barto+Kompatscher+Olšak+VanPham+Pinsker'16): If Pol (\mathfrak{B}) has no uniformly continuous minor-preserving map to $Pol(K_3)$, then $CSP(\mathfrak{B})$ is in P.