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More Examples of CSPs

Famous CSPs:
m CSP(Z;+, ,1): Hilbert's 10th problem
Undecidable (Davis+Matiyasevich+Putnam+Robinson’71)
m CSP(R;+, *,1): decidable (Tarski-Seidenberg).
m CSP(Q;+, *,1): decidability unknown.
m CSP(R; +,1,{(x,y) | y > x?):
not known to be in P,
harder than sums-of-square-roots problem (computational geometry).

m CSP(Q{(x,y) | x =y + 15L{(x,¥) [ x =2y} {(x,y,2) | x = min(y, 2)}):
not known to be in P,
at least as hard as solving mean payoff games (verification)

Theorem. B.+Grohe’08: Every decision problem is equivalent to a CSP
(under polynomial-time Turing reductions)
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Polymorphisms

Def. An operation f: DX — D preserves R C D™ ifforall a',...,a* ¢ R
(f(al,...,a),...,f(ah,...,a)) € R.

Example: (x,y) — (x + y)/2 preserves all convex relations R C R™

m fis a polymorphism of 95 if f preserves all relations of ‘8.

m Pol(B): set of all polymorphisms of 8.

m Pol(93) contains Aut(8), the automorphisms of 3.

m Pol(B) is a clone: contains projections and closed under composition.
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Let B be a finite structure.
Theorem (Bulatov+Jeavons+Krokhin’03).

m If Pol(2A) = Pol(28) then CSP(2() and CSP(8) are P-time equivalent.
m [f Pol(2() ~ Pol(28) then CSP(2() and CSP(8) are P-time equivalent.

m If € is homomorphically equivalent to B of minimal size,
and Pol(¢, ¢y, ..., cy) has a homomorphism to Pol(K3),
then CSP(®8) is NP-hard.

Theorem (Bulatov’17, Zhuk’17). If Pol(¢, ¢4, ..., c,) does does not have a
homomorphism to CSP(K3), then CSP(8) is in P.
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Looking for a class C of infinite structures such that
(A) The universal-algebraic approach also applies to structures from C.
(B) CSPs for structures from C are interesting in Logic, Math and CS.

Definition

A structure B is called w-categorical if all countable structures that satisfy the
same first-order sentences as B are isomorphic.

Examples.
m (Q; <) is w-categorical: Cantor’1895:
all countable dense unbounded linear orders are isomorphic.
m Every finite structure.

m Every homogeneous structure with a finite relational signature
(every isomorphism between finite substructures
can be extended to an automorphism).

m Reducts of w-categorical structures are w-categorical.
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Complexity Classification

Model-theoretic Challenges

Manuel Bodirsky



Complexity Classification

Theorem (B.+Nesetfil'03). If 2( and B are w-categorical and Pol(2l) = Pol(
then CSP(2() and CSP(B) are polynomial-time equivalent.

Model-theoretic Challenges Manuel Bodirsky

B),



Complexity Classification

Theorem (B.+Nesetfil'03). If 2( and B are w-categorical and Pol(2l) = Pol(
then CSP(2() and CSP(B) are polynomial-time equivalent.

Theorem (B.+Kara 2007). 98: a structure of the form (Q; Ry, ..., R))
whose relations are first-order definable over (Q; <).
Then CSP(%8) is either in P or NP-complete.

Model-theoretic Challenges Manuel Bodirsky

B),



Complexity Classification

Theorem (B.+Nesetfil'03). If 2( and B are w-categorical and Pol(2l) = Pol(
then CSP(2() and CSP(B) are polynomial-time equivalent.

Theorem (B.+Kara 2007). 98: a structure of the form (Q; Ry, ..., R))
whose relations are first-order definable over (Q; <).
Then CSP(%8) is either in P or NP-complete.

Examples.

Model-theoretic Challenges Manuel Bodirsky

B),



Complexity Classification

Theorem (B.+Nesetfil'03). If 2( and B are w-categorical and Pol(2l) = Pol(
then CSP(2() and CSP(B) are polynomial-time equivalent.

Theorem (B.+Kara 2007). 98: a structure of the form (Q; Ry, ..., R))
whose relations are first-order definable over (Q; <).
Then CSP(%8) is either in P or NP-complete.

Examples.
m CSP(Qi{(x,y,2) [ x>y Vx>2z})isinP.

Model-theoretic Challenges Manuel Bodirsky

B),



Complexity Classification

Theorem (B.+NeSetfil'03). If 2( and B are w-categorical and Pol(2() = Pol(B),
then CSP(2() and CSP(B) are polynomial-time equivalent.

Theorem (B.+Kara 2007). 98: a structure of the form (Q; Ry, ..., R))
whose relations are first-order definable over (Q; <).
Then CSP(%8) is either in P or NP-complete.

Examples.
m CSP(Qi{(x,y,2) [ x>y Vx>2z})isinP.
m CSP(Qi{(x,y,2) [ x=y<zVy=z<xVz=x<y})isinP.
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B: first-order reduct of (Q;<).
To classify complexity of CSP(Q; <), use result of Cameron’76:
Aut(23) equals one of the following.

m Sym(Q)

B Aut(Q; <)

[} Aut(@;{(x,y,z) [x<y<zVz<y< x})

m Two more cases.

(1) Conjecture (S. Thomas).

Let € be a homogeneous structure with finite relational signature.
Then there are finitely many structures with a first-order definition in ¢
up to first-order interdefinability.

Equivalently:
Then there are finitely many closed supergroups of Aut(¢).

Model-theoretic Challenges Manuel Bodirsky 11
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Og )= {f: BK - B} equipped with topology of pointwise convergence.
0B = Uken Og‘) equipped with sum topology.

Observations.
m C C Og closed iff there exists a structure 95 such that ¢ = Pol(53).
m Pol(B) is a topological clone: composition in Pol(28) is continuous.

&: Pol(2() — Pol(B) is called a (clone) homomorphism if
m it maps operations of arity k to operations of arity k,

m it maps the j-th projection of arity k in Pol(2() to the i-th projection of arity
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Equip B with the discrete topology.
Og )= {f: BK - B} equipped with topology of pointwise convergence.
0B = Uken Og‘) equipped with sum topology.

Observations.
m C C Og closed iff there exists a structure 95 such that ¢ = Pol(53).
m Pol(B) is a topological clone: composition in Pol(28) is continuous.

&: Pol(2() — Pol(B) is called a (clone) homomorphism if
m it maps operations of arity k to operations of arity k,

m it maps the j-th projection of arity k in Pol(2() to the i-th projection of arity
k in Pol(8),

m it preserves composition: for all g, fi,..., f, € Pol(2)

&(9(fr,..., 1)) = &(Q)(E(R), ..., E(f))
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Topological Clones

Pol(28) ~; Pol(2):
there is an isomorphism &: Pol(B) — Pol(2() which is a homeomorphism.
Theorem. Let 2l and B be w-categorical. Then

m Aut(2() ~; Aut(®B) if and only if 20 and 95 are first-order bi-interpretable
(Coquand/Ahlbrandt-Ziegler'86)

m End(2) ~; End(B) if and only if 20 and B are existentially positively
bi-interpretable (B.-Junker’10)

m Pol(2() ~; Pol(*8) if and only if 2( and 9B are primitively positively
bi-interpretable (B.+Pinsker’15)

In the final case case, CSP(2() and CSP(®8) are P-time equivalent.
(2) Reconstruction Conjecture. Let 20 and 95 be reducts of structures
that are homogeneous with finite relational signature. Then

m Pol(2A) ~ Pol(8) = Pol(2A) ~; Pol(8)

B Aut(A) ~ Aut(B) = Aut(2() ~; Aut(B).
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Finite Model Theory

Examples of CSPs for w-categorical structures 87?

Systematic source of examples:

Monadic Second-Order Logic (MSO):

extension of first-order logic by (universal and existential) quantification over
subsets of the domain.

Example 1: 3-colorability of a graph (V; E) can be expressed by
3R, G,B.Vx,y : (R(x)V G(x) V B(x))
NEX,y) = —(R(X)AR(y)

V G(xX)AG(y)
V B(x)AB(y)))
Example 2: Acyclicity of a finite digraph (V; E)
can be expressed by \

VX 40 3x € XYy € X: —E(x, y). g
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Countably Categorical Structures for MSO sentences

Theorem (B.+Knauer+Rudolph’21).

Let ©8 be such that CSP(®8) is in MSO. Then there exists an w-categorical
structure ¢ such that CSP(8) = CSP(¢).

Remarks

m If CSP(28) is even in FO (first-order logic), this was already known
(combining Rossmann’08 and Cherlin+Shelah+Shi’99)

m Result can be generalised to GSO (guarded second-order logic, see
Gradel+Hirsch+0tto’02)
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Monadic Strict NP (MSNP): restriction of MSO where
Only existential quantification over sets
A Only universal first-order quantifiers
Motivation for the name: NP = existential second-order logic (Fagin'74).

Example 1:

3R, B,G.Vx,y : (R(x) V B(x) V G(x))
A(E(x,y) = ~(R(X)AR(y) V B(x)A\B(y) V G(X)\G(y)))

Example 2:
VX,%Z(*E(X)}’) \/_'E(yaz) \/_'E(Z)X))
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m there are constants ¢y, ..., ¢, such that Pol(¢, ¢y,...,c,) has a
continuous homomorphism to Pol(Kj3),
and CSP(B) is NP-complete, or

m CSP(®B)isin P.

Remarks
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Dichotomy for MSNP

Theorem (B.+Mottet’18).

Every CSP in MSNP can be formulated as CSP(¢), for some countably
infinite w-categorical structure ¢, such that

m there are constants ¢y, ..., ¢, such that Pol(¢, ¢y,...,c,) has a
continuous homomorphism to Pol(Kj3),
and CSP(B) is NP-complete, or

m CSP(®B)isin P.

Remarks

m The P vs NP-complete dichotomy for CSPs in MSNP was already known
(Feder+Vardi’'96, Kun'13)

m Proof uses structural Ramsey theory
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The Ramsey Property

Definition [NeSetfil].

A structure B is Ramsey if

B — (M)S for all finite S, 9 — B
and for every ¢ € N.

Example. (Q; <) is Ramsey.
Reformulation of Ramsey’s theorem!

Theorem (Kechris, Pestov, Todorcevic’05).

A homogeneous structure B is Ramsey

if and only if Aut(®8) is extremely amenable,
i.e., every continuous action on a compact
Hausdorff space has a fixed point.
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The Theorem of Hubicka+Nesetril

Theorem (consequence of Hubi¢ka+Nesetfil'16).

For every CSP described by an MSNP sentence ®
there exists a structure B and a linear order < on B so that

m CSP(B) = {2 finite | 2A = @};
m (28, <) is Ramsey and w-categorical.

Remarks.
m Uses partite method from structural Ramsey theory (NeSetfil-Rodl).
m Thus: Aut(3, <) is extremely amenable.

(3) Ramsey Expansion Conjecture. Every homogeneous structure
with finite relational signature has a finite homogeneous Ramsey expansion.

Model-theoretic Challenges Manuel Bodirsky 20



Model-theoretic Challenges in Constraint Satisfaction

8: reduct of homogeneous structure € with finite relational signature.

Model-theoretic Challenges Manuel Bodirsky

21



Model-theoretic Challenges in Constraint Satisfaction

8: reduct of homogeneous structure € with finite relational signature.
(Thomas) Does Aut(25) always have finitely many closed supergroups?

Model-theoretic Challenges Manuel Bodirsky

21



Model-theoretic Challenges in Constraint Satisfaction

8: reduct of homogeneous structure € with finite relational signature.
(Thomas) Does Aut(25) always have finitely many closed supergroups?

H (Reconstruction of Topology)
Aut(B) ~ Aut(B’) = Aut(B) ~; Aut(8')?

Model-theoretic Challenges Manuel Bodirsky

21



Model-theoretic Challenges in Constraint Satisfaction

8: reduct of homogeneous structure € with finite relational signature.
(Thomas) Does Aut(25) always have finitely many closed supergroups?

H (Reconstruction of Topology)
Aut(B) ~ Aut(B’) = Aut(B) ~; Aut(8')?

H (Ramsey Expansion) Does 95 always have a finite homogeneous
expansion with the Ramsey property?

Model-theoretic Challenges Manuel Bodirsky

21



Model-theoretic Challenges in Constraint Satisfaction

8: reduct of homogeneous structure € with finite relational signature.
(Thomas) Does Aut(25) always have finitely many closed supergroups?

H (Reconstruction of Topology)
Aut(B) ~ Aut(B’) = Aut(B) ~; Aut(8')?

H (Ramsey Expansion) Does 95 always have a finite homogeneous
expansion with the Ramsey property?

How to attack?

Model-theoretic Challenges Manuel Bodirsky

21



Model-theoretic Challenges in Constraint Satisfaction

8: reduct of homogeneous structure € with finite relational signature.
(Thomas) Does Aut(25) always have finitely many closed supergroups?

H (Reconstruction of Topology)
Aut(B) ~ Aut(B’) = Aut(B) ~; Aut(8')?

H (Ramsey Expansion) Does 95 always have a finite homogeneous
expansion with the Ramsey property?

How to attack?
m Additionally assume that ¢ is NIP (‘not the independence property’).

Model-theoretic Challenges Manuel Bodirsky

21



Model-theoretic Challenges in Constraint Satisfaction

8: reduct of homogeneous structure € with finite relational signature.
(Thomas) Does Aut(25) always have finitely many closed supergroups?

H (Reconstruction of Topology)
Aut(B) ~ Aut(B’) = Aut(B) ~; Aut(8')?

H (Ramsey Expansion) Does 95 always have a finite homogeneous
expansion with the Ramsey property?
How to attack?
m Additionally assume that ¢ is NIP (‘not the independence property’).
m Additionally assume that € is NIP and has binary signature.
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