A Complexity Dichotomy in Spatial Reasoning via Ramsey Theory

Manuel Bodirsky, joint work with Bertalan Bodor

Institut für Algebra, TU Dresden

May 2024

ERC Synergy Grant POCOCOP (GA 101071674).

Complexity Classification

Manuel Bodirsky, joint work with Bertalan Bodor

Spatial Reasoning Formalism RCC5

Complexity Dichotomy

Tools:

- 1 Universal algebra (Polymorphisms)
- 2 Model theory (Homogeneous Structures)
- 8 Ramsey theory (Extreme Amenability)
- Finite-domain CSP dichotomy of Bulatov and Zhuk.

Overview

Spatial Reasoning Formalism RCC5

Complexity Dichotomy

Tools:

- 1 Universal algebra (Polymorphisms)
- 2 Model theory (Homogeneous Structures)
- 8 Ramsey theory (Extreme Amenability)
- 4 Finite-domain CSP dichotomy of Bulatov and Zhuk.

Spatial Reasoning Formalism RCC5

Complexity Dichotomy

Tools:

- 1 Universal algebra (Polymorphisms)
- 2 Model theory (Homogeneous Structures)
- 3 Ramsey theory (Extreme Amenability)
- Finite-domain CSP dichotomy of Bulatov and Zhuk.

- Spatial Reasoning Formalism RCC5
- Complexity Dichotomy
- Tools:
 - 1 Universal algebra (Polymorphisms)
 - 2 Model theory (Homogeneous Structures)
 - 3 Ramsey theory (Extreme Amenability)
 - 4 Finite-domain CSP dichotomy of Bulatov and Zhuk.
- Outlook

- Spatial Reasoning Formalism RCC5
- Complexity Dichotomy
- Tools:
 - 1 Universal algebra (Polymorphisms)
 - 2 Model theory (Homogeneous Structures)
 - 3 Ramsey theory (Extreme Amenability)
 - 4 Finite-domain CSP dichotomy of Bulatov and Zhuk.
- Outlook

- Spatial Reasoning Formalism RCC5
- Complexity Dichotomy
- Tools:
 - 1 Universal algebra (Polymorphisms)
 - 2 Model theory (Homogeneous Structures)
 - 3 Ramsey theory (Extreme Amenability)
 - 4 Finite-domain CSP dichotomy of Bulatov and Zhuk.
- Outlook

- Spatial Reasoning Formalism RCC5
- Complexity Dichotomy
- Tools:
 - 1 Universal algebra (Polymorphisms)
 - 2 Model theory (Homogeneous Structures)
 - 3 Ramsey theory (Extreme Amenability)
 - 4 Finite-domain CSP dichotomy of Bulatov and Zhuk.

- Spatial Reasoning Formalism RCC5
- Complexity Dichotomy
- Tools:
 - 1 Universal algebra (Polymorphisms)
 - 2 Model theory (Homogeneous Structures)
 - 3 Ramsey theory (Extreme Amenability)
 - 4 Finite-domain CSP dichotomy of Bulatov and Zhuk.
- Outlook

- One of the fundamental formalisms for spatial reasoning
- RCC stands for region connection calculus.
- Formally, a relation algebra with 5 atoms.
- Idea: variables denote non-empty regions in space.
- 5 binary relations between regions:
 - **•** x PP y: x is a proper part of y.
 - x DR y: x is disjoint region to y.
 - x PO y: x properly overlaps with y.

- One of the fundamental formalisms for spatial reasoning
- RCC stands for region connection calculus.
- Formally, a relation algebra with 5 atoms.
- Idea: variables denote non-empty regions in space.
- 5 binary relations between regions:
 - **•** x PP y: x is a proper part of y.
 - x DR y: x is disjoint region to y.
 - x PO y: x properly overlaps with y.

- One of the fundamental formalisms for spatial reasoning
- RCC stands for region connection calculus.
- Formally, a relation algebra with 5 atoms.
- Idea: variables denote non-empty regions in space.
- 5 binary relations between regions:
 - x PP y: x is a proper part of y.
 - x DR y: x is disjoint region to y.
 - x PO y: x properly overlaps with y.

- One of the fundamental formalisms for spatial reasoning
- RCC stands for region connection calculus.
- Formally, a relation algebra with 5 atoms.
- Idea: variables denote non-empty regions in space.
- 5 binary relations between regions:
 - x PP y: x is a proper part of y.
 - x DR y: x is disjoint region to y.
 - x PO y: x properly overlaps with y.

- One of the fundamental formalisms for spatial reasoning
- RCC stands for region connection calculus.
- Formally, a relation algebra with 5 atoms.
- Idea: variables denote non-empty regions in space.
- 5 binary relations between regions:
 - x PP y: x is a proper part of y.
 - x DR y: x is disjoint region to y.
 - **•** x PO y: x properly overlaps with y.

- One of the fundamental formalisms for spatial reasoning
- RCC stands for region connection calculus.
- Formally, a relation algebra with 5 atoms.
- Idea: variables denote non-empty regions in space.
- 5 binary relations between regions:
 - x PP y: x is a proper part of y.
 - x DR y: x is disjoint region to y.
 - x PO y: x properly overlaps with y.

- One of the fundamental formalisms for spatial reasoning
- RCC stands for region connection calculus.
- Formally, a relation algebra with 5 atoms.
- Idea: variables denote non-empty regions in space.
- 5 binary relations between regions:
 - x PP y: x is a proper part of y.
 - x DR y: x is disjoint region to y.
 - **•** x PO y: x properly overlaps with y.

- One of the fundamental formalisms for spatial reasoning
- RCC stands for region connection calculus.
- Formally, a relation algebra with 5 atoms.
- Idea: variables denote non-empty regions in space.
- 5 binary relations between regions:
 - x PP y: x is a proper part of y.
 - x DR y: x is disjoint region to y.
 - x PO y: x properly overlaps with y.

Input: Finite set of variables,

conjunction of constraints of the form *x* PP *y*, *x* DR *y*, or *x* PO *y*.

Task: Decide whether there are non-empty regions that satisfy all the constraints.

Input: Finite set of variables, conjunction of constraints of the form *x* PP *y*, *x* DR *y*, or *x* PO *y*.

Task: Decide whether there are non-empty regions that satisfy all the constraints.

Input: Finite set of variables,

conjunction of constraints of the form x PP y, x DR y, or x PO y.

Task: Decide whether there are non-empty regions that satisfy all the constraints.

Input: Finite set of variables,

conjunction of constraints of the form x PP y, x DR y, or x PO y.

Task: Decide whether there are non-empty regions that satisfy all the constraints.

Let \mathfrak{S} be the following relational structure:

- The domain is the set S of all non-empty subsets of \mathbb{N} .
- The signature is {PP, PO, DR}
- $\blacksquare \mathsf{PP}^{\mathfrak{S}} := \{(x, y) \mid x \subset y\}.$
- $\blacksquare \mathsf{PR}^{\mathfrak{S}} := \{ (x, y) \mid x \cap y = \emptyset \}.$
- $\blacksquare \mathsf{PO}^{\mathfrak{S}} := \{ (x, y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset \}$

The constraint satisfaction problem (CSP) for \mathfrak{S} : Input: a finite conjunction ϕ of atomic (PP, PR, PO)-formulas. Question: Is ϕ satisfiable in \mathfrak{S} ?

For $R \subseteq S^2$, write R^{\frown} for $\{(y, x) \mid (x, y) \in R\}$. Note. $\{PP^6, (PP^6)^{\frown}, DR^6, PO^6, =\}$ partition S^2 .

Let \mathfrak{S} be the following relational structure:

- The domain is the set S of all non-empty subsets of \mathbb{N} .
- The signature is {PP, PO, DR}
- $\blacksquare \mathsf{PP}^{\mathfrak{S}} := \{(x, y) \mid x \subset y\}.$
- $\blacksquare \mathsf{PR}^{\mathfrak{S}} := \{(x, y) \mid x \cap y = \emptyset\}.$
- $\blacksquare \mathsf{PO}^{\mathfrak{S}} := \{ (x, y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset \}$

The constraint satisfaction problem (CSP) for G: Input: a finite conjunction φ of atomic (PP, PR, PO)-formulas. Question: Is φ satisfiable in G?

For $R \subseteq S^2$, write R^{\frown} for $\{(y, x) \mid (x, y) \in R\}$. Note. $\{PP^6, (PP^6)^{\frown}, DR^6, PO^6, =\}$ partition S^2 .

Let \mathfrak{S} be the following relational structure:

- The domain is the set S of all non-empty subsets of \mathbb{N} .
- The signature is {PP, PO, DR}
- $\blacksquare \mathsf{PP}^{\mathfrak{S}} := \{(x, y) \mid x \subset y\}.$
- $\blacksquare \mathsf{PR}^{\mathfrak{S}} := \{ (x, y) \mid x \cap y = \emptyset \}.$
- $\blacksquare \mathsf{PO}^{\mathfrak{S}} := \{(x, y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset\}.$

The constraint satisfaction problem (CSP) for G: Input: a finite conjunction φ of atomic (PP, PR, PO)-formulas. Question: Is φ satisfiable in G?

For $R \subseteq S^2$, write R^{\frown} for $\{(y, x) \mid (x, y) \in R\}$. Note. $\{PP^6, (PP^6)^{\frown}, DR^6, PO^6, =\}$ partition S^2 .

Let \mathfrak{S} be the following relational structure:

- The domain is the set S of all non-empty subsets of \mathbb{N} .
- The signature is {PP, PO, DR}
- $\blacksquare \mathsf{PP}^{\mathfrak{S}} := \{(x, y) \mid x \subset y\}.$
- $\blacksquare \mathsf{PR}^{\mathfrak{S}} := \{ (x, y) \mid x \cap y = \emptyset \}.$
- $\blacksquare \mathsf{PO}^{\mathfrak{S}} := \{ (x, y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset \}.$

The constraint satisfaction problem (CSP) for \mathfrak{S} : Input: a finite conjunction ϕ of atomic (PP, PR, PO)-formulas. Question: Is ϕ satisfiable in \mathfrak{S} ?

For $R \subseteq S^2$, write R^{\frown} for $\{(y, x) \mid (x, y) \in R\}$. Note. $\{PP^6, (PP^6)^{\frown}, DR^6, PO^6, =\}$ partition S^2 .

Let \mathfrak{S} be the following relational structure:

- The domain is the set S of all non-empty subsets of \mathbb{N} .
- The signature is {PP, PO, DR}
- $\blacksquare \mathsf{PP}^{\mathfrak{S}} := \{(x, y) \mid x \subset y\}.$
- $\blacksquare \mathsf{PR}^{\mathfrak{S}} := \{(x, y) \mid x \cap y = \emptyset\}.$
- $\blacksquare \mathsf{PO}^{\mathfrak{S}} := \{ (x, y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset \}.$

The constraint satisfaction problem (CSP) for \mathfrak{S} : Input: a finite conjunction ϕ of atomic {PP, PR, PO}-formulas. Question: is ϕ satisfiable in \mathfrak{S} ?

For $R \subseteq S^2$, write R^{\frown} for $\{(y, x) \mid (x, y) \in R\}$. Note. $\{PP^6, (PP^6)^{\frown}, DR^6, PO^6, =\}$ partition S^2 .

Let \mathfrak{S} be the following relational structure:

- The domain is the set S of all non-empty subsets of \mathbb{N} .
- The signature is {PP, PO, DR}
- $\blacksquare \mathsf{PP}^{\mathfrak{S}} := \{(x, y) \mid x \subset y\}.$
- $\blacksquare \mathsf{PR}^{\mathfrak{S}} := \{(x, y) \mid x \cap y = \emptyset\}.$
- $\blacksquare \mathsf{PO}^{\mathfrak{S}} := \{ (x, y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset \}.$

The constraint satisfaction problem (CSP) for \mathfrak{S} : Input: a finite conjunction ϕ of atomic {PP, PR, PO}-formulas. Question: Is ϕ satisfiable in \mathfrak{S} ?

For $R \subseteq S^2$, write R^- for $\{(y, x) \mid (x, y) \in R\}$. Note. $\{PP^6, (PP^6)^-, DR^6, PO^6, =\}$ partition S^2 .

Let \mathfrak{S} be the following relational structure:

- The domain is the set S of all non-empty subsets of \mathbb{N} .
- The signature is {PP, PO, DR}
- $\blacksquare \mathsf{PP}^{\mathfrak{S}} := \{(x, y) \mid x \subset y\}.$
- $\blacksquare \mathsf{PR}^{\mathfrak{S}} := \{(x, y) \mid x \cap y = \emptyset\}.$
- $\blacksquare \mathsf{PO}^{\mathfrak{S}} := \{ (x, y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset \}.$

The constraint satisfaction problem (CSP) for \mathfrak{S} :

Input: a finite conjunction ϕ of atomic {PP, PR, PO}-formulas. **Question:** Is ϕ satisfiable in \mathfrak{S} ?

For $R \subseteq S^2$, write R^{\frown} for $\{(y, x) \mid (x, y) \in R\}$.

Note. $\{\mathsf{PP}^{\mathfrak{S}}, (\mathsf{PP}^{\mathfrak{S}})^{\smile}, \mathsf{DR}^{\mathfrak{S}}, \mathsf{PO}^{\mathfrak{S}}, =\}$ partition S^2 .

Let \mathfrak{S} be the following relational structure:

- The domain is the set S of all non-empty subsets of \mathbb{N} .
- The signature is {PP, PO, DR}
- $\blacksquare \mathsf{PP}^{\mathfrak{S}} := \{(x, y) \mid x \subset y\}.$
- $\blacksquare \mathsf{PR}^{\mathfrak{S}} := \{(x, y) \mid x \cap y = \emptyset\}.$
- $\blacksquare \mathsf{PO}^{\mathfrak{S}} := \{ (x, y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset \}.$

The constraint satisfaction problem (CSP) for \mathfrak{S} : **Input:** a finite conjunction ϕ of atomic {PP, PR, PO}-formulas. **Question:** Is ϕ satisfiable in \mathfrak{S} ?

For $R \subseteq S^2$, write $R \smile$ for $\{(y, x) \mid (x, y) \in R\}$. Note. $\{PP^{\mathfrak{S}}, (PP^{\mathfrak{S}}) \smile, DR^{\mathfrak{S}}, PO^{\mathfrak{S}}, =\}$ partition S^2 .

Let \mathfrak{S} be the following relational structure:

- The domain is the set S of all non-empty subsets of \mathbb{N} .
- The signature is {PP, PO, DR}
- $\blacksquare \mathsf{PP}^{\mathfrak{S}} := \{(x, y) \mid x \subset y\}.$
- $\blacksquare \mathsf{PR}^{\mathfrak{S}} := \{(x, y) \mid x \cap y = \emptyset\}.$
- $\blacksquare \mathsf{PO}^{\mathfrak{S}} := \{ (x, y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset \}.$

The constraint satisfaction problem (CSP) for \mathfrak{S} : **Input:** a finite conjunction ϕ of atomic {PP, PR, PO}-formulas. **Question:** Is ϕ satisfiable in \mathfrak{S} ?

Let \mathfrak{S} be the following relational structure:

- The domain is the set S of all non-empty subsets of \mathbb{N} .
- The signature is {PP, PO, DR}
- $\blacksquare \mathsf{PP}^{\mathfrak{S}} := \{(x, y) \mid x \subset y\}.$
- $\blacksquare \mathsf{PR}^{\mathfrak{S}} := \{(x, y) \mid x \cap y = \emptyset\}.$
- $\blacksquare \mathsf{PO}^{\mathfrak{S}} := \{ (x, y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset \}.$

The constraint satisfaction problem (CSP) for \mathfrak{S} :

Input: a finite conjunction ϕ of atomic {PP, PR, PO}-formulas. **Question:** Is ϕ satisfiable in \mathfrak{S} ?

For $R \subseteq S^2$, write R^{\smile} for $\{(y, x) \mid (x, y) \in R\}$. Note. $\{PP^{\heartsuit}, (PP^{\heartsuit})^{\smile}, DR^{\heartsuit}, PO^{\heartsuit}, =\}$ partition S^2 .

Let \mathfrak{S} be the following relational structure:

- The domain is the set S of all non-empty subsets of \mathbb{N} .
- The signature is {PP, PO, DR}
- $\blacksquare \mathsf{PP}^{\mathfrak{S}} := \{(x, y) \mid x \subset y\}.$
- $\blacksquare \mathsf{PR}^{\mathfrak{S}} := \{(x, y) \mid x \cap y = \emptyset\}.$
- $\blacksquare \mathsf{PO}^{\mathfrak{S}} := \{ (x, y) \mid x \not\subset y \land y \not\subset y \land x \cap y \neq \emptyset \}.$

The constraint satisfaction problem (CSP) for \mathfrak{S} :

Input: a finite conjunction ϕ of atomic {PP, PR, PO}-formulas. **Question:** Is ϕ satisfiable in \mathfrak{S} ?

For
$$R \subseteq S^2$$
, write R^{\smile} for $\{(y, x) \mid (x, y) \in R\}$.
Note. $\{\underline{PP^{\mathfrak{S}}, (PP^{\mathfrak{S}})^{\smile}, DR^{\mathfrak{S}}, PO^{\mathfrak{S}}, =\}$ partition S^2 .

 $x_1 \text{ DR'} x_2 := x_1 \text{ DR } x_2$ $x_1 \text{ DR'} x_3 := x \text{ PP } x_2, x_2 \text{ DR'} x_3$ goal :- $x_1 \text{ DR'} x_2, x_1 \text{ PO } x_2$

 $x_1 \text{ DR'} x_2 := x_1 \text{ DR } x_2$ $x_1 \text{ DR'} x_3 := x \text{ PP } x_2, x_2 \text{ DR'} x_3$ goal := $x_1 \text{ DR'} x_2, x_1 \text{ PO } x_2$

$$x_1 \text{ DR' } x_2 := x_1 \text{ DR } x_2$$

 $x_1 \text{ DR' } x_3 := x \text{ PP } x_2, x_2 \text{ DR' } x_3$
goal :- $x_1 \text{ DR' } x_2, x_1 \text{ PO } x_2$

. . .

$$x_1 \text{ DR' } x_2 := x_1 \text{ DR } x_2$$

 $x_1 \text{ DR' } x_3 := x \text{ PP } x_2, x_2 \text{ DR' } x_3$
goal := $x_1 \text{ DR' } x_2, x_1 \text{ PO } x_2$

. . .
- Network satisfaction problem for RCC5: additionally allow constraints of the form V_{R∈R} x R y for R ⊆ {PP, PP[∼], PO, DR, =}.
- Can be modelled as CSP(ℑ) where ℑ is an expansion of 𝔅 by all unions of the 5 basic relations.
- Nebel+Renz'97: $CSP(\mathfrak{T})$ is NP-complete.

Nebel+Renz'97:

There is a unique expansion € of S with maximally many relations of S such that CSP(€) is in P.

- Network satisfaction problem for RCC5: additionally allow constraints of the form V_{R∈R} x R y for R ⊆ {PP, PP⁻, PO, DR, =}.
- Can be modelled as CSP(T) where T is an expansion of S by all unions of the 5 basic relations.
- Nebel+Renz'97: CSP(ℑ) is NP-complete.

Nebel+Renz'97:

There is a unique expansion \mathfrak{E} of \mathfrak{S} with maximally many relations of \mathfrak{T} such that $\text{CSP}(\mathfrak{E})$ is in P.

- Network satisfaction problem for RCC5: additionally allow constraints of the form V_{R∈R} x R y for R ⊆ {PP, PP[→], PO, DR, =}.
- Can be modelled as CSP(𝔅) where 𝔅 is an expansion of 𝔅 by all unions of the 5 basic relations.
- Nebel+Renz'97: CSP(T) is NP-complete.

Nebel+Renz'97:

There is a unique expansion \mathfrak{E} of \mathfrak{S} with maximally many relations of \mathfrak{T} such that $\text{CSP}(\mathfrak{E})$ is in P.

- Network satisfaction problem for RCC5: additionally allow constraints of the form V_{R∈R} x R y for R ⊆ {PP, PP⁻, PO, DR, =}.
- Can be modelled as CSP(𝔅) where 𝔅 is an expansion of 𝔅 by all unions of the 5 basic relations.
- Nebel+Renz'97: CSP(𝔅) is NP-complete.

Nebel+Renz'97:

There is a unique expansion \mathfrak{E} of \mathfrak{S} with maximally many relations of \mathfrak{T} such that $\text{CSP}(\mathfrak{E})$ is in P.

- Network satisfaction problem for RCC5: additionally allow constraints of the form V_{R∈R} x R y for R ⊆ {PP, PP[→], PO, DR, =}.
- Can be modelled as CSP(𝔅) where 𝔅 is an expansion of 𝔅 by all unions of the 5 basic relations.
- Nebel+Renz'97: $CSP(\mathfrak{T})$ is NP-complete.
- Nebel+Renz'97:

There is a unique expansion \mathfrak{E} of \mathfrak{S} with maximally many relations of \mathfrak{T} such that $CSP(\mathfrak{E})$ is in P.

- Network satisfaction problem for RCC5: additionally allow constraints of the form V_{R∈R} x R y for R ⊆ {PP, PP[→], PO, DR, =}.
- Can be modelled as CSP(𝔅) where 𝔅 is an expansion of 𝔅 by all unions of the 5 basic relations.
- Nebel+Renz'97: CSP(𝔅) is NP-complete.
- Nebel+Renz'97:

There is a unique expansion \mathfrak{E} of \mathfrak{S} with maximally many relations of \mathfrak{T} such that $CSP(\mathfrak{E})$ is in P.

 \mathfrak{B} : expansion of \mathfrak{S} by relations R with a quantifier-free definition in \mathfrak{S} .

Examples of such relations *R*: $\{(x, y, z) \in S^3 \mid z \text{ PP } x \lor z \text{ PP } y\}.$ $\{(x, y, u, v) \in S^4 \mid x = y \Rightarrow u = v\}.$

Questions: When is CSP(33)

- in P?
- in Datalog?
- NP-hard?

B.+Bodor'24: Provide complete answer to all these questions.

■ Dichotomy: CSP(𝔅) is in P or NP-complete.

If CSP(B) is in P, then it is in Datalog, unless P = NP.

 \mathfrak{B} : expansion of \mathfrak{S} by relations R with a quantifier-free definition in \mathfrak{S} .

Examples of such relations R:

 $\{(x, y, z) \in S^3 \mid z \text{ PP } x \lor z \text{ PP } y\}.$ $\{(x, y, u, v) \in S^4 \mid x = y \Rightarrow u = v\}.$

Questions: When is CSP(93)

- in P?
- in Datalog?
- NP-hard?

B.+Bodor'24: Provide complete answer to all these questions.

- Dichotomy: CSP(𝔅) is in P or NP-complete.
- If CSP(𝔅) is in P, then it is in Datalog, unless P = NP.

 \mathfrak{B} : expansion of \mathfrak{S} by relations R with a quantifier-free definition in \mathfrak{S} .

Examples of such relations R:

 $\blacksquare \{(x, y, z) \in S^3 \mid z \mathsf{PP} \ x \lor z \mathsf{PP} \ y\}.$

 $\blacksquare \{(x, y, u, v) \in S^4 \mid x = y \Rightarrow u = v\}.$

Questions: When is CSP(93)

■ in P?

in Datalog?

NP-hard?

B.+Bodor'24: Provide complete answer to all these questions.

■ Dichotomy: CSP(𝔅) is in P or NP-complete.

If CSP(B) is in P, then it is in Datalog, unless P = NP.

 \mathfrak{B} : expansion of \mathfrak{S} by relations R with a quantifier-free definition in \mathfrak{S} .

Examples of such relations R:

 $\blacksquare \{(x, y, z) \in S^3 \mid z \mathsf{PP} \ x \lor z \mathsf{PP} \ y\}.$

$$\blacksquare \{(x, y, u, v) \in S^4 \mid x = y \Rightarrow u = v\}.$$

Questions: When is $CSP(\mathfrak{B})$

■ in P?

■ in Datalog?

NP-hard?

B.+Bodor'24: Provide complete answer to all these questions.

■ Dichotomy: CSP(𝔅) is in P or NP-complete.

If CSP(B) is in P, then it is in Datalog, unless P = NP.

 \mathfrak{B} : expansion of \mathfrak{S} by relations R with a quantifier-free definition in \mathfrak{S} .

Examples of such relations R:

 $\blacksquare \{(x, y, z) \in S^3 \mid z \mathsf{PP} x \lor z \mathsf{PP} y\}.$

$$\blacksquare \{(x, y, u, v) \in S^4 \mid x = y \Rightarrow u = v\}.$$

Questions: When is CSP(33)

■ in P?

in Datalog?

NP-hard?

B.+Bodor'24: Provide complete answer to all these questions

- Dichotomy: CSP(𝔅) is in P or NP-complete.
- If CSP(B) is in P, then it is in Datalog, unless P = NP.

 \mathfrak{B} : expansion of \mathfrak{S} by relations R with a quantifier-free definition in \mathfrak{S} .

Examples of such relations R:

 $\blacksquare \{(x, y, z) \in S^3 \mid z \mathsf{PP} \ x \lor z \mathsf{PP} \ y\}.$

$$\blacksquare \{ (x, y, u, v) \in S^4 \mid x = y \Rightarrow u = v \}.$$

Questions: When is $CSP(\mathfrak{B})$

- in P?
- in Datalog?
- NP-hard?

B.+Bodor'24: Provide complete answer to all these questions.

- Dichotomy: CSP(𝔅) is in P or NP-complete.
- If CSP(𝔅) is in P, then it is in Datalog, unless P = NP.

 \mathfrak{B} : expansion of \mathfrak{S} by relations R with a quantifier-free definition in \mathfrak{S} .

Examples of such relations R:

 $\blacksquare \{(x, y, z) \in S^3 \mid z \mathsf{PP} \ x \lor z \mathsf{PP} \ y\}.$

$$\blacksquare \{ (x, y, u, v) \in S^4 \mid x = y \Rightarrow u = v \}.$$

Questions: When is $CSP(\mathfrak{B})$

- in P?
- in Datalog?
- NP-hard?

B.+Bodor'24: Provide complete answer to all these questions.

- Dichotomy: CSP(𝔅) is in P or NP-complete.
- If CSP(B) is in P, then it is in Datalog, unless P = NP.

 \mathfrak{B} : expansion of \mathfrak{S} by relations R with a quantifier-free definition in \mathfrak{S} .

Examples of such relations R:

 $\blacksquare \{(x, y, z) \in S^3 \mid z \mathsf{PP} \ x \lor z \mathsf{PP} \ y\}.$

$$\blacksquare \{ (x, y, u, v) \in S^4 \mid x = y \Rightarrow u = v \}.$$

Questions: When is $CSP(\mathfrak{B})$

- in P?
- in Datalog?
- NP-hard?

B.+Bodor'24: Provide complete answer to all these questions.

■ Dichotomy: CSP(𝔅) is in P or NP-complete.

If CSP(𝔅) is in P, then it is in Datalog, unless P = NP.

 \mathfrak{B} : expansion of \mathfrak{S} by relations R with a quantifier-free definition in \mathfrak{S} .

Examples of such relations R:

 $\blacksquare \{(x, y, z) \in S^3 \mid z \mathsf{PP} \ x \lor z \mathsf{PP} \ y\}.$

$$\blacksquare \{ (x, y, u, v) \in S^4 \mid x = y \Rightarrow u = v \}.$$

Questions: When is $CSP(\mathfrak{B})$

- in P?
- in Datalog?
- NP-hard?
- B.+Bodor'24: Provide complete answer to all these questions.
 - Dichotomy: CSP(B) is in P or NP-complete.
 If CSP(B) is in P, then it is in Datalog, unless P = NI

 \mathfrak{B} : expansion of \mathfrak{S} by relations R with a quantifier-free definition in \mathfrak{S} .

Examples of such relations R:

 $\blacksquare \{(x, y, z) \in S^3 \mid z \mathsf{PP} \ x \lor z \mathsf{PP} \ y\}.$

$$\blacksquare \{ (x, y, u, v) \in S^4 \mid x = y \Rightarrow u = v \}.$$

Questions: When is $CSP(\mathfrak{B})$

- in P?
- in Datalog?
- NP-hard?
- B.+Bodor'24: Provide complete answer to all these questions.
 - Dichotomy: CSP(𝔅) is in P or NP-complete.

If $CSP(\mathfrak{B})$ is in P, then it is in Datalog, unless P = NP.

 \mathfrak{B} : expansion of \mathfrak{S} by relations R with a quantifier-free definition in \mathfrak{S} .

Examples of such relations R:

 $\blacksquare \{(x, y, z) \in S^3 \mid z \mathsf{PP} \ x \lor z \mathsf{PP} \ y\}.$

$$\blacksquare \{ (x, y, u, v) \in S^4 \mid x = y \Rightarrow u = v \}.$$

Questions: When is $CSP(\mathfrak{B})$

- in P?
- in Datalog?
- NP-hard?

B.+Bodor'24: Provide complete answer to all these questions.

- Dichotomy: CSP(𝔅) is in P or NP-complete.
- If $CSP(\mathfrak{B})$ is in P, then it is in Datalog, unless P = NP.

Polymorphisms generalise automorphisms.

A function $f: B^k \to B$ preserves $R \subseteq B^m$ if for all $a^1, \ldots, a^k \in R$ $(f(a_1^1, \ldots, a_1^k), \ldots, f(a_m^1, \ldots, a_m^k)) \in R.$

Examples:

- $(x, y) \mapsto (x + y)/2$ preserves all convex relations $R \subseteq \mathbb{R}^m$.
- $(x, y) \mapsto x$ preserves all relations.

Polymorphisms generalise automorphisms.

A function $f: B^k \to B$ preserves $R \subseteq B^m$ if for all $a^1, \ldots, a^k \in R$ $(f(a_1^1, \ldots, a_1^k), \ldots, f(a_m^1, \ldots, a_m^k)) \in R.$

Examples:

- $(x, y) \mapsto (x + y)/2$ preserves all convex relations $R \subseteq \mathbb{R}^m$.
- $(x, y) \mapsto x$ preserves all relations.

Polymorphisms generalise automorphisms.

A function $f: B^k \to B$ preserves $R \subseteq B^m$ if for all $a^1, \ldots, a^k \in R$ $(f(a_1^1, \ldots, a_1^k), \ldots, f(a_m^1, \ldots, a_m^k)) \in R.$

Examples:

■ $(x, y) \mapsto (x + y)/2$ preserves all convex relations $R \subseteq \mathbb{R}^m$.

■ $(x, y) \mapsto x$ preserves all relations.

Polymorphisms generalise automorphisms.

A function $f: B^k \to B$ preserves $R \subseteq B^m$ if for all $a^1, \ldots, a^k \in R$ $(f(a_1^1, \ldots, a_1^k), \ldots, f(a_m^1, \ldots, a_m^k)) \in R.$

Examples:

- $(x, y) \mapsto (x + y)/2$ preserves all convex relations $R \subseteq \mathbb{R}^m$.
- $(x, y) \mapsto x$ preserves all relations.

Polymorphisms generalise automorphisms.

A function $f: B^k \to B$ preserves $R \subseteq B^m$ if for all $a^1, \ldots, a^k \in R$ $(f(a_1^1, \ldots, a_1^k), \ldots, f(a_m^1, \ldots, a_m^k)) \in R.$

Examples:

- $(x, y) \mapsto (x + y)/2$ preserves all convex relations $R \subseteq \mathbb{R}^m$.
- $(x, y) \mapsto x$ preserves all relations.

Let \mathfrak{B} be a structure with a finite domain *B*.

Theorem (Bulatov'17, Zhuk'17/20).

If \mathfrak{B} has a polymoprhism $f: B^k \to B$ which is cyclic, i.e., $k \ge 2$ and for all $x_1, \ldots, x_k \in B$

$$f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)$$

then $CSP(\mathfrak{B})$ is in P. Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

Examples.

- $(x, y) \mapsto \max(x, y)$ is a polymorphism of $(\{1, ..., n\}; <)$. Hence, $CSP(\{1, ..., n\}; <)$ can be solved in polynomial time.
- For for $n \ge 3$, every polymorphism of $(\{1, ..., n\}; \ne)$ is of the form $(x_1, ..., x_k) \mapsto g(x_l)$ for some $i \in \{1, ..., k\}$ and some $g \in S_n$. Hence, $CSP(\{1, ..., n\}; \ne)$ is NP-hard.

Let \mathfrak{B} be a structure with a finite domain *B*.

Theorem (Bulatov'17, Zhuk'17/20).

If \mathfrak{B} has a polymoprhism $f: B^k \to B$ which is cyclic, i.e., $k \ge 2$ and for all $x_1, \ldots, x_k \in B$

$$f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)$$

then $CSP(\mathfrak{B})$ is in P. Otherwise, $CSP(\mathfrak{B})$ is NP-har

Examples.

- $(x, y) \mapsto \max(x, y)$ is a polymorphism of $(\{1, ..., n\}; <)$. Hence, $CSP(\{1, ..., n\}; <)$ can be solved in polynomial time.
- For for $n \ge 3$, every polymorphism of $(\{1, \ldots, n\}; \ne)$ is of the form $(x_1, \ldots, x_k) \mapsto g(x_i)$ for some $i \in \{1, \ldots, k\}$ and some $g \in S_n$. Hence, $CSP(\{1, \ldots, n\}; \ne)$ is NP-hard.

Let \mathfrak{B} be a structure with a finite domain *B*.

Theorem (Bulatov'17, Zhuk'17/20).

If \mathfrak{B} has a polymoprhism $f: B^k \to B$ which is cyclic, i.e., $k \ge 2$ and for all $x_1, \ldots, x_k \in B$

$$f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)$$

then $CSP(\mathfrak{B})$ is in P. Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

Examples.

■ $(x, y) \mapsto \max(x, y)$ is a polymorphism of $(\{1, ..., n\}; <)$. Hence, $CSP(\{1, ..., n\}; <)$ can be solved in polynomial time.

For for $n \ge 3$, every polymorphism of $(\{1, \ldots, n\}; \ne)$ is of the form $(x_1, \ldots, x_k) \mapsto g(x_i)$ for some $i \in \{1, \ldots, k\}$ and some $g \in S_n$. Hence, $CSP(\{1, \ldots, n\}; \ne)$ is NP-hard.

Let \mathfrak{B} be a structure with a finite domain *B*.

Theorem (Bulatov'17, Zhuk'17/20).

If \mathfrak{B} has a polymoprhism $f: B^k \to B$ which is cyclic, i.e., $k \ge 2$ and for all $x_1, \ldots, x_k \in B$

$$f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)$$

then $CSP(\mathfrak{B})$ is in P. Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

Examples.

■ $(x, y) \mapsto \max(x, y)$ is a polymorphism of $(\{1, ..., n\}; <)$. Hence, $CSP(\{1, ..., n\}; <)$ can be solved in polynomial time.

■ For for $n \ge 3$, every polymorphism of $(\{1, ..., n\}; \ne)$ is of the form $(x_1, ..., x_k) \mapsto g(x_i)$ for some $i \in \{1, ..., k\}$ and some $g \in S_n$. Hence, CSP $(\{1, ..., n\}; \ne)$ is NP-hard.

Let \mathfrak{B} be a structure with a finite domain *B*.

Theorem (Bulatov'17, Zhuk'17/20).

If \mathfrak{B} has a polymoprhism $f: B^k \to B$ which is cyclic, i.e., $k \ge 2$ and for all $x_1, \ldots, x_k \in B$

$$f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)$$

then $CSP(\mathfrak{B})$ is in P. Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

Examples.

- $(x, y) \mapsto \max(x, y)$ is a polymorphism of $(\{1, ..., n\}; <)$. Hence, $CSP(\{1, ..., n\}; <)$ can be solved in polynomial time.
- For for $n \ge 3$, every polymorphism of $(\{1, ..., n\}; \ne)$ is of the form $(x_1, ..., x_k) \mapsto g(x_i)$ for some $i \in \{1, ..., k\}$ and some $g \in S_n$. Hence, $\text{CSP}(\{1, ..., n\}; \ne)$ is NP-hard.

Let \mathfrak{B} be a structure with a finite domain *B*.

Theorem (Bulatov'17, Zhuk'17/20).

If \mathfrak{B} has a polymoprhism $f: B^k \to B$ which is cyclic, i.e., $k \ge 2$ and for all $x_1, \ldots, x_k \in B$

$$f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)$$

then $CSP(\mathfrak{B})$ is in P. Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

Examples.

- $(x, y) \mapsto \max(x, y)$ is a polymorphism of $(\{1, ..., n\}; <)$. Hence, $CSP(\{1, ..., n\}; <)$ can be solved in polynomial time.
- For for $n \ge 3$, every polymorphism of $(\{1, \ldots, n\}; \ne)$ is of the form $(x_1, \ldots, x_k) \mapsto g(x_i)$ for some $i \in \{1, \ldots, k\}$ and some $g \in S_n$. Hence, $\text{CSP}(\{1, \ldots, n\}; \ne)$ is NP-hard.

Let \mathfrak{B} be a structure with a finite domain *B*.

Theorem (Bulatov'17, Zhuk'17/20).

If \mathfrak{B} has a polymoprhism $f: B^k \to B$ which is cyclic, i.e., $k \ge 2$ and for all $x_1, \ldots, x_k \in B$

$$f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)$$

then $CSP(\mathfrak{B})$ is in P. Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

Examples.

- $(x, y) \mapsto \max(x, y)$ is a polymorphism of $(\{1, ..., n\}; <)$. Hence, $CSP(\{1, ..., n\}; <)$ can be solved in polynomial time.
- For for $n \ge 3$, every polymorphism of $(\{1, \ldots, n\}; \ne)$ is of the form $(x_1, \ldots, x_k) \mapsto g(x_i)$ for some $i \in \{1, \ldots, k\}$ and some $g \in S_n$. Hence, $\text{CSP}(\{1, \ldots, n\}; \ne)$ is NP-hard.

Let \mathfrak{B} be a structure with a finite domain *B*.

Theorem (Bulatov'17, Zhuk'17/20).

If \mathfrak{B} has a polymoprhism $f: B^k \to B$ which is cyclic, i.e., $k \ge 2$ and for all $x_1, \ldots, x_k \in B$

$$f(x_1,\ldots,x_k)=f(x_2,\ldots,x_k,x_1)$$

then $CSP(\mathfrak{B})$ is in P. Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

Examples.

- $(x, y) \mapsto \max(x, y)$ is a polymorphism of $(\{1, ..., n\}; <)$. Hence, $CSP(\{1, ..., n\}; <)$ can be solved in polynomial time.
- For for $n \ge 3$, every polymorphism of $(\{1, \ldots, n\}; \ne)$ is of the form $(x_1, \ldots, x_k) \mapsto g(x_i)$ for some $i \in \{1, \ldots, k\}$ and some $g \in S_n$. Hence, $\text{CSP}(\{1, \ldots, n\}; \ne)$ is NP-hard.

- The polymorphisms of 𝔅 determine the complexity of CSP(𝔅) if 𝔅 is ω-categorical (B+Nešetřil'03):
 - \blacksquare all countable models of the first-order theory of $\mathfrak B$ are isomorphic.
 - equivalent: componentwise action of Aut(𝔅) on Bⁿ has finitely many orbits, for every n ∈ N.

Infinite Domains

- The polymorphisms of 𝔅 determine the complexity of CSP(𝔅) if 𝔅 is ω-categorical (B+Nešetřil'03):
 - \blacksquare all countable models of the first-order theory of \mathfrak{B} are isomorphic.
 - equivalent: componentwise action of Aut(\mathfrak{B}) on B^n has finitely many orbits, for every $n \in \mathbb{N}$.
- Problem: S = (S; PP, DR, PO) and all of its expansions are not ω-categorical.

- The polymorphisms of 𝔅 determine the complexity of CSP(𝔅) if 𝔅 is ω-categorical (B+Nešetřil'03):
 - \blacksquare all countable models of the first-order theory of \mathfrak{B} are isomorphic.
 - equivalent: componentwise action of $Aut(\mathfrak{B})$ on B^n has finitely many orbits, for every $n \in \mathbb{N}$.

- The polymorphisms of 𝔅 determine the complexity of CSP(𝔅) if 𝔅 is ω-categorical (B+Nešetřil'03):
 - \blacksquare all countable models of the first-order theory of \mathfrak{B} are isomorphic.
 - equivalent: componentwise action of Aut(\mathfrak{B}) on B^n has finitely many orbits, for every $n \in \mathbb{N}$.
- Problem: $\mathfrak{S} = (S; \mathsf{PP}, \mathsf{DR}, \mathsf{PO})$ and all of its expansions are not ω -categorical.

- The polymorphisms of 𝔅 determine the complexity of CSP(𝔅) if 𝔅 is ω-categorical (B+Nešetřil'03):
 - \blacksquare all countable models of the first-order theory of ${\mathfrak B}$ are isomorphic.
 - equivalent: componentwise action of $Aut(\mathfrak{B})$ on B^n has finitely many orbits, for every $n \in \mathbb{N}$.
- Problem: $\mathfrak{S} = (S; \mathsf{PP}, \mathsf{DR}, \mathsf{PO})$ and all of its expansions are not ω -categorical.

- The polymorphisms of 𝔅 determine the complexity of CSP(𝔅) if 𝔅 is ω-categorical (B+Nešetřil'03):
 - \blacksquare all countable models of the first-order theory of ${\mathfrak B}$ are isomorphic.
 - equivalent: componentwise action of $Aut(\mathfrak{B})$ on B^n has finitely many orbits, for every $n \in \mathbb{N}$.
- Problem: $\mathfrak{S} = (S; \mathsf{PP}, \mathsf{DR}, \mathsf{PO})$ and all of its expansions are not ω -categorical.
Solution to problem:

- Age(𝔅): class of all finite structures that embed into 𝔅.
- Age(S) has the amalgamation property.
- By Fraitse's theorem, there exists an u DR v (up to isomorphism unique!) homogeneous structure G' with the same age as G: isomorphisms between finite substructures of G' extend to automorphisms of G'.

- Homogeneous structures with finitely many relations have quantifier-elimination and are ω-categorical.
- All expansions of ω-categorical structures by first-order definable relations are ω-categorical.
- Expansion of G by quantifier-free definable relations has the same CSP as the expansion of G' by relations defined by the same formulas.

Solution to problem:

Find an ω -categorical structure \mathfrak{S}' with the same CSP as $\mathfrak{S}!$

- Age(𝔅): class of all finite structures that embed into 𝔅.
- Age(𝔅) has the amalgamation property.
- By Fraïssé's theorem, there exists an u DRv (up to isomorphism unique!) homogeneous structure G' with the same age as G: isomorphisms between finite substructures of G' extend to automorphisms of G'.
- Homogeneous structures with finitely many relations have quantifier-elimination and are ω-categorical.
- All expansions of ω-categorical structures by first-order definable relations are ω-categorical.
- Expansion of G by quantifier-free definable relations has the same CSP as the expansion of G' by relations defined by the same formulas.

u PP v

y DR x

y DR v

u DR x

v PP x

Solution to problem:

- Age(𝔅): class of all finite structures that embed into 𝔅.
- Age(\mathfrak{S}) has the amalgamation property.
- By Fraïssé's theorem, there exists an u DRv
 (up to isomorphism unique!) homogeneous
 structure G' with the same age as G: isomorphisms between finite
 substructures of G' extend to automorphisms of G'.
- Homogeneous structures with finitely many relations have quantifier-elimination and are ω-categorical.
- All expansions of ω-categorical structures by first-order definable relations are ω-categorical.
- Expansion of G by quantifier-free definable relations has the same CSP as the expansion of G' by relations defined by the same formulas.

Solution to problem:

- Age(𝔅): class of all finite structures that embed into 𝔅.
- Age(\mathfrak{S}) has the amalgamation property.
- By Fraïssé's theorem, there exists an (up to isomorphism unique!) homogeneous structure 𝔅' with the same age as 𝔅: isomorphisms between finite substructures of 𝔅' extend to automorphisms of 𝔅'.
- Homogeneous structures with finitely many relations have quantifier-elimination and are ω-categorical.
- All expansions of ω-categorical structures by first-order definable relations are ω-categorical.
- Expansion of G by quantifier-free definable relations has the same CSP as the expansion of G' by relations defined by the same formulas.

Solution to problem:

- Age(𝔅): class of all finite structures that embed into 𝔅.
- Age(\mathfrak{S}) has the amalgamation property.
- By Fraïssé's theorem, there exists an (up to isomorphism unique!) homogeneous structure G' with the same age as G: isomorphisms between finite substructures of G' extend to automorphisms of G'.
- Homogeneous structures with finitely many relations have quantifier-elimination and are ω-categorical.
- All expansions of ω-categorical structures by first-order definable relations are ω-categorical.
- Expansion of G by quantifier-free definable relations has the same CSP as the expansion of G' by relations defined by the same formulas.

Solution to problem:

- Age(𝔅): class of all finite structures that embed into 𝔅.
- Age(\mathfrak{S}) has the amalgamation property.
- By Fraïssé's theorem, there exists an u DRv u DRv u DRv
 (up to isomorphism unique!) homogeneous structure G' with the same age as G: isomorphisms between finite substructures of G' extend to automorphisms of G'.
- Homogeneous structures with finitely many relations have quantifier-elimination and are ω-categorical.
- All expansions of ω-categorical structures by first-order definable relations are ω-categorical.
- Expansion of G by quantifier-free definable relations has the same CSP as the expansion of G' by relations defined by the same formulas.

Solution to problem:

- Age(𝔅): class of all finite structures that embed into 𝔅.
- Age(\mathfrak{S}) has the amalgamation property.
- By Fraïssé's theorem, there exists an (up to isomorphism unique!) homogeneous structure G' with the same age as G: isomorphisms between finite substructures of G' extend to automorphisms of G'.
- Homogeneous structures with finitely many relations have quantifier-elimination and are ω-categorical.
- All expansions of ω-categorical structures by first-order definable relations are ω-categorical.
- Expansion of G by quantifier-free definable relations has the same CSP as the expansion of G' by relations defined by the same formulas.

Solution to problem:

- Age(𝔅): class of all finite structures that embed into 𝔅.
- Age(𝔅) has the amalgamation property.
- By Fraïssé's theorem, there exists an (up to isomorphism unique!) homogeneous structure 𝔅' with the same age as 𝔅: isomorphisms between finite substructures of 𝔅' extend to automorphisms of 𝔅'.
- Homogeneous structures with finitely many relations have quantifier-elimination and are ω-categorical.
- All expansions of ω-categorical structures by first-order definable relations are ω-categorical.
- Expansion of G by quantifier-free definable relations has the same CSP as the expansion of G' by relations defined by the same formulas.

Replace \mathfrak{S} by \mathfrak{S}' . Task: Classify all first-order expansions \mathfrak{B} of \mathfrak{S} .

Definition. $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if f preserves the equivalence relations on S^2 defined by

 $PP(x, y) \Leftrightarrow PP(u, v)$ $PO(x, y) \Leftrightarrow PO(u, v)$ $DR(x, y) \Leftrightarrow DR(u, v)$

Note: If f is canonical, then it induces a function

 $\xi(f): \{\mathsf{PP}, \mathsf{PP}^{\sim}, \mathsf{DR}, \mathsf{PO}, =\}^k \to \{\mathsf{PP}, \mathsf{PP}^{\sim}, \mathsf{DR}, \mathsf{PO}, =\}.$

Theorem (B.+Mottet'16). If \mathfrak{B} has a canonical polymorphism f such that $\xi(f)$ is cyclic, then CSP(\mathfrak{B}) is in P.

Theorem (B.+Bodor'24). Otherwise, CSP(B) is NP-hard.

Replace \mathfrak{S} by \mathfrak{S}' . Task: Classify all first-order expansions \mathfrak{B} of \mathfrak{S} . **Definition.** $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if f preserves the equivalence relations on S^2 defined by $PP(x, y) \Leftrightarrow PP(u, v)$

> $PO(x, y) \Leftrightarrow PO(u, v)$ $DR(x, y) \Leftrightarrow DR(u, v)$

Note: If f is canonical, then it induces a function

 $\xi(f): \{\mathsf{PP}, \mathsf{PP}^{\sim}, \mathsf{DR}, \mathsf{PO}, =\}^k \to \{\mathsf{PP}, \mathsf{PP}^{\sim}, \mathsf{DR}, \mathsf{PO}, =\}.$

Theorem (B.+Mottet'16). If \mathfrak{B} has a canonical polymorphism f such that $\xi(f)$ is cyclic, then CSP(\mathfrak{B}) is in P.

Theorem (B.+Bodor'24). Otherwise, CSP(B) is NP-hard.

Replace \mathfrak{S} by \mathfrak{S}' . Task: Classify all first-order expansions \mathfrak{B} of \mathfrak{S} .

Definition. $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if *f* preserves the equivalence relations on S^2 defined by

 $PP(x, y) \Leftrightarrow PP(u, v)$ $PO(x, y) \Leftrightarrow PO(u, v)$ $DR(x, y) \Leftrightarrow DR(u, v)$

Note: If f is canonical, then it induces a function

 $\xi(f): \{\mathsf{PP}, \mathsf{PP}^{\sim}, \mathsf{DR}, \mathsf{PO}, =\}^k \to \{\mathsf{PP}, \mathsf{PP}^{\sim}, \mathsf{DR}, \mathsf{PO}, =\}.$

Theorem (B.+Mottet'16). If \mathfrak{B} has a canonical polymorphism f such that $\xi(f)$ is cyclic, then CSP(\mathfrak{B}) is in P.

Theorem (B.+Bodor'24). Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

Replace \mathfrak{S} by \mathfrak{S}' . Task: Classify all first-order expansions \mathfrak{B} of \mathfrak{S} .

Definition. $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if *f* preserves the equivalence relations on S^2 defined by

 $\begin{aligned} \mathsf{PP}(x, y) &\Leftrightarrow \mathsf{PP}(u, v) \\ \mathsf{PO}(x, y) &\Leftrightarrow \mathsf{PO}(u, v) \\ \mathsf{DR}(x, y) &\Leftrightarrow \mathsf{DR}(u, v) \end{aligned}$

Note: If f is canonical, then it induces a function

 $\xi(f): \{\mathsf{PP}, \mathsf{PP}^{\smile}, \mathsf{DR}, \mathsf{PO}, =\}^k \to \{\mathsf{PP}, \mathsf{PP}^{\smile}, \mathsf{DR}, \mathsf{PO}, =\}.$

Theorem (B.+Mottet'16). If \mathfrak{B} has a canonical polymorphism f such that $\xi(f)$ is cyclic, then CSP(\mathfrak{B}) is in P.

Theorem (B.+Bodor'24). Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

Replace \mathfrak{S} by \mathfrak{S}' . Task: Classify all first-order expansions \mathfrak{B} of \mathfrak{S} .

Definition. $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if *f* preserves the equivalence relations on S^2 defined by

 $\begin{aligned} \mathsf{PP}(x, y) &\Leftrightarrow \mathsf{PP}(u, v) \\ \mathsf{PO}(x, y) &\Leftrightarrow \mathsf{PO}(u, v) \\ \mathsf{DR}(x, y) &\Leftrightarrow \mathsf{DR}(u, v) \end{aligned}$

Note: If f is canonical, then it induces a function

 $\xi(f): \{\mathsf{PP}, \mathsf{PP}^{\sim}, \mathsf{DR}, \mathsf{PO}, =\}^k \to \{\mathsf{PP}, \mathsf{PP}^{\sim}, \mathsf{DR}, \mathsf{PO}, =\}.$

Theorem (B.+Mottet'16). If \mathfrak{B} has a canonical polymorphism f such that $\xi(f)$ is cyclic, then $CSP(\mathfrak{B})$ is in P.

Theorem (B.+Bodor'24). Otherwise, CSP(B) is NP-hard.

Replace \mathfrak{S} by \mathfrak{S}' . Task: Classify all first-order expansions \mathfrak{B} of \mathfrak{S} .

Definition. $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if *f* preserves the equivalence relations on S^2 defined by

 $\begin{aligned} \mathsf{PP}(x,y) &\Leftrightarrow \mathsf{PP}(u,v) \\ \mathsf{PO}(x,y) &\Leftrightarrow \mathsf{PO}(u,v) \\ \mathsf{DR}(x,y) &\Leftrightarrow \mathsf{DR}(u,v) \end{aligned}$

Note: If *f* is canonical, then it induces a function

 $\xi(f): \{\mathsf{PP}, \mathsf{PP}^{\smile}, \mathsf{DR}, \mathsf{PO}, =\}^k \to \{\mathsf{PP}, \mathsf{PP}^{\smile}, \mathsf{DR}, \mathsf{PO}, =\}.$

Theorem (B.+Mottet'16). If \mathfrak{B} has a canonical polymorphism *f* such that $\xi(f)$ is cyclic, then $CSP(\mathfrak{B})$ is in P.

Theorem (B.+Bodor'24). Otherwise, CSP(B) is NP-hard.

Replace \mathfrak{S} by \mathfrak{S}' . Task: Classify all first-order expansions \mathfrak{B} of \mathfrak{S} .

Definition. $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if *f* preserves the equivalence relations on S^2 defined by

 $\begin{aligned} \mathsf{PP}(x, y) &\Leftrightarrow \mathsf{PP}(u, v) \\ \mathsf{PO}(x, y) &\Leftrightarrow \mathsf{PO}(u, v) \\ \mathsf{DR}(x, y) &\Leftrightarrow \mathsf{DR}(u, v) \end{aligned}$

Note: If f is canonical, then it induces a function

 $\xi(f): \{\mathsf{PP}, \mathsf{PP}^{\smile}, \mathsf{DR}, \mathsf{PO}, =\}^k \to \{\mathsf{PP}, \mathsf{PP}^{\smile}, \mathsf{DR}, \mathsf{PO}, =\}.$

Theorem (B.+Mottet'16). If \mathfrak{B} has a canonical polymorphism *f* such that $\xi(f)$ is cyclic, then $CSP(\mathfrak{B})$ is in P.

Theorem (B.+Bodor'24). Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

Replace \mathfrak{S} by \mathfrak{S}' . Task: Classify all first-order expansions \mathfrak{B} of \mathfrak{S} .

Definition. $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if *f* preserves the equivalence relations on S^2 defined by

 $\begin{aligned} \mathsf{PP}(x, y) &\Leftrightarrow \mathsf{PP}(u, v) \\ \mathsf{PO}(x, y) &\Leftrightarrow \mathsf{PO}(u, v) \\ \mathsf{DR}(x, y) &\Leftrightarrow \mathsf{DR}(u, v) \end{aligned}$

Note: If f is canonical, then it induces a function

 $\xi(f): \{\mathsf{PP}, \mathsf{PP}^{\smile}, \mathsf{DR}, \mathsf{PO}, =\}^k \to \{\mathsf{PP}, \mathsf{PP}^{\smile}, \mathsf{DR}, \mathsf{PO}, =\}.$

Theorem (B.+Mottet'16). If \mathfrak{B} has a canonical polymorphism *f* such that $\xi(f)$ is cyclic, then $CSP(\mathfrak{B})$ is in P.

Theorem (B.+Bodor'24). Otherwise, CSP(B) is NP-hard.

Replace \mathfrak{S} by \mathfrak{S}' . Task: Classify all first-order expansions \mathfrak{B} of \mathfrak{S} .

Definition. $f: S^k \to S$ is called canonical (with respect to \mathfrak{S}) if *f* preserves the equivalence relations on S^2 defined by

 $\begin{aligned} \mathsf{PP}(x, y) &\Leftrightarrow \mathsf{PP}(u, v) \\ \mathsf{PO}(x, y) &\Leftrightarrow \mathsf{PO}(u, v) \\ \mathsf{DR}(x, y) &\Leftrightarrow \mathsf{DR}(u, v) \end{aligned}$

Note: If f is canonical, then it induces a function

```
\xi(f): \{\mathsf{PP}, \mathsf{PP}^{\smile}, \mathsf{DR}, \mathsf{PO}, =\}^k \to \{\mathsf{PP}, \mathsf{PP}^{\smile}, \mathsf{DR}, \mathsf{PO}, =\}.
```

Theorem (B.+Mottet'16). If \mathfrak{B} has a canonical polymorphism *f* such that $\xi(f)$ is cyclic, then $CSP(\mathfrak{B})$ is in P.

Theorem (B.+Bodor'24). Otherwise, $CSP(\mathfrak{B})$ is NP-hard.

A permutation group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

Aut(\mathfrak{B}): the automorphism group of \mathfrak{B} .

Lemma (Canonisation lemma; B.+Pinsker+Tsankov'11).

Suppose \mathfrak{B} is ω -categorical and Aut(\mathfrak{B}) is extremely amenable. Then for any $f: B^k \to B$, the set

 $\{(x_1, \ldots, x_k) \mapsto a_0(f(a_1(x_1), \ldots, a_k(x_k))) \mid a_0, a_1, \ldots, a_k \in Aut(\mathfrak{B})\}$

contains a function g that is canonical wrt \mathfrak{B} . (g is 'canonisation' of f)

Problem: The automorphism group of G is not extremely amenable.

A permutation group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

Aut(\mathfrak{B}): the automorphism group of \mathfrak{B} .

Lemma (Canonisation lemma; B.+Pinsker+Tsankov'11).

Suppose \mathfrak{B} is ω -categorical and $Aut(\mathfrak{B})$ is extremely amenable. Then for any $f: B^k \to B$, the set

 $\{(x_1, \ldots, x_k) \mapsto a_0(f(a_1(x_1), \ldots, a_k(x_k))) \mid a_0, a_1, \ldots, a_k \in Aut(\mathfrak{B})\}$

contains a function g that is canonical wrt \mathfrak{B} . (g is 'canonisation' of f)

Problem: The automorphism group of S is not extremely amenable.

A permutation group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

Aut(\mathfrak{B}): the automorphism group of \mathfrak{B} .

Lemma (Canonisation lemma; B.+Pinsker+Tsankov'11).

Suppose \mathfrak{B} is ω -categorical and $\operatorname{Aut}(\mathfrak{B})$ is extremely amenable. Then for any $f: B^k \to B$, the set

 $\{(x_1,...,x_k) \mapsto a_0(f(a_1(x_1),...,a_k(x_k))) \mid a_0,a_1,...,a_k \in Aut(\mathfrak{B})\}$

contains a function g that is canonical wrt \mathfrak{B} . (g is 'canonisation' of f)

Problem: The automorphism group of \mathfrak{S} is not extremely amenable.

A permutation group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

Aut(\mathfrak{B}): the automorphism group of \mathfrak{B} .

Lemma (Canonisation lemma; B.+Pinsker+Tsankov'11).

Suppose \mathfrak{B} is ω -categorical and Aut(\mathfrak{B}) is extremely amenable. Then for any $f: B^k \to B$, the set

 $\{(x_1, \ldots, x_k) \mapsto a_0(f(a_1(x_1), \ldots, a_k(x_k))) \mid a_0, a_1, \ldots, a_k \in Aut(\mathfrak{B})\}$

contains a function g that is canonical wrt \mathfrak{B} . (g is 'canonisation' of f)

Problem: The automorphism group of \mathfrak{S} is not extremely amenable.

A permutation group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

Aut(\mathfrak{B}): the automorphism group of \mathfrak{B} .

Lemma (Canonisation lemma; B.+Pinsker+Tsankov'11).

Suppose \mathfrak{B} is ω -categorical and Aut(\mathfrak{B}) is extremely amenable. Then for any $f: B^k \to B$, the set

 $\{(x_1,\ldots,x_k)\mapsto a_0(f(a_1(x_1),\ldots,a_k(x_k)))\mid a_0,a_1,\ldots,a_k\in \mathsf{Aut}(\mathfrak{B})\}$

contains a function g that is canonical wrt \mathfrak{B} . (g is 'canonisation' of f)

Problem: The automorphism group of \mathfrak{S} is **not** extremely amenable.

A permutation group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

Aut(\mathfrak{B}): the automorphism group of \mathfrak{B} .

Lemma (Canonisation lemma; B.+Pinsker+Tsankov'11).

Suppose \mathfrak{B} is ω -categorical and Aut(\mathfrak{B}) is extremely amenable. Then for any $f: B^k \to B$, the set

 $\{(x_1,\ldots,x_k)\mapsto a_0(f(a_1(x_1),\ldots,a_k(x_k)))\mid a_0,a_1,\ldots,a_k\in \mathsf{Aut}(\mathfrak{B})\}$

contains a function g that is canonical wrt \mathfrak{B} . (g is 'canonisation' of f)

Problem: The automorphism group of \mathfrak{S} is **not** extremely amenable.

A permutation group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

Aut(\mathfrak{B}): the automorphism group of \mathfrak{B} .

Lemma (Canonisation lemma; B.+Pinsker+Tsankov'11).

Suppose \mathfrak{B} is ω -categorical and Aut(\mathfrak{B}) is extremely amenable. Then for any $f: B^k \to B$, the set

 $\{(x_1,\ldots,x_k)\mapsto a_0(f(a_1(x_1),\ldots,a_k(x_k)))\mid a_0,a_1,\ldots,a_k\in \mathsf{Aut}(\mathfrak{B})\}$

contains a function g that is canonical wrt \mathfrak{B} . (g is 'canonisation' of f)

Problem: The automorphism group of \mathfrak{S} is not extremely amenable.

A permutation group *G* is called extremely amenable if every continuous action of *G* on a compact Hausdorff space has a fixed point.

Aut(\mathfrak{B}): the automorphism group of \mathfrak{B} .

Lemma (Canonisation lemma; B.+Pinsker+Tsankov'11).

Suppose \mathfrak{B} is ω -categorical and Aut(\mathfrak{B}) is extremely amenable. Then for any $f: B^k \to B$, the set

 $\overline{\{(x_1,\ldots,x_k)\mapsto a_0(f(a_1(x_1),\ldots,a_k(x_k)))\mid a_0,a_1,\ldots,a_k\in \operatorname{Aut}(\mathfrak{B})\}}$

contains a function g that is canonical wrt \mathfrak{B} . (g is 'canonisation' of f)

Problem: The automorphism group of \mathfrak{S} is not extremely amenable.

Proof: Ramsey Theory

For structures \mathfrak{L} and \mathfrak{S} , write $\binom{\mathfrak{L}}{\mathfrak{S}}$ for the set of all embeddings of $\mathfrak{S} \hookrightarrow \mathfrak{L}$.

Definition.

Write

 $\mathfrak{L}
ightarrow (\mathfrak{M})^{\mathfrak{S}}_{c}$

iff for all $\chi: \begin{pmatrix} \mathfrak{L} \\ \mathfrak{S} \end{pmatrix} \to [c]$ there exists an $e \in \begin{pmatrix} \mathfrak{L} \\ \mathfrak{M} \end{pmatrix}$ such that $|\chi(e \circ \begin{pmatrix} \mathfrak{M} \\ \mathfrak{S} \end{pmatrix})| \leq 1$.

Proof: Ramsey Theory

For structures \mathfrak{L} and \mathfrak{S} , write $\binom{\mathfrak{L}}{\mathfrak{S}}$ for the set of all embeddings of $\mathfrak{S} \hookrightarrow \mathfrak{L}$.

Definition.

Write

 $\mathfrak{L}
ightarrow (\mathfrak{M})^{\mathfrak{S}}_{c}$

iff for all $\chi: \begin{pmatrix} \mathfrak{L} \\ \mathfrak{S} \end{pmatrix} \to [c]$ there exists an $e \in \begin{pmatrix} \mathfrak{L} \\ \mathfrak{M} \end{pmatrix}$ such that $|\chi(e \circ \begin{pmatrix} \mathfrak{M} \\ \mathfrak{S} \end{pmatrix})| \leq 1$.

Proof: Ramsey Theory

For structures \mathfrak{L} and \mathfrak{S} , write $\binom{\mathfrak{L}}{\mathfrak{S}}$ for the set of all embeddings of $\mathfrak{S} \hookrightarrow \mathfrak{L}$.

Definition.

Write

 $\mathfrak{L} \to (\mathfrak{M})^{\mathfrak{S}}_{\mathfrak{c}}$

 $\text{iff for all } \chi \colon \begin{pmatrix} \mathfrak{L} \\ \mathfrak{S} \end{pmatrix} \to [c] \text{ there exists an } e \in \begin{pmatrix} \mathfrak{L} \\ \mathfrak{M} \end{pmatrix} \text{ such that } |\chi(e \circ \begin{pmatrix} \mathfrak{M} \\ \mathfrak{S} \end{pmatrix})| \leq 1.$

Definition [Nešetřil]. A structure \mathfrak{B} is **Ramsey** iff $\mathfrak{B} \to (\mathfrak{M})^{\mathfrak{S}}_{c}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$ and for every $c \in \mathbb{N}$.

Example. (\mathbb{Q} ; <) is Ramsey. (\mathbb{Q} ; <) \rightarrow (\mathfrak{M})^S for all \mathfrak{M} := ([*m*]; <), \mathfrak{S} := ([*s*]; <), $c \in \mathbb{N}$. Reformulation of Ramsey's theorem!

(Kechris, Pestov, Todorcevic'05).

A ctble homogeneous structure B is Ramsey if and only if Aut(B) is extremely amenable, i.e., every continuous action on a compact Hausdorff space has a fixed point.

Definition [Nešetřil].

A structure \mathfrak{B} is Ramsey iff $\mathfrak{B} \to (\mathfrak{M})^{\mathfrak{S}}_{c}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$ and for every $c \in \mathbb{N}$.

Example. (\mathbb{Q} ; <) is Ramsey. (\mathbb{Q} ; <) \rightarrow (\mathfrak{M})^{\mathfrak{S}} for all \mathfrak{M} := ([m]; <), \mathfrak{S} := ([s]; <), $c \in \mathbb{N}$. Reformulation of Ramsey's theorem!

Theorem (Kechris, Pestov, Todorcevic'05).

A ctble homogeneous structure B is Ramsey if and only if Aut(B) is extremely amenable, i.e., every continuous action on a compact Hausdorff space has a fixed point.

Definition [Nešetřil].

A structure \mathfrak{B} is Ramsey iff $\mathfrak{B} \to (\mathfrak{M})^{\mathfrak{S}}_{c}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$ and for every $c \in \mathbb{N}$.

Example. $(\mathbb{Q}; <)$ is Ramsey.

 $(\mathbb{Q}; <) \to (\mathfrak{M})^{\mathfrak{S}}_{c}$ for all $\mathfrak{M} := ([m]; <), \mathfrak{S} := ([s]; <), c \in \mathbb{N}$ Reformulation of Ramsey's theorem!

Theorem (Kechris, Pestov, Todorcevic'05).

A ctble homogeneous structure \mathfrak{B} is Ramsey if and only if Aut(\mathfrak{B}) is extremely amenable, i.e., every continuous action on a compact Hausdorff space has a fixed point.

Definition [Nešetřil].

A structure \mathfrak{B} is Ramsey iff $\mathfrak{B} \to (\mathfrak{M})^{\mathfrak{S}}_{c}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$ and for every $c \in \mathbb{N}$.

Example. $(\mathbb{Q}; <)$ is Ramsey. $(\mathbb{Q}; <) \rightarrow (\mathfrak{M})^{\mathfrak{S}}_{c}$ for all $\mathfrak{M} := ([m]; <), \mathfrak{S} := ([s]; <), c \in \mathbb{N}$. Reformulation of Ramsey's theorem!

Theorem (Kechris, Pestov, Todorcevic'05).

A ctble homogeneous structure \mathfrak{B} is Ramsey if and only if $Aut(\mathfrak{B})$ is extremely amenable, i.e., every continuous action on a compact Hausdorff space has a fixed point.

Definition [Nešetřil].

A structure \mathfrak{B} is Ramsey iff $\mathfrak{B} \to (\mathfrak{M})^{\mathfrak{S}}_{c}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$ and for every $c \in \mathbb{N}$.

Example. $(\mathbb{Q}; <)$ is Ramsey. $(\mathbb{Q}; <) \rightarrow (\mathfrak{M})^{\mathfrak{S}}_{c}$ for all $\mathfrak{M} := ([m]; <), \mathfrak{S} := ([s]; <), c \in \mathbb{N}$. Reformulation of Ramsey's theorem!

Theorem (Kechris, Pestov, Todorcevic'05).

A ctble homogeneous structure \mathfrak{B} is Ramsey if and only if $Aut(\mathfrak{B})$ is extremely amenable, i.e., every continuous action on a compact Hausdorff space has a fixed point.

Definition [Nešetřil].

A structure \mathfrak{B} is Ramsey iff $\mathfrak{B} \to (\mathfrak{M})^{\mathfrak{S}}_{c}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$ and for every $c \in \mathbb{N}$.

Example. $(\mathbb{Q}; <)$ is Ramsey. $(\mathbb{Q}; <) \rightarrow (\mathfrak{M})^{\mathfrak{S}}_{c}$ for all $\mathfrak{M} := ([m]; <), \mathfrak{S} := ([s]; <), c \in \mathbb{N}$. Reformulation of Ramsey's theorem!

Theorem (Kechris, Pestov, Todorcevic'05).

A ctble homogeneous structure \mathfrak{B} is Ramsey if and only if $\operatorname{Aut}(\mathfrak{B})$ is extremely amenable, i.e., every continuous action on a compact Hausdorff space has a fixed point.

Definition. C: class of all expansions of structures from $Age(\mathfrak{S})$ by a binary relation < which denotes a linear extension of PP.

Proposition.

- **1** C is an amalgamation class.
- 2 By Fraïssé's theorem there exists a homogeneous structure $(\mathfrak{S}, <)$ whose age is \mathcal{C} .
- **3** $(\mathfrak{S}, <)$ has the Ramsey property.

Definition. C: class of all expansions of structures from $Age(\mathfrak{S})$ by a binary relation < which denotes a linear extension of PP.

Proposition.

- **1** C is an amalgamation class.
- 2 By Fraïssé's theorem there exists a homogeneous structure (G, <) whose age is C.</p>
- 3 $(\mathfrak{S}, <)$ has the Ramsey property.
Definition. C: class of all expansions of structures from $Age(\mathfrak{S})$ by a binary relation < which denotes a linear extension of PP.

Proposition.

- **1** C is an amalgamation class.
- 2 By Fraïssé's theorem there exists a homogeneous structure $(\mathfrak{S}, <)$ whose age is \mathcal{C} .
- **3** $(\mathfrak{S}, <)$ has the Ramsey property.

Definition. C: class of all expansions of structures from $Age(\mathfrak{S})$ by a binary relation < which denotes a linear extension of PP.

Proposition.

- **1** C is an amalgamation class.
- 2 By Fraïssé's theorem there exists a homogeneous structure $(\mathfrak{S}, <)$ whose age is \mathcal{C} .
- $\mathfrak{S}(\mathfrak{S},<)$ has the Ramsey property.

- Use the fact that the ordered countable atomless Boolean algebra $(A; \cap, \cup, \overline{\cdot}, 0, 1, <)$ is Ramsey (Graham+Rotschild'71,KPT'05).
- Define

 $\begin{aligned} \mathsf{PP'}(x,y) & \text{as } x \cap y = x \land x \neq y \\ \mathsf{DR'}(x,y) & \text{as } x \cap y = \emptyset \\ \mathsf{PO'}(x,y) & \text{as } \neg \mathsf{PP'}(x,y) \land \neg \mathsf{PP'}(y,x) \land \neg \mathsf{DR'}(x,y) \land x \neq y. \end{aligned}$

- The structure (*A*; PP', DR', PO') is not isomorphic to S, but homomorphically equivalent to it.
- Use a Ramsey transfer technique from Mottet+Pinsker'21.

■ Use the fact that the ordered countable atomless Boolean algebra $(A; \cap, \cup, \overline{\cdot}, 0, 1, <)$ is Ramsey (Graham+Rotschild'71,KPT'05).

Define

 $\begin{aligned} \mathsf{PP'}(x,y) \text{ as } x \cap y &= x \land x \neq y \\ \mathsf{DR'}(x,y) \text{ as } x \cap y &= \emptyset \\ \mathsf{PO'}(x,y) \text{ as } \neg \mathsf{PP'}(x,y) \land \neg \mathsf{PP'}(y,x) \land \neg \mathsf{DR'}(x,y) \land x \neq y. \end{aligned}$

- The structure (*A*; PP', DR', PO') is not isomorphic to S, but homomorphically equivalent to it.
- Use a Ramsey transfer technique from Mottet+Pinsker'21.

- Use the fact that the ordered countable atomless Boolean algebra $(A; \cap, \cup, \bar{\cdot}, 0, 1, <)$ is Ramsey (Graham+Rotschild'71,KPT'05).
- Define

$$\begin{aligned} \mathsf{PP'}(x,y) \text{ as } x \cap y &= x \land x \neq y \\ \mathsf{DR'}(x,y) \text{ as } x \cap y &= \emptyset \\ \mathsf{PO'}(x,y) \text{ as } \neg \mathsf{PP'}(x,y) \land \neg \mathsf{PP'}(y,x) \land \neg \mathsf{DR'}(x,y) \land x \neq y. \end{aligned}$$

- The structure (*A*; PP', DR', PO') is not isomorphic to S, but homomorphically equivalent to it.
- Use a Ramsey transfer technique from Mottet+Pinsker'21.

- Use the fact that the ordered countable atomless Boolean algebra $(A; \cap, \cup, \bar{\cdot}, 0, 1, <)$ is Ramsey (Graham+Rotschild'71,KPT'05).
- Define

$$\begin{aligned} \mathsf{PP'}(x,y) & \text{as } x \cap y = x \land x \neq y \\ \mathsf{DR'}(x,y) & \text{as } x \cap y = \emptyset \\ \mathsf{PO'}(x,y) & \text{as } \neg \mathsf{PP'}(x,y) \land \neg \mathsf{PP'}(y,x) \land \neg \mathsf{DR'}(x,y) \land x \neq y. \end{aligned}$$

■ The structure (*A*; PP', DR', PO') is not isomorphic to \mathfrak{S} , but homomorphically equivalent to it.

Use a Ramsey transfer technique from Mottet+Pinsker'21.

- Use the fact that the ordered countable atomless Boolean algebra $(A; \cap, \cup, \bar{\cdot}, 0, 1, <)$ is Ramsey (Graham+Rotschild'71,KPT'05).
- Define

$$\begin{aligned} \mathsf{PP'}(x,y) & \text{as } x \cap y = x \land x \neq y \\ \mathsf{DR'}(x,y) & \text{as } x \cap y = \emptyset \\ \mathsf{PO'}(x,y) & \text{as } \neg \mathsf{PP'}(x,y) \land \neg \mathsf{PP'}(y,x) \land \neg \mathsf{DR'}(x,y) \land x \neq y. \end{aligned}$$

- The structure (*A*; PP', DR', PO') is not isomorphic to \mathfrak{S} , but homomorphically equivalent to it.
- Use a Ramsey transfer technique from Mottet+Pinsker'21.

The set $Pol(\mathfrak{B})$ of all polymorphisms of \mathfrak{B} is a minion:

if $f \in \mathsf{Pol}(\mathfrak{B})$ has arity k and $\alpha \colon \{1, \ldots, n\} \to \{1, \ldots, k\}$, then the minor

$$f_{\alpha}$$
: $(x_1,\ldots,x_n) \mapsto f(x_{\alpha(1)},\ldots,x_{\alpha(n)})$

is also in $Pol(\mathfrak{B})$.

A function μ : Pol $(\mathfrak{B}) \rightarrow$ Pol (\mathfrak{C}) is called a minion homomorphism if

$$\mu(f_{\alpha}) = \mu(f)_{\alpha}$$

for all $f \in \mathsf{Pol}(\mathfrak{B}), \alpha \colon \{1, \ldots, n\} \to \{1, \ldots, k\}.$

- If Pol(𝔅) has a minion homomorphism to Pol(𝔅₃), then CSP(𝔅) is NP-hard.
- If B has no minion homomorphism to Pol(K₃), then it has a cyclic polymorphism (and CSP(B) is in P).

The set $Pol(\mathfrak{B})$ of all polymorphisms of \mathfrak{B} is a minion: if $f \in Pol(\mathfrak{B})$ has arity k and α : $\{1, \ldots, n\} \rightarrow \{1, \ldots, k\}$, then the minor

$$f_{\alpha}$$
: $(x_1,\ldots,x_n) \mapsto f(x_{\alpha(1)},\ldots,x_{\alpha(n)})$

is also in $Pol(\mathfrak{B})$.

A function μ : Pol $(\mathfrak{B}) \rightarrow$ Pol (\mathfrak{C}) is called a minion homomorphism if

$$\mu(f_{\alpha}) = \mu(f)_{\alpha}$$

for all $f \in \mathsf{Pol}(\mathfrak{B}), \alpha \colon \{1, \ldots, n\} \to \{1, \ldots, k\}.$

- If Pol(𝔅) has a minion homomorphism to Pol(𝐾), then CSP(𝔅) is NP-hard.
- If 𝔅 has no minion homomorphism to Pol(K₃), then it has a cyclic polymorphism (and CSP(𝔅) is in P).

The set $Pol(\mathfrak{B})$ of all polymorphisms of \mathfrak{B} is a minion: if $f \in Pol(\mathfrak{B})$ has arity k and α : $\{1, \ldots, n\} \rightarrow \{1, \ldots, k\}$, then the minor

$$f_{\alpha}$$
: $(x_1,\ldots,x_n) \mapsto f(x_{\alpha(1)},\ldots,x_{\alpha(n)})$

is also in $Pol(\mathfrak{B})$.

A function μ : $\text{Pol}(\mathfrak{B}) \rightarrow \text{Pol}(\mathfrak{C})$ is called a minion homomorphism if

$$\mu(f_{\alpha}) = \mu(f)_{\alpha}$$

for all $f \in \mathsf{Pol}(\mathfrak{B}), \alpha \colon \{1, \ldots, n\} \to \{1, \ldots, k\}.$

- If Pol(𝔅) has a minion homomorphism to Pol(𝐾), then CSP(𝔅) is NP-hard.
- If 𝔅 has no minion homomorphism to Pol(𝐾₃), then it has a cyclic polymorphism (and CSP(𝔅) is in P).

The set $Pol(\mathfrak{B})$ of all polymorphisms of \mathfrak{B} is a minion: if $f \in Pol(\mathfrak{B})$ has arity k and α : $\{1, \ldots, n\} \rightarrow \{1, \ldots, k\}$, then the minor

$$f_{\alpha}$$
: $(x_1,\ldots,x_n) \mapsto f(x_{\alpha(1)},\ldots,x_{\alpha(n)})$

is also in $Pol(\mathfrak{B})$.

A function μ : $\text{Pol}(\mathfrak{B}) \rightarrow \text{Pol}(\mathfrak{C})$ is called a minion homomorphism if

$$\mu(f_{\alpha}) = \mu(f)_{\alpha}$$

for all $f \in \mathsf{Pol}(\mathfrak{B}), \alpha \colon \{1, \ldots, n\} \to \{1, \ldots, k\}.$

- If Pol(𝔅) has a minion homomorphism to Pol(𝐾), then CSP(𝔅) is NP-hard.
- If 𝔅 has no minion homomorphism to Pol(𝐾₃), then it has a cyclic polymorphism (and CSP(𝔅) is in P).

The set $Pol(\mathfrak{B})$ of all polymorphisms of \mathfrak{B} is a minion: if $f \in Pol(\mathfrak{B})$ has arity k and α : $\{1, \ldots, n\} \rightarrow \{1, \ldots, k\}$, then the minor

$$f_{\alpha}$$
: $(x_1,\ldots,x_n) \mapsto f(x_{\alpha(1)},\ldots,x_{\alpha(n)})$

is also in $Pol(\mathfrak{B})$.

A function μ : $\text{Pol}(\mathfrak{B}) \rightarrow \text{Pol}(\mathfrak{C})$ is called a minion homomorphism if

$$\mu(f_{\alpha}) = \mu(f)_{\alpha}$$

for all $f \in \mathsf{Pol}(\mathfrak{B}), \alpha \colon \{1, \ldots, n\} \to \{1, \ldots, k\}.$

- If Pol(𝔅) has a minion homomorphism to Pol(𝐾), then CSP(𝔅) is NP-hard.
- If B has no minion homomorphism to Pol(K₃), then it has a cyclic polymorphism (and CSP(B) is in P).

Theorem (B.+Pinsker'11, Barto+Opršal+Pinsker'15): if $Pol(\mathfrak{B})$ has a uniformly continuous minion homomorphism to $Pol(K_3)$, then $CSP(\mathfrak{B})$ is NP-hard.

Note:

- \blacksquare The set ${\mathfrak C}$ of all polymorphisms of ${\mathfrak S}$ that are canonical wrt ${\mathfrak S}$ is a minion.
- The map ξ defined on C is a uniformly continuous minion homomorphism to the polymorphisms of some finite structure §.

- If \mathfrak{F} has a cyclic polymorphism, then $CSP(\mathfrak{B})$ is in P.
- Otherwise, Pol(3) has minion homomorphism µ to Pol(K3).
- Goal: use μ to find uniformly continuous minion homomorphism from Pol(B) to Pol(K₃).

Theorem (B.+Pinsker'11, Barto+Opršal+Pinsker'15): if $Pol(\mathfrak{B})$ has a uniformly continuous minion homomorphism to $Pol(\mathcal{K}_3)$, then $CSP(\mathfrak{B})$ is NP-hard.

Note:

- The set \mathcal{C} of all polymorphisms of \mathfrak{S} that are canonical wrt \mathfrak{S} is a minion.
- The map ξ, defined on C is a uniformly continuous minion homomorphism to the polymorphisms of some finite structure F.

- If 𝔅 has a cyclic polymorphism, then CSP(𝔅) is in P.
- Otherwise, Pol(3) has minion homomorphism µ to Pol(K3).
- Goal: use μ to find uniformly continuous minion homomorphism from Pol(B) to Pol(K₃).

Theorem (B.+Pinsker'11, Barto+Opršal+Pinsker'15): if $Pol(\mathfrak{B})$ has a uniformly continuous minion homomorphism to $Pol(\mathcal{K}_3)$, then $CSP(\mathfrak{B})$ is NP-hard.

- The set \mathcal{C} of all polymorphisms of \mathfrak{S} that are canonical wrt \mathfrak{S} is a minion.
- The map ξ, defined on C is a uniformly continuous minion homomorphism to the polymorphisms of some finite structure F.

- If \mathfrak{F} has a cyclic polymorphism, then $CSP(\mathfrak{B})$ is in P.
- Otherwise, Pol(3) has minion homomorphism µ to Pol(K3).
- Goal: use μ to find uniformly continuous minion homomorphism from Pol(B) to Pol(K₃).

Theorem (B.+Pinsker'11, Barto+Opršal+Pinsker'15): if $Pol(\mathfrak{B})$ has a uniformly continuous minion homomorphism to $Pol(\mathcal{K}_3)$, then $CSP(\mathfrak{B})$ is NP-hard.

Note:

- The set \mathcal{C} of all polymorphisms of \mathfrak{S} that are canonical wrt \mathfrak{S} is a minion.
- The map ξ defined on C is a uniformly continuous minion homomorphism to the polymorphisms of some finite structure F.

- If \mathfrak{F} has a cyclic polymorphism, then $CSP(\mathfrak{B})$ is in P.
- Goal: use μ to find uniformly continuous minion homomorphism from Pol(B) to Pol(K₃).

Theorem (B.+Pinsker'11, Barto+Opršal+Pinsker'15): if $Pol(\mathfrak{B})$ has a uniformly continuous minion homomorphism to $Pol(\mathcal{K}_3)$, then $CSP(\mathfrak{B})$ is NP-hard.

Note:

- The set \mathcal{C} of all polymorphisms of \mathfrak{S} that are canonical wrt \mathfrak{S} is a minion.
- The map ξ defined on C is a uniformly continuous minion homomorphism to the polymorphisms of some finite structure F.

- If \mathfrak{F} has a cyclic polymorphism, then $CSP(\mathfrak{B})$ is in P.
- Otherwise, Pol(𝔅) has minion homomorphism µ to Pol(𝐾).
- Goal: use μ to find uniformly continuous minion homomorphism from Pol(B) to Pol(K₃).

Theorem (B.+Pinsker'11, Barto+Opršal+Pinsker'15): if $Pol(\mathfrak{B})$ has a uniformly continuous minion homomorphism to $Pol(\mathcal{K}_3)$, then $CSP(\mathfrak{B})$ is NP-hard.

Note:

- The set \mathcal{C} of all polymorphisms of \mathfrak{S} that are canonical wrt \mathfrak{S} is a minion.
- The map ξ defined on C is a uniformly continuous minion homomorphism to the polymorphisms of some finite structure F.

- If \mathfrak{F} has a cyclic polymorphism, then $CSP(\mathfrak{B})$ is in P.
- Otherwise, $Pol(\mathfrak{F})$ has minion homomorphism μ to $Pol(K_3)$.
- Goal: use μ to find uniformly continuous minion homomorphism from Pol(𝔅) to Pol(K₃).

Theorem (B.+Pinsker'11, Barto+Opršal+Pinsker'15): if $Pol(\mathfrak{B})$ has a uniformly continuous minion homomorphism to $Pol(\mathcal{K}_3)$, then $CSP(\mathfrak{B})$ is NP-hard.

Note:

- The set \mathcal{C} of all polymorphisms of \mathfrak{S} that are canonical wrt \mathfrak{S} is a minion.
- The map ξ defined on C is a uniformly continuous minion homomorphism to the polymorphisms of some finite structure F.

- If \mathfrak{F} has a cyclic polymorphism, then $CSP(\mathfrak{B})$ is in P.
- Otherwise, $Pol(\mathfrak{F})$ has minion homomorphism μ to $Pol(\mathcal{K}_3)$.
- Goal: use μ to find uniformly continuous minion homomorphism from Pol(\mathfrak{B}) to Pol(K_3).

Theorem (B.+Pinsker'11, Barto+Opršal+Pinsker'15): if $Pol(\mathfrak{B})$ has a uniformly continuous minion homomorphism to $Pol(\mathcal{K}_3)$, then $CSP(\mathfrak{B})$ is NP-hard.

Note:

- The set \mathcal{C} of all polymorphisms of \mathfrak{S} that are canonical wrt \mathfrak{S} is a minion.
- The map ξ defined on C is a uniformly continuous minion homomorphism to the polymorphisms of some finite structure F.

- If \mathfrak{F} has a cyclic polymorphism, then $CSP(\mathfrak{B})$ is in P.
- Otherwise, $Pol(\mathfrak{F})$ has minion homomorphism μ to $Pol(K_3)$.
- Goal: use µ to find uniformly continuous minion homomorphism from Pol(𝔅) to Pol(𝐾).

C: set of all polymorphisms of 𝔅 that are canonical with respect to 𝔅. μ : C → Pol(K_3) has the unique interpolation property (UIP) if for all $f \in$ Pol(if g and h are canonisations of f, then $\mu(g) = \mu(h)$.

Appears implicitly in B.+Mottet'16 and explicitly in B.+Bodor'24.

Extension Lemma (B.+Bodor'24). If $\mu: \mathcal{C} \to \text{Pol}(K_3)$ has the UIP, then μ can be extended to a uniformly continuous minor-preserving map from $\text{Pol}(\mathfrak{B})$ to $\text{Pol}(K_3)$.

- Canonisation lemma only for the order expansion of S.
- How to prove the UIP?
- Extra work for our Datalog result.

𝔅: set of all polymorphisms of 𝔅 that are canonical with respect to 𝔅. $μ: 𝔅 → Pol(𝐾_3)$ has the unique interpolation property (UIP) if for all *f* ∈ Pol(𝔅), if *g* and *h* are canonisations of *f*, then μ(g) = μ(h).

Appears implicitly in B.+Mottet'16 and explicitly in B.+Bodor'24.

Extension Lemma (B.+Bodor'24). If $\mu: \mathbb{C} \to \text{Pol}(K_3)$ has the UIP, then μ can be extended to a uniformly continuous minor-preserving map from $\text{Pol}(\mathfrak{B})$ to $\text{Pol}(K_3)$.

- Canonisation lemma only for the order expansion of S.
- How to prove the UIP?
- Extra work for our Datalog result.

𝔅: set of all polymorphisms of 𝔅 that are canonical with respect to 𝔅. $μ: 𝔅 → Pol(𝐾_3)$ has the unique interpolation property (UIP) if for all *f* ∈ Pol(𝔅), if *g* and *h* are canonisations of *f*, then μ(g) = μ(h).

Appears implicitly in B.+Mottet'16 and explicitly in B.+Bodor'24.

Extension Lemma (B.+Bodor'24). If $\mu: \mathcal{C} \to \text{Pol}(K_3)$ has the UIP, then μ can be extended to a uniformly continuous minor-preserving map from $\text{Pol}(\mathfrak{B})$ to $\text{Pol}(K_3)$.

- Canonisation lemma only for the order expansion of \mathfrak{S} .
- How to prove the UIP?
- Extra work for our Datalog result.

𝔅: set of all polymorphisms of 𝔅 that are canonical with respect to 𝔅. $μ: 𝔅 → Pol(𝐾_3)$ has the unique interpolation property (UIP) if for all *f* ∈ Pol(𝔅), if *g* and *h* are canonisations of *f*, then μ(g) = μ(h).

Appears implicitly in B.+Mottet'16 and explicitly in B.+Bodor'24.

Extension Lemma (B.+Bodor'24). If $\mu: \mathbb{C} \to \mathsf{Pol}(\mathcal{K}_3)$ has the UIP, then μ can be extended to a uniformly continuous minor-preserving map from $\mathsf{Pol}(\mathfrak{B})$ to $\mathsf{Pol}(\mathcal{K}_3)$.

- Disclaimer. Many complications:
 - Canonisation lemma only for the order expansion of S.
 - How to prove the UIP?
 - Extra work for our Datalog result.

𝔅: set of all polymorphisms of 𝔅 that are canonical with respect to 𝔅. $μ: 𝔅 → Pol(𝐾_3)$ has the unique interpolation property (UIP) if for all *f* ∈ Pol(𝔅), if *g* and *h* are canonisations of *f*, then μ(g) = μ(h).

Appears implicitly in B.+Mottet'16 and explicitly in B.+Bodor'24.

Extension Lemma (B.+Bodor'24). If $\mu: \mathbb{C} \to \mathsf{Pol}(\mathcal{K}_3)$ has the UIP, then μ can be extended to a uniformly continuous minor-preserving map from $\mathsf{Pol}(\mathfrak{B})$ to $\mathsf{Pol}(\mathcal{K}_3)$.

- Canonisation lemma only for the order expansion of *S*.
- How to prove the UIP?
- Extra work for our Datalog result.

C: set of all polymorphisms of 𝔅 that are canonical with respect to 𝔅. μ : C → Pol(K_3) has the unique interpolation property (UIP) if for all $f \in Pol(𝔅)$, if g and h are canonisations of f, then $\mu(g) = \mu(h)$.

Appears implicitly in B.+Mottet'16 and explicitly in B.+Bodor'24.

Extension Lemma (B.+Bodor'24). If $\mu: \mathbb{C} \to \text{Pol}(\mathcal{K}_3)$ has the UIP, then μ can be extended to a uniformly continuous minor-preserving map from $\text{Pol}(\mathfrak{B})$ to $\text{Pol}(\mathcal{K}_3)$.

- Canonisation lemma only for the order expansion of 𝔅.
- How to prove the UIP?
- Extra work for our Datalog result.

𝔅: set of all polymorphisms of 𝔅 that are canonical with respect to 𝔅. $μ: 𝔅 → Pol(𝐾_3)$ has the unique interpolation property (UIP) if for all *f* ∈ Pol(𝔅), if *g* and *h* are canonisations of *f*, then μ(g) = μ(h).

Appears implicitly in B.+Mottet'16 and explicitly in B.+Bodor'24.

Extension Lemma (B.+Bodor'24). If $\mu: \mathbb{C} \to \text{Pol}(\mathcal{K}_3)$ has the UIP, then μ can be extended to a uniformly continuous minor-preserving map from $\text{Pol}(\mathfrak{B})$ to $\text{Pol}(\mathcal{K}_3)$.

Disclaimer. Many complications:

- Canonisation lemma only for the order expansion of 𝔅.
- How to prove the UIP?

Extra work for our Datalog result.

C: set of all polymorphisms of 𝔅 that are canonical with respect to 𝔅. μ : C → Pol(K_3) has the unique interpolation property (UIP) if for all $f \in Pol(𝔅)$, if g and h are canonisations of f, then $\mu(g) = \mu(h)$.

Appears implicitly in B.+Mottet'16 and explicitly in B.+Bodor'24.

Extension Lemma (B.+Bodor'24). If $\mu: \mathbb{C} \to \text{Pol}(\mathcal{K}_3)$ has the UIP, then μ can be extended to a uniformly continuous minor-preserving map from $\text{Pol}(\mathfrak{B})$ to $\text{Pol}(\mathcal{K}_3)$.

- Canonisation lemma only for the order expansion of 𝔅.
- How to prove the UIP?
- Extra work for our Datalog result.

Open Problem

The structure \mathfrak{S} is an example of a finitely bounded homogeneous structure.

Conjecture (B.+Pinsker'11): Every reduct \mathfrak{B} of a finitely bounded homogeneous structure has a CSP which is in P or NP-complete.

Tractability Conjecture (B.+Pinsker'11, Barto+Kompatscher+Olšak+VanPham+Pinsker'16): If Pol(\mathfrak{B}) has no uniformly continuous minor-preserving map to Pol(K_3), then CSP(\mathfrak{B}) is in P.

Open Problem

The structure \mathfrak{S} is an example of a finitely bounded homogeneous structure.

Conjecture (B.+Pinsker'11): Every reduct \mathfrak{B} of a finitely bounded homogeneous structure has a CSP which is in P or NP-complete.

Tractability Conjecture (B.+Pinsker'11, Barto+Kompatscher+Olšak+VanPham+Pinsker'16): If Pol(\mathfrak{B}) has no uniformly continuous minor-preserving map to Pol(K_3), then CSP(\mathfrak{B}) is in P.

Open Problem

The structure \mathfrak{S} is an example of a finitely bounded homogeneous structure.

Conjecture (B.+Pinsker'11): Every reduct \mathfrak{B} of a finitely bounded homogeneous structure has a CSP which is in P or NP-complete.

Tractability Conjecture (B.+Pinsker'11,

Barto+Kompatscher+Olšak+VanPham+Pinsker'16): If $Pol(\mathfrak{B})$ has no uniformly continuous minor-preserving map to $Pol(K_3)$, then $CSP(\mathfrak{B})$ is in P.