Model-theoretic Challenges in Constraint Satisfaction

Manuel Bodirsky

Institut für Algebra, TU Dresden

23.7.2024 Logik Oberseminar Freiburg

ERC Synergy Grant POCOCOP (GA 101071674).

Model-theoretic Challenges

1 Thomas' finitely may closed supergroups conjecture

- 1 Thomas' finitely may closed supergroups conjecture
- 2 Reconstruction of topology

- 1 Thomas' finitely may closed supergroups conjecture
- 2 Reconstruction of topology
- 3 The finite Ramsey expansion conjecture

 τ : a finite relational signature.

- τ : a finite relational signature.
- $\mathfrak{B} = (B; R_1, \ldots, R_l)$: a τ -structure.

 τ : a finite relational signature. $\mathfrak{B} = (B; R_1, \dots, R_l)$: a τ -structure.

 $CSP(\mathfrak{B})$

Input: A primitive positive sentence ϕ , i.e., a formula of the form

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$

where ψ_i is of the form $x_i = x_i$ or $R(x_{i_1}, \ldots, x_{i_k})$ for $R \in \tau$.

 τ : a finite relational signature. $\mathfrak{B} = (B; R_1, \dots, R_l)$: a τ -structure.

 $CSP(\mathfrak{B})$

Input: A primitive positive sentence ϕ , i.e., a formula of the form

 $\exists x_1,\ldots,x_n(\psi_1\wedge\cdots\wedge\psi_m)$

where ψ_i is of the form $x_i = x_j$ or $R(x_{i_1}, \dots, x_{i_k})$ for $R \in \tau$. Question: $\mathfrak{B} \models \Phi$?

 τ : a finite relational signature. $\mathfrak{B} = (B; R_1, \dots, R_l)$: a τ -structure.

 $CSP(\mathfrak{B})$

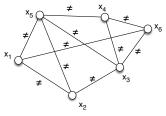
Input: A primitive positive sentence ϕ , i.e., a formula of the form

$$\exists x_1,\ldots,x_n (\psi_1 \wedge \cdots \wedge \psi_m)$$

where ψ_i is of the form $x_i = x_j$ or $R(x_{i_1}, \ldots, x_{i_k})$ for $R \in \tau$.

Question: $\mathfrak{B} \models \Phi$?

Example: 3-colorability is $CSP(K_3)$ where $K_3 := (\{0, 1, 2\}; \neq)$:



 τ : a finite relational signature. $\mathfrak{B} = (B; R_1, \dots, R_l)$: a τ -structure.

 $CSP(\mathfrak{B})$

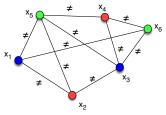
Input: A primitive positive sentence ϕ , i.e., a formula of the form

$$\exists x_1,\ldots,x_n (\psi_1 \wedge \cdots \wedge \psi_m)$$

where ψ_i is of the form $x_i = x_j$ or $R(x_{i_1}, \ldots, x_{i_k})$ for $R \in \tau$.

Question: $\mathfrak{B} \models \Phi$?

Example: 3-colorability is $CSP(K_3)$ where $K_3 := (\{0, 1, 2\}; \neq)$:



Let τ be a finite relational signature. Let $\mathfrak{B} = (B; R_1, \dots, R_l)$ be a τ -structure.

Let τ be a finite relational signature. Let $\mathfrak{B} = (B; R_1, \dots, R_l)$ be a τ -structure.

 $\mathsf{CSP}(\mathfrak{B})$

Input: A finite τ -structure \mathfrak{A} .

Let τ be a finite relational signature. Let $\mathfrak{B} = (B; R_1, \dots, R_l)$ be a τ -structure.

 $\mathsf{CSP}(\mathfrak{B})$

Input: A finite τ -structure \mathfrak{A} .

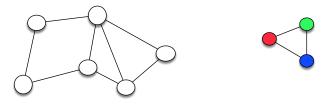
Question: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ?

Let τ be a finite relational signature. Let $\mathfrak{B} = (B; R_1, \dots, R_l)$ be a τ -structure.

 $CSP(\mathfrak{B})$

Input: A finite τ -structure \mathfrak{A} .

Question: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ?

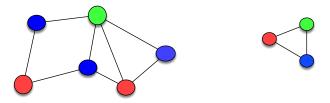


Let τ be a finite relational signature. Let $\mathfrak{B} = (B; R_1, \dots, R_l)$ be a τ -structure.

 $CSP(\mathfrak{B})$

Input: A finite τ -structure \mathfrak{A} .

Question: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ?



Famous CSPs:

■ CSP(ℤ;+,*,1):

Famous CSPs:

CSP(\mathbb{Z} ;+,*,1): Hilbert's 10th problem

Famous CSPs:

■ CSP(ℤ;+,*,1): Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)

- CSP(ℤ;+,*,1): Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
- CSP(ℝ;+,*,1):

- CSP(ℤ;+,*,1): Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
- **CSP**(\mathbb{R} ;+,*,1): decidable (Tarski-Seidenberg).

- CSP(Z;+,*,1): Hilbert's 10th problem
 Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
- $CSP(\mathbb{R};+,*,1)$: decidable (Tarski-Seidenberg).
- CSP(ℚ;+,*,1):

- CSP(ℤ;+,*,1): Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
- **CSP**(\mathbb{R} ;+,*,1): decidable (Tarski-Seidenberg).
- CSP(Q;+,*,1): decidability unknown.

- CSP(ℤ;+,*,1): Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
- $CSP(\mathbb{R};+,*,1)$: decidable (Tarski-Seidenberg).
- CSP(Q;+,*,1): decidability unknown.
- $CSP(\mathbb{R}; +, 1, \{(x, y) \mid y \ge x^2):$

- CSP(ℤ;+,*,1): Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
- $CSP(\mathbb{R};+,*,1)$: decidable (Tarski-Seidenberg).
- CSP(Q;+,*,1): decidability unknown.
- CSP(\mathbb{R} ;+,1,{(x, y) | $y \ge x^2$): not known to be in P,

Famous CSPs:

- CSP(Z;+,*,1): Hilbert's 10th problem
 Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
- $CSP(\mathbb{R};+,*,1)$: decidable (Tarski-Seidenberg).
- CSP(Q;+,*,1): decidability unknown.
- $CSP(\mathbb{R}; +, 1, \{(x, y) \mid y \ge x^2\})$:

not known to be in P,

harder than sums-of-square-roots problem (computational geometry).

- CSP(ℤ;+,*,1): Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
- **CSP**(\mathbb{R} ;+,*,1): decidable (Tarski-Seidenberg).
- CSP(Q;+,*,1): decidability unknown.
- CSP(ℝ;+,1,{(x,y) | y ≥ x²): not known to be in P, harder than sums-of-square-roots problem (computational geometry).
- $CSP(\mathbb{Q}; \{(x, y) \mid x = y + 1\}, \{(x, y) \mid x = 2y\}, \{(x, y, z) \mid x \ge \min(y, z)\}):$

- CSP(ℤ;+,*,1): Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
- **CSP**(\mathbb{R} ;+,*,1): decidable (Tarski-Seidenberg).
- CSP(Q;+,*,1): decidability unknown.
- CSP(ℝ;+,1,{(x,y) | y ≥ x²): not known to be in P, harder than sums-of-square-roots problem (computational geometry).
- CSP(\mathbb{Q} ;{(x, y) | x = y + 1},{(x, y) | x = 2y},{ $(x, y, z) | x \ge \min(y, z)$ }): not known to be in P,

Famous CSPs:

- CSP(ℤ;+,*,1): Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
- $CSP(\mathbb{R};+,*,1)$: decidable (Tarski-Seidenberg).
- CSP(Q;+,*,1): decidability unknown.
- CSP(ℝ; +, 1, {(x, y) | y ≥ x²): not known to be in P, harder than sums-of-square-roots problem (computational geometry).

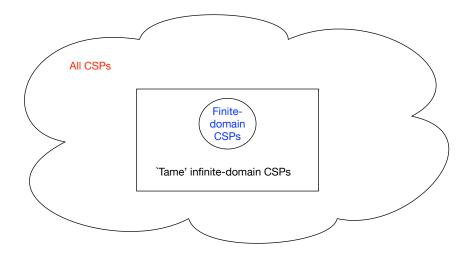
■ CSP(\mathbb{Q} ;{(x, y) | x = y + 1},{(x, y) | x = 2y},{ $(x, y, z) | x \ge \min(y, z)$ }): not known to be in P, at least as hard as solving mean payoff games (verification)

Famous CSPs:

- CSP(Z; +, *, 1): Hilbert's 10th problem
 Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
- $CSP(\mathbb{R};+,*,1)$: decidable (Tarski-Seidenberg).
- CSP(Q;+,*,1): decidability unknown.
- CSP(ℝ;+,1,{(x,y) | y ≥ x²}: not known to be in P, harder than sums-of-square-roots problem (computational geometry).
- $CSP(\mathbb{Q}; \{(x, y) | x = y + 1\}, \{(x, y) | x = 2y\}, \{(x, y, z) | x \ge \min(y, z)\})$: not known to be in P, at least as hard as solving mean payoff games (verification)

Theorem. B.+Grohe'08: Every decision problem is equivalent to a CSP (under polynomial-time Turing reductions)

CSPs



Polymorphisms

Polymorphisms

Def. An operation $f: D^k \to D$ preserves $R \subseteq D^m$ if for all $a^1, \ldots, a^k \in R$

$$\left(f(a_1^1,\ldots,a_1^k),\ldots,f(a_m^1,\ldots,a_m^k)\right)\in R.$$

Def. An operation $f: D^k \to D$ preserves $R \subseteq D^m$ if for all $a^1, \ldots, a^k \in R$

$$\left(f(a_1^1,\ldots,a_1^k),\ldots,f(a_m^1,\ldots,a_m^k)\right)\in R.$$

Def. An operation $f: D^k \to D$ preserves $R \subseteq D^m$ if for all $a^1, \ldots, a^k \in R$

$$\left(f(a_1^1,\ldots,a_1^k),\ldots,f(a_m^1,\ldots,a_m^k)\right)\in R.$$

Def. An operation $f: D^k \to D$ preserves $R \subseteq D^m$ if for all $a^1, \ldots, a^k \in R$

$$\left(f(a_1^1,\ldots,a_1^k),\ldots,f(a_m^1,\ldots,a_m^k)\right)\in R.$$

Example: $(x, y) \mapsto (x + y)/2$ preserves all convex relations $R \subseteq \mathbb{R}^m$

• *f* is a polymorphism of \mathfrak{B} if *f* preserves all relations of \mathfrak{B} .

Def. An operation $f: D^k \to D$ preserves $R \subseteq D^m$ if for all $a^1, \ldots, a^k \in R$

$$\left(f(a_1^1,\ldots,a_1^k),\ldots,f(a_m^1,\ldots,a_m^k)\right)\in R.$$

- *f* is a polymorphism of \mathfrak{B} if *f* preserves all relations of \mathfrak{B} .
- **Pol**(\mathfrak{B}): set of all polymorphisms of \mathfrak{B} .

Def. An operation $f: D^k \to D$ preserves $R \subseteq D^m$ if for all $a^1, \ldots, a^k \in R$

$$\left(f(a_1^1,\ldots,a_1^k),\ldots,f(a_m^1,\ldots,a_m^k)\right)\in R.$$

- *f* is a polymorphism of \mathfrak{B} if *f* preserves all relations of \mathfrak{B} .
- **Pol**(\mathfrak{B}): set of all polymorphisms of \mathfrak{B} .
- $Pol(\mathfrak{B})$ contains $Aut(\mathfrak{B})$, the automorphisms of \mathfrak{B} .

Def. An operation $f: D^k \to D$ preserves $R \subseteq D^m$ if for all $a^1, \ldots, a^k \in R$

$$\left(f(a_1^1,\ldots,a_1^k),\ldots,f(a_m^1,\ldots,a_m^k)\right)\in R.$$

- *f* is a polymorphism of \mathfrak{B} if *f* preserves all relations of \mathfrak{B} .
- **Pol**(\mathfrak{B}): set of all polymorphisms of \mathfrak{B} .
- $Pol(\mathfrak{B})$ contains $Aut(\mathfrak{B})$, the automorphisms of \mathfrak{B} .
- \blacksquare $\mathsf{Pol}(\mathfrak{B})$ is a clone: contains projections and closed under composition.

Universal-Algebraic Dichotomy

Let \mathfrak{B} be a finite structure.

Theorem (Bulatov+Jeavons+Krokhin'03).

If $Pol(\mathfrak{A}) = Pol(\mathfrak{B})$ then $CSP(\mathfrak{A})$ and $CSP(\mathfrak{B})$ are P-time equivalent.

Theorem (Bulatov+Jeavons+Krokhin'03).

- If $Pol(\mathfrak{A}) = Pol(\mathfrak{B})$ then $CSP(\mathfrak{A})$ and $CSP(\mathfrak{B})$ are P-time equivalent.
- If $Pol(\mathfrak{A}) \simeq Pol(\mathfrak{B})$ then $CSP(\mathfrak{A})$ and $CSP(\mathfrak{B})$ are P-time equivalent.

Theorem (Bulatov+Jeavons+Krokhin'03).

- If $Pol(\mathfrak{A}) = Pol(\mathfrak{B})$ then $CSP(\mathfrak{A})$ and $CSP(\mathfrak{B})$ are P-time equivalent.
- If $Pol(\mathfrak{A}) \simeq Pol(\mathfrak{B})$ then $CSP(\mathfrak{A})$ and $CSP(\mathfrak{B})$ are P-time equivalent.
- If ℭ is homomorphically equivalent to 𝔅 of minimal size, and Pol(𝔅, c₁,..., c_n) has a homomorphism to Pol(𝐾₃), then CSP(𝔅) is NP-hard.

Theorem (Bulatov+Jeavons+Krokhin'03).

- If $Pol(\mathfrak{A}) = Pol(\mathfrak{B})$ then $CSP(\mathfrak{A})$ and $CSP(\mathfrak{B})$ are P-time equivalent.
- If $Pol(\mathfrak{A}) \simeq Pol(\mathfrak{B})$ then $CSP(\mathfrak{A})$ and $CSP(\mathfrak{B})$ are P-time equivalent.
- If 𝔅 is homomorphically equivalent to 𝔅 of minimal size, and Pol(𝔅, 𝘋₁,..., 𝘋_n) has a homomorphism to Pol(𝐾₃), then CSP(𝔅) is NP-hard.

Theorem (Bulatov'17, Zhuk'17). If $Pol(\mathfrak{C}, c_1, \ldots, c_n)$ does does not have a homomorphism to $CSP(\mathcal{K}_3)$, then $CSP(\mathfrak{B})$ is in P.

Looking for a class $\ensuremath{\mathcal{C}}$ of infinite structures such that

Looking for a class $\ensuremath{\mathcal{C}}$ of infinite structures such that

(A) The universal-algebraic approach also applies to structures from \mathcal{C} .

Looking for a class $\ensuremath{\mathcal{C}}$ of infinite structures such that

- (A) The universal-algebraic approach also applies to structures from \mathcal{C} .
- (B) CSPs for structures from \mathcal{C} are interesting in Logic, Math and CS.

Looking for a class $\ensuremath{\mathcal{C}}$ of infinite structures such that

- (A) The universal-algebraic approach also applies to structures from $\ensuremath{\mathcal{C}}.$
- (B) CSPs for structures from ${\mathcal C}$ are interesting in Logic, Math and CS.

Definition

A structure \mathfrak{B} is called ω -categorical if all countable structures that satisfy the same first-order sentences as \mathfrak{B} are isomorphic.

Looking for a class $\ensuremath{\mathcal{C}}$ of infinite structures such that

- (A) The universal-algebraic approach also applies to structures from $\mathcal{C}.$
- (B) CSPs for structures from ${\mathcal C}$ are interesting in Logic, Math and CS.

Definition

A structure \mathfrak{B} is called ω -categorical if all countable structures that satisfy the same first-order sentences as \mathfrak{B} are isomorphic.

Examples.

• $(\mathbb{Q}; <)$ is ω -categorical:

Looking for a class $\ensuremath{\mathcal{C}}$ of infinite structures such that

- (A) The universal-algebraic approach also applies to structures from $\mathcal{C}.$
- (B) CSPs for structures from ${\cal C}$ are interesting in Logic, Math and CS.

Definition

A structure \mathfrak{B} is called ω -categorical if all countable structures that satisfy the same first-order sentences as \mathfrak{B} are isomorphic.

Examples.

• $(\mathbb{Q}; <)$ is ω -categorical: Cantor'1895:

all countable dense unbounded linear orders are isomorphic.

Looking for a class $\ensuremath{\mathcal{C}}$ of infinite structures such that

- (A) The universal-algebraic approach also applies to structures from $\mathcal{C}.$
- (B) CSPs for structures from ${\cal C}$ are interesting in Logic, Math and CS.

Definition

A structure \mathfrak{B} is called ω -categorical if all countable structures that satisfy the same first-order sentences as \mathfrak{B} are isomorphic.

- (Q;<) is ω-categorical: Cantor'1895:
 all countable dense unbounded linear orders are isomorphic.
- Every finite structure.

Looking for a class $\ensuremath{\mathcal{C}}$ of infinite structures such that

- (A) The universal-algebraic approach also applies to structures from $\mathcal{C}.$
- (B) CSPs for structures from ${\mathcal C}$ are interesting in Logic, Math and CS.

Definition

A structure \mathfrak{B} is called ω -categorical if all countable structures that satisfy the same first-order sentences as \mathfrak{B} are isomorphic.

- (Q;<) is ω-categorical: Cantor'1895:
 all countable dense unbounded linear orders are isomorphic.
- Every finite structure.
- Every homogeneous structure with a finite relational signature (every isomorphism between finite substructures can be extended to an automorphism).

Looking for a class $\ensuremath{\mathcal{C}}$ of infinite structures such that

- (A) The universal-algebraic approach also applies to structures from $\mathcal{C}.$
- (B) CSPs for structures from ${\mathcal C}$ are interesting in Logic, Math and CS.

Definition

A structure \mathfrak{B} is called ω -categorical if all countable structures that satisfy the same first-order sentences as \mathfrak{B} are isomorphic.

- (Q;<) is ω-categorical: Cantor'1895:
 all countable dense unbounded linear orders are isomorphic.
- Every finite structure.
- Every homogeneous structure with a finite relational signature (every isomorphism between finite substructures can be extended to an automorphism).
- **Reducts** of ω -categorical structures are ω -categorical.

Complexity Classification

Theorem (B.+Kara 2007). \mathfrak{B} : a structure of the form (\mathbb{Q} ; R_1, \ldots, R_l) whose relations are first-order definable over (\mathbb{Q} ; <). Then CSP(\mathfrak{B}) is either in P or NP-complete.

Theorem (B.+Kara 2007). \mathfrak{B} : a structure of the form (\mathbb{Q} ; R_1, \ldots, R_l) whose relations are first-order definable over (\mathbb{Q} ; <). Then CSP(\mathfrak{B}) is either in P or NP-complete.

Theorem (B.+Kara 2007). \mathfrak{B} : a structure of the form (\mathbb{Q} ; R_1, \ldots, R_l) whose relations are first-order definable over (\mathbb{Q} ; <). Then CSP(\mathfrak{B}) is either in P or NP-complete.

Examples.

• $\mathsf{CSP}(\mathbb{Q}; \{(x, y, z) \mid x > y \lor x > z\})$ is in P.

Theorem (B.+Kara 2007). \mathfrak{B} : a structure of the form (\mathbb{Q} ; R_1, \ldots, R_l) whose relations are first-order definable over (\mathbb{Q} ; <). Then CSP(\mathfrak{B}) is either in P or NP-complete.

- $\mathsf{CSP}(\mathbb{Q}; \{(x, y, z) \mid x > y \lor x > z\})$ is in P.
- $CSP(Q; \{(x, y, z) | x = y < z \lor y = z < x \lor z = x < y\})$ is in P.

 \mathfrak{B} : first-order reduct of $(\mathbb{Q}; <)$.

 \mathfrak{B} : first-order reduct of $(\mathbb{Q}; <)$.

To classify complexity of $CSP(\mathbb{Q}; <)$, use result of Cameron'76:

 $\operatorname{Aut}(\mathfrak{B})$ equals one of the following.

 \mathfrak{B} : first-order reduct of $(\mathbb{Q}; <)$.

To classify complexity of CSP($\mathbb{Q};<),$ use result of Cameron'76:

 $\mbox{Aut}(\mathfrak{B})$ equals one of the following.

• Sym(\mathbb{Q})

 \mathfrak{B} : first-order reduct of $(\mathbb{Q}; <)$.

To classify complexity of $CSP(\mathbb{Q};<)$, use result of Cameron'76: Aut (\mathfrak{B}) equals one of the following.

- **Sym**(**Q**)
- Aut(ℚ;<)

 \mathfrak{B} : first-order reduct of $(\mathbb{Q}; <)$.

To classify complexity of $CSP(\mathbb{Q};<)$, use result of Cameron'76: $Aut(\mathfrak{B})$ equals one of the following.

- **Sym**(**Q**)
- Aut(Q;<)</p>
- Aut $(\mathbb{Q}; \{(x, y, z) | x < y < z \lor z < y < x\})$

 \mathfrak{B} : first-order reduct of $(\mathbb{Q}; <)$.

To classify complexity of $CSP(\mathbb{Q}; <)$, use result of Cameron'76: Aut (\mathfrak{B}) equals one of the following.

- **Sym**(**Q**)
- Aut(Q;<)</p>
- Aut $(\mathbb{Q}; \{(x, y, z) \mid x < y < z \lor z < y < x\})$

Two more cases.

 \mathfrak{B} : first-order reduct of $(\mathbb{Q}; <)$.

To classify complexity of $CSP(\mathbb{Q};<)$, use result of Cameron'76: $Aut(\mathfrak{B})$ equals one of the following.

- **Sym**(**Q**)
- Aut(Q;<)</p>
- Aut $(\mathbb{Q}; \{(x, y, z) \mid x < y < z \lor z < y < x\})$

Two more cases.

(1) Conjecture (S. Thomas).

 \mathfrak{B} : first-order reduct of $(\mathbb{Q}; <)$.

To classify complexity of $CSP(\mathbb{Q}; <)$, use result of Cameron'76: Aut (\mathfrak{B}) equals one of the following.

- **Sym**(**Q**)
- Aut(Q;<)</p>
- Aut $(\mathbb{Q}; \{(x, y, z) \mid x < y < z \lor z < y < x\})$
- Two more cases.

(1) Conjecture (S. Thomas).

Let \mathfrak{C} be a homogeneous structure with finite relational signature.

 \mathfrak{B} : first-order reduct of $(\mathbb{Q}; <)$.

To classify complexity of $CSP(\mathbb{Q}; <)$, use result of Cameron'76: Aut (\mathfrak{B}) equals one of the following.

- **Sym**(**Q**)
- Aut(Q;<)</p>
- Aut $(\mathbb{Q}; \{(x, y, z) \mid x < y < z \lor z < y < x\})$
- Two more cases.

(1) Conjecture (S. Thomas).

Let \mathfrak{C} be a homogeneous structure with finite relational signature. Then there are finitely many structures with a first-order definition in \mathfrak{C} up to first-order interdefinability.

 \mathfrak{B} : first-order reduct of $(\mathbb{Q}; <)$.

To classify complexity of $CSP(\mathbb{Q}; <)$, use result of Cameron'76: Aut (\mathfrak{B}) equals one of the following.

- **Sym**(**Q**)
- Aut(Q;<)</p>
- Aut $(\mathbb{Q}; \{(x, y, z) \mid x < y < z \lor z < y < x\})$
- Two more cases.

(1) Conjecture (S. Thomas).

Let \mathfrak{C} be a homogeneous structure with finite relational signature. Then there are finitely many structures with a first-order definition in \mathfrak{C} up to first-order interdefinability.

Equivalently:

Then there are finitely many closed supergroups of $Aut(\mathfrak{C})$.

Equip *B* with the discrete topology.

Equip *B* with the discrete topology. $O_B^{(k)} := \{f: B^k \to B\}$ equipped with topology of pointwise convergence.

Equip *B* with the discrete topology. $\bigcirc_{B}^{(k)} := \{f: B^{k} \to B\}$ equipped with topology of pointwise convergence.

 $\mathcal{O}_{B} := \bigcup_{k \in \mathbb{N}} \mathcal{O}_{B}^{(k)}$ equipped with sum topology.

Equip *B* with the discrete topology.

 $\mathcal{O}_B^{(k)} := \{f: B^k \to B\}$ equipped with topology of pointwise convergence.

 $\mathcal{O}_{B} := \bigcup_{k \in \mathbb{N}} \mathcal{O}_{B}^{(k)}$ equipped with sum topology.

Observations.

• $\mathcal{C} \subseteq \mathcal{O}_B$ closed iff there exists a structure \mathfrak{B} such that $\mathcal{C} = \mathsf{Pol}(\mathfrak{B})$.

Equip *B* with the discrete topology.

 $\mathcal{O}_{B}^{(k)} := \{f: B^{k} \rightarrow B\}$ equipped with topology of pointwise convergence.

 $\mathcal{O}_{B} := \bigcup_{k \in \mathbb{N}} \mathcal{O}_{B}^{(k)}$ equipped with sum topology.

- $\mathcal{C} \subseteq \mathcal{O}_B$ closed iff there exists a structure \mathfrak{B} such that $\mathcal{C} = \mathsf{Pol}(\mathfrak{B})$.
- $Pol(\mathfrak{B})$ is a topological clone: composition in $Pol(\mathfrak{B})$ is continuous.

Equip *B* with the discrete topology.

 $\mathcal{O}_{B}^{(k)} := \{f: B^{k} \to B\}$ equipped with topology of pointwise convergence. $\mathcal{O}_{B} := \bigcup_{k \in \mathbb{N}} \mathcal{O}_{B}^{(k)}$ equipped with sum topology.

- $\mathcal{C} \subseteq \mathcal{O}_B$ closed iff there exists a structure \mathfrak{B} such that $\mathcal{C} = \mathsf{Pol}(\mathfrak{B})$.
- $Pol(\mathfrak{B})$ is a topological clone: composition in $Pol(\mathfrak{B})$ is continuous.
- $\xi \colon \operatorname{Pol}(\mathfrak{A}) \to \operatorname{Pol}(\mathfrak{B})$ is called a (clone) homomorphism if

Equip *B* with the discrete topology.

 $\mathcal{O}_{B}^{(k)} := \{f: B^{k} \to B\}$ equipped with topology of pointwise convergence. $\mathcal{O}_{B} := \bigcup_{k \in \mathbb{N}} \mathcal{O}_{B}^{(k)}$ equipped with sum topology.

- $\mathcal{C} \subseteq \mathcal{O}_B$ closed iff there exists a structure \mathfrak{B} such that $\mathcal{C} = \mathsf{Pol}(\mathfrak{B})$.
- \blacksquare $\mathsf{Pol}(\mathfrak{B})$ is a topological clone: composition in $\mathsf{Pol}(\mathfrak{B})$ is continuous.
- $\xi \colon \operatorname{Pol}(\mathfrak{A}) \to \operatorname{Pol}(\mathfrak{B})$ is called a (clone) homomorphism if
 - it maps operations of arity k to operations of arity k,

Equip *B* with the discrete topology.

 $\mathcal{O}_{B}^{(k)} := \{f: B^{k} \to B\}$ equipped with topology of pointwise convergence. $\mathcal{O}_{B} := \bigcup_{k \in \mathbb{N}} \mathcal{O}_{B}^{(k)}$ equipped with sum topology.

- $\mathcal{C} \subseteq \mathcal{O}_B$ closed iff there exists a structure \mathfrak{B} such that $\mathcal{C} = \mathsf{Pol}(\mathfrak{B})$.
- \blacksquare $\mathsf{Pol}(\mathfrak{B})$ is a topological clone: composition in $\mathsf{Pol}(\mathfrak{B})$ is continuous.
- $\xi \colon \operatorname{Pol}(\mathfrak{A}) \to \operatorname{Pol}(\mathfrak{B})$ is called a (clone) homomorphism if
 - it maps operations of arity *k* to operations of arity *k*,
 - it maps the *i*-th projection of arity k in Pol(𝔅) to the *i*-th projection of arity k in Pol(𝔅),

Equip *B* with the discrete topology.

 $\mathcal{O}_{B}^{(k)} := \{f: B^{k} \to B\}$ equipped with topology of pointwise convergence. $\mathcal{O}_{B} := \bigcup_{k \in \mathbb{N}} \mathcal{O}_{B}^{(k)}$ equipped with sum topology.

- $\mathcal{C} \subseteq \mathcal{O}_B$ closed iff there exists a structure \mathfrak{B} such that $\mathcal{C} = \mathsf{Pol}(\mathfrak{B})$.
- \blacksquare $\mathsf{Pol}(\mathfrak{B})$ is a topological clone: composition in $\mathsf{Pol}(\mathfrak{B})$ is continuous.
- $\xi \colon \operatorname{Pol}(\mathfrak{A}) \to \operatorname{Pol}(\mathfrak{B})$ is called a (clone) homomorphism if
 - it maps operations of arity *k* to operations of arity *k*,
 - it maps the *i*-th projection of arity *k* in Pol(𝔅) to the *i*-th projection of arity *k* in Pol(𝔅),
 - it preserves composition: for all $g, f_1, \ldots, f_n \in \mathsf{Pol}(\mathfrak{A})$

$$\xi(g(f_1,\ldots,f_n))=\xi(g)(\xi(f_1),\ldots,\xi(f_n))$$

 $\mathsf{Pol}(\mathfrak{B}) \simeq_t \mathsf{Pol}(\mathfrak{A})$:

 $\mathsf{Pol}(\mathfrak{B}) \simeq_t \mathsf{Pol}(\mathfrak{A})$: there is an isomorphism $\xi: \mathsf{Pol}(\mathfrak{B}) \to \mathsf{Pol}(\mathfrak{A})$ which is a homeomorphism.

 $\mathsf{Pol}(\mathfrak{B}) \simeq_t \mathsf{Pol}(\mathfrak{A})$:

there is an isomorphism $\xi\colon \text{Pol}(\mathfrak{B})\to \text{Pol}(\mathfrak{A})$ which is a homeomorphism.

Theorem. Let \mathfrak{A} and \mathfrak{B} be ω -categorical. Then

• $\operatorname{Aut}(\mathfrak{A}) \simeq_t \operatorname{Aut}(\mathfrak{B})$ if and only if

 $\mathsf{Pol}(\mathfrak{B}) \simeq_t \mathsf{Pol}(\mathfrak{A})$:

there is an isomorphism ξ : $\text{Pol}(\mathfrak{B}) \to \text{Pol}(\mathfrak{A})$ which is a homeomorphism.

Theorem. Let \mathfrak{A} and \mathfrak{B} be ω -categorical. Then

■ Aut(𝔅) ≃_t Aut(𝔅) if and only if 𝔅 and 𝔅 are first-order bi-interpretable (Coquand/Ahlbrandt-Ziegler'86)

 $\mathsf{Pol}(\mathfrak{B}) \simeq_t \mathsf{Pol}(\mathfrak{A})$:

there is an isomorphism $\xi\colon \text{Pol}(\mathfrak{B})\to \text{Pol}(\mathfrak{A})$ which is a homeomorphism.

- Aut(𝔅) ≃_t Aut(𝔅) if and only if 𝔅 and 𝔅 are first-order bi-interpretable (Coquand/Ahlbrandt-Ziegler'86)
- $\operatorname{End}(\mathfrak{A}) \simeq_t \operatorname{End}(\mathfrak{B})$ if and only if

 $\mathsf{Pol}(\mathfrak{B}) \simeq_t \mathsf{Pol}(\mathfrak{A})$:

there is an isomorphism $\xi\colon \text{Pol}(\mathfrak{B})\to \text{Pol}(\mathfrak{A})$ which is a homeomorphism.

- Aut(𝔅) ≃_t Aut(𝔅) if and only if 𝔅 and 𝔅 are first-order bi-interpretable (Coquand/Ahlbrandt-Ziegler'86)
- $End(\mathfrak{A}) \simeq_t End(\mathfrak{B})$ if and only if \mathfrak{A} and \mathfrak{B} are existentially positively bi-interpretable (B.-Junker'10)

 $\mathsf{Pol}(\mathfrak{B}) \simeq_t \mathsf{Pol}(\mathfrak{A})$:

there is an isomorphism $\xi\colon \text{Pol}(\mathfrak{B})\to \text{Pol}(\mathfrak{A})$ which is a homeomorphism.

- Aut(𝔅) ≃_t Aut(𝔅) if and only if 𝔅 and 𝔅 are first-order bi-interpretable (Coquand/Ahlbrandt-Ziegler'86)
- $End(\mathfrak{A}) \simeq_t End(\mathfrak{B})$ if and only if \mathfrak{A} and \mathfrak{B} are existentially positively bi-interpretable (B.-Junker'10)
- $\mathsf{Pol}(\mathfrak{A}) \simeq_t \mathsf{Pol}(\mathfrak{B})$ if and only if

 $\mathsf{Pol}(\mathfrak{B}) \simeq_t \mathsf{Pol}(\mathfrak{A})$:

there is an isomorphism $\xi\colon \text{Pol}(\mathfrak{B})\to \text{Pol}(\mathfrak{A})$ which is a homeomorphism.

- Aut(𝔅) ≃_t Aut(𝔅) if and only if 𝔅 and 𝔅 are first-order bi-interpretable (Coquand/Ahlbrandt-Ziegler'86)
- $End(\mathfrak{A}) \simeq_t End(\mathfrak{B})$ if and only if \mathfrak{A} and \mathfrak{B} are existentially positively bi-interpretable (B.-Junker'10)
- Pol $(\mathfrak{A}) \simeq_t Pol(\mathfrak{B})$ if and only if \mathfrak{A} and \mathfrak{B} are primitively positively bi-interpretable (B.+Pinsker'15)

 $\mathsf{Pol}(\mathfrak{B}) \simeq_t \mathsf{Pol}(\mathfrak{A})$:

there is an isomorphism $\xi\colon \text{Pol}(\mathfrak{B})\to \text{Pol}(\mathfrak{A})$ which is a homeomorphism.

Theorem. Let \mathfrak{A} and \mathfrak{B} be ω -categorical. Then

- Aut(𝔅) ≃_t Aut(𝔅) if and only if 𝔅 and 𝔅 are first-order bi-interpretable (Coquand/Ahlbrandt-Ziegler'86)
- $End(\mathfrak{A}) \simeq_t End(\mathfrak{B})$ if and only if \mathfrak{A} and \mathfrak{B} are existentially positively bi-interpretable (B.-Junker'10)
- $Pol(\mathfrak{A}) \simeq_t Pol(\mathfrak{B})$ if and only if \mathfrak{A} and \mathfrak{B} are primitively positively bi-interpretable (B.+Pinsker'15)

In the final case case, $CSP(\mathfrak{A})$ and $CSP(\mathfrak{B})$ are P-time equivalent.

 $\mathsf{Pol}(\mathfrak{B}) \simeq_t \mathsf{Pol}(\mathfrak{A})$:

there is an isomorphism $\xi\colon \text{Pol}(\mathfrak{B})\to \text{Pol}(\mathfrak{A})$ which is a homeomorphism.

Theorem. Let \mathfrak{A} and \mathfrak{B} be ω -categorical. Then

- Aut(𝔅) ≃_t Aut(𝔅) if and only if 𝔅 and 𝔅 are first-order bi-interpretable (Coquand/Ahlbrandt-Ziegler'86)
- $End(\mathfrak{A}) \simeq_t End(\mathfrak{B})$ if and only if \mathfrak{A} and \mathfrak{B} are existentially positively bi-interpretable (B.-Junker'10)
- $Pol(\mathfrak{A}) \simeq_t Pol(\mathfrak{B})$ if and only if \mathfrak{A} and \mathfrak{B} are primitively positively bi-interpretable (B.+Pinsker'15)

In the final case case, $CSP(\mathfrak{A})$ and $CSP(\mathfrak{B})$ are P-time equivalent.

(2) Reconstruction Conjecture. Let \mathfrak{A} and \mathfrak{B} be reducts of structures that are homogeneous with finite relational signature. Then

- $\blacksquare \operatorname{\mathsf{Pol}}(\mathfrak{A}) \simeq \operatorname{\mathsf{Pol}}(\mathfrak{B}) \Rightarrow \operatorname{\mathsf{Pol}}(\mathfrak{A}) \simeq_t \operatorname{\mathsf{Pol}}(\mathfrak{B})$
- $\operatorname{Aut}(\mathfrak{A}) \simeq \operatorname{Aut}(\mathfrak{B}) \Rightarrow \operatorname{Aut}(\mathfrak{A}) \simeq_t \operatorname{Aut}(\mathfrak{B}).$

Examples of CSPs for ω -categorical structures \mathfrak{B} ?

Examples of CSPs for ω -categorical structures \mathfrak{B} ?

Systematic source of examples:

Monadic Second-Order Logic (MSO):

Examples of CSPs for ω -categorical structures \mathfrak{B} ?

Systematic source of examples:

Monadic Second-Order Logic (MSO):

extension of first-order logic by (universal and existential) quantification over subsets of the domain.

Examples of CSPs for ω -categorical structures \mathfrak{B} ?

Systematic source of examples:

Monadic Second-Order Logic (MSO):

extension of first-order logic by (universal and existential) quantification over subsets of the domain.

Example 1: 3-colorability of a graph (V; E) can be expressed by

Examples of CSPs for ω -categorical structures \mathfrak{B} ?

Systematic source of examples:

Monadic Second-Order Logic (MSO):

extension of first-order logic by (universal and existential) quantification over subsets of the domain.

Example 1: 3-colorability of a graph (V; E) can be expressed by

$$\exists R, G, B. \forall x, y : (R(x) \lor G(x) \lor B(x)) \\ \land (E(x, y) \Rightarrow \neg (R(x) \land R(y)) \\ \lor G(x) \land G(y) \\ \lor B(x) \land B(y)))$$

Examples of CSPs for ω -categorical structures \mathfrak{B} ?

Systematic source of examples:

Monadic Second-Order Logic (MSO):

extension of first-order logic by (universal and existential) quantification over subsets of the domain.

Example 1: 3-colorability of a graph (V; E) can be expressed by

$$\exists R, G, B. \forall x, y : (R(x) \lor G(x) \lor B(x)) \\ \land (E(x, y) \Rightarrow \neg (R(x) \land R(y)) \\ \lor G(x) \land G(y) \\ \lor B(x) \land B(y)))$$

Example 2: Acyclicity of a finite digraph (V; E) can be expressed by

Examples of CSPs for ω -categorical structures \mathfrak{B} ?

Systematic source of examples:

Monadic Second-Order Logic (MSO):

extension of first-order logic by (universal and existential) quantification over subsets of the domain.

Example 1: 3-colorability of a graph (V; E) can be expressed by

$$\exists R, G, B. \forall x, y : (R(x) \lor G(x) \lor B(x)) \\ \land (E(x, y) \Rightarrow \neg (R(x) \land R(y)) \\ \lor G(x) \land G(y) \\ \lor B(x) \land B(y)))$$

Example 2: Acyclicity of a finite digraph (V; E)

$$\forall X \neq \emptyset \; \exists x \in X \; \forall y \in X : \neg E(x, y).$$

Countably Categorical Structures for MSO sentences

Theorem (B.+Knäuer+Rudolph'21).

Let \mathfrak{B} be such that $CSP(\mathfrak{B})$ is in MSO. Then there exists an ω -categorical structure \mathfrak{C} such that $CSP(\mathfrak{B}) = CSP(\mathfrak{C})$.

Countably Categorical Structures for MSO sentences

Theorem (B.+Knäuer+Rudolph'21).

Let \mathfrak{B} be such that $CSP(\mathfrak{B})$ is in MSO. Then there exists an ω -categorical structure \mathfrak{C} such that $CSP(\mathfrak{B}) = CSP(\mathfrak{C})$.

Remarks

 If CSP(B) is even in FO (first-order logic), this was already known (combining Rossmann'08 and Cherlin+Shelah+Shi'99)

Countably Categorical Structures for MSO sentences

Theorem (B.+Knäuer+Rudolph'21).

Let \mathfrak{B} be such that $CSP(\mathfrak{B})$ is in MSO. Then there exists an ω -categorical structure \mathfrak{C} such that $CSP(\mathfrak{B}) = CSP(\mathfrak{C})$.

Remarks

- If CSP(B) is even in FO (first-order logic), this was already known (combining Rossmann'08 and Cherlin+Shelah+Shi'99)
- Result can be generalised to GSO (guarded second-order logic, see Grädel+Hirsch+Otto'02)

Monadic Strict NP (MSNP): restriction of MSO

Monadic Strict NP (MSNP): restriction of MSO where

1 Only existential quantification over sets

MSNP

Monadic Strict NP (MSNP): restriction of MSO where

- 1 Only existential quantification over sets
- 2 Only universal first-order quantifiers

MSNP

Monadic Strict NP (MSNP): restriction of MSO where

- 1 Only existential quantification over sets
- 2 Only universal first-order quantifiers

Motivation for the name: NP = existential second-order logic (Fagin'74).

MSNP

Monadic Strict NP (MSNP): restriction of MSO where

- 1 Only existential quantification over sets
- 2 Only universal first-order quantifiers

Motivation for the name: NP = existential second-order logic (Fagin'74).

Example 1:

$$\exists R, B, G. \forall x, y : (R(x) \lor B(x) \lor G(x)) \\ \land (E(x, y) \Rightarrow \neg (R(x) \land R(y) \lor B(x) \land B(y) \lor G(x) \land G(y)))$$

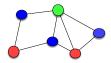
MSNP

Monadic Strict NP (MSNP): restriction of MSO where

- 1 Only existential quantification over sets
- 2 Only universal first-order quantifiers

Motivation for the name: NP = existential second-order logic (Fagin'74).

Example 1:



$$\exists R, B, G. \forall x, y : (R(x) \lor B(x) \lor G(x)) \\ \land (E(x, y) \Rightarrow \neg (R(x) \land R(y) \lor B(x) \land B(y) \lor G(x) \land G(y)))$$

Example 2:

$$\forall x, y, z \big(\neg E(x, y) \lor \neg E(y, z) \lor \neg E(z, x) \big)$$

Dichotomy for MSNP

Dichotomy for MSNP

Theorem (B.+Mottet'18).

Every CSP in MSNP can be formulated as $CSP(\mathfrak{C})$, for some countably infinite ω -categorical structure \mathfrak{C} ,

Dichotomy for MSNP

Theorem (B.+Mottet'18).

Every CSP in MSNP can be formulated as $CSP(\mathfrak{C})$, for some countably infinite ω -categorical structure \mathfrak{C} , such that

■ there are constants c₁,..., c_n such that Pol(𝔅, c₁,..., c_n) has a continuous homomorphism to Pol(𝐾₃),

Every CSP in MSNP can be formulated as $CSP(\mathfrak{C})$, for some countably infinite ω -categorical structure \mathfrak{C} , such that

■ there are constants c₁,..., c_n such that Pol(𝔅, c₁,..., c_n) has a continuous homomorphism to Pol(𝐾₃), and CSP(𝔅) is NP-complete, or

Every CSP in MSNP can be formulated as $CSP(\mathfrak{C})$, for some countably infinite ω -categorical structure \mathfrak{C} , such that

- there are constants c₁,..., c_n such that Pol(𝔅, c₁,..., c_n) has a continuous homomorphism to Pol(𝐾₃), and CSP(𝔅) is NP-complete, or
- $CSP(\mathfrak{B})$ is in P.

Every CSP in MSNP can be formulated as $CSP(\mathfrak{C})$, for some countably infinite ω -categorical structure \mathfrak{C} , such that

- there are constants c₁,..., c_n such that Pol(𝔅, c₁,..., c_n) has a continuous homomorphism to Pol(K₃), and CSP(𝔅) is NP-complete, or
- CSP(𝔅) is in P.

Remarks

 The P vs NP-complete dichotomy for CSPs in MSNP was already known (Feder+Vardi'96, Kun'13)

Every CSP in MSNP can be formulated as $CSP(\mathfrak{C})$, for some countably infinite ω -categorical structure \mathfrak{C} , such that

- there are constants c₁,..., c_n such that Pol(𝔅, c₁,..., c_n) has a continuous homomorphism to Pol(K₃), and CSP(𝔅) is NP-complete, or
- CSP(𝔅) is in P.

Remarks

- The P vs NP-complete dichotomy for CSPs in MSNP was already known (Feder+Vardi'96, Kun'13)
- Proof uses structural Ramsey theory

For structures \mathfrak{L} and \mathfrak{S} , write $\binom{\mathfrak{L}}{\mathfrak{S}}$ for the set of all embeddings of $\mathfrak{S} \hookrightarrow \mathfrak{L}$.

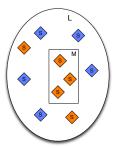
For structures \mathfrak{L} and \mathfrak{S} , write $\binom{\mathfrak{L}}{\mathfrak{S}}$ for the set of all embeddings of $\mathfrak{S} \hookrightarrow \mathfrak{L}$.

Definition.

Write

 $\mathfrak{L} \to (\mathfrak{M})^{\mathfrak{S}}_{\mathfrak{c}}$

 $\text{iff for all } \chi \colon \begin{pmatrix} \mathfrak{L} \\ \mathfrak{S} \end{pmatrix} \to [c] \text{ there exists an } e \in \begin{pmatrix} \mathfrak{L} \\ \mathfrak{M} \end{pmatrix} \text{ such that } |\chi(e \circ \begin{pmatrix} \mathfrak{M} \\ \mathfrak{S} \end{pmatrix})| \leq 1.$



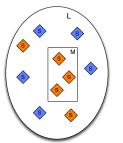
For structures \mathfrak{L} and \mathfrak{S} , write $\binom{\mathfrak{L}}{\mathfrak{S}}$ for the set of all embeddings of $\mathfrak{S} \hookrightarrow \mathfrak{L}$.

Definition.

Write

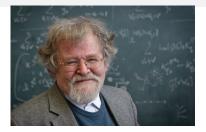
 $\mathfrak{L} \to (\mathfrak{M})^{\mathfrak{S}}_{\mathbf{c}}$

 $\text{iff for all } \chi \colon \begin{pmatrix} \mathfrak{L} \\ \mathfrak{S} \end{pmatrix} \to [c] \text{ there exists an } e \in \begin{pmatrix} \mathfrak{L} \\ \mathfrak{M} \end{pmatrix} \text{ such that } |\chi(e \circ \begin{pmatrix} \mathfrak{M} \\ \mathfrak{S} \end{pmatrix})| \leq 1.$



Definition [Nešetřil]. A structure \mathfrak{B} is Ramsey if $\mathfrak{B} \to (\mathfrak{M})^{\mathfrak{S}}_{c}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$ and for every $c \in \mathbb{N}$.

 $\begin{array}{l} \textbf{Definition} \ [\text{Nešetřil}].\\ A \ \text{structure} \ \mathfrak{B} \ \text{is} \ \textbf{Ramsey if}\\ \mathfrak{B} \to (\mathfrak{M})^{\mathfrak{S}}_{c} \ \text{for all finite} \ \mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}\\ \text{and for every} \ c \in \mathbb{N}. \end{array}$



Example. $(\mathbb{Q}; <)$ is Ramsey.

Definition [Nešetřil]. A structure \mathfrak{B} is Ramsey if $\mathfrak{B} \to (\mathfrak{M})^{\mathfrak{S}}_{c}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$ and for every $c \in \mathbb{N}$.

Example. $(\mathbb{Q}; <)$ is Ramsey. Reformulation of Ramsey's theorem!

 $\begin{array}{l} \textbf{Definition} \ [\text{Nešetřil}].\\ A \ \text{structure} \ \mathfrak{B} \ \text{is} \ \textbf{Ramsey if}\\ \mathfrak{B} \to (\mathfrak{M})^{\mathfrak{S}}_{c} \ \text{for all finite} \ \mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}\\ \text{and for every} \ c \in \mathbb{N}. \end{array}$

Example. $(\mathbb{Q}; <)$ is Ramsey. Reformulation of Ramsey's theorem!

Theorem (Kechris, Pestov, Todorcevic'05).

A homogeneous structure \mathfrak{B} is Ramsey if and only if $\operatorname{Aut}(\mathfrak{B})$ is extremely amenable, i.e., every continuous action on a compact Hausdorff space has a fixed point.

Theorem (consequence of Hubička+Nešetřil'16).

Theorem (consequence of Hubička+Nešetřil'16).

For every CSP described by an MSNP sentence $\boldsymbol{\Phi}$

Theorem (consequence of Hubička+Nešetřil'16).

For every CSP described by an MSNP sentence Φ there exists a structure \mathfrak{B} and a linear order < on B so that

Theorem (consequence of Hubička+Nešetřil'16).

For every CSP described by an MSNP sentence Φ there exists a structure \mathfrak{B} and a linear order < on B so that

• $\mathsf{CSP}(\mathfrak{B}) = \{\mathfrak{A} \text{ finite } | \mathfrak{A} \models \Phi\};$

Theorem (consequence of Hubička+Nešetřil'16).

For every CSP described by an MSNP sentence Φ there exists a structure \mathfrak{B} and a linear order < on B so that

•
$$CSP(\mathfrak{B}) = \{\mathfrak{A} \text{ finite } | \mathfrak{A} \models \Phi\};$$

• $(\mathfrak{B}, <)$ is Ramsey and ω -categorical.

Theorem (consequence of Hubička+Nešetřil'16).

For every CSP described by an MSNP sentence Φ there exists a structure \mathfrak{B} and a linear order < on B so that

•
$$CSP(\mathfrak{B}) = \{\mathfrak{A} \text{ finite } | \mathfrak{A} \models \Phi\};$$

• $(\mathfrak{B}, <)$ is Ramsey and ω -categorical.

Remarks.

Uses partite method from structural Ramsey theory (Nešetřil-Rödl).

Theorem (consequence of Hubička+Nešetřil'16).

For every CSP described by an MSNP sentence Φ there exists a structure \mathfrak{B} and a linear order < on B so that

•
$$CSP(\mathfrak{B}) = \{\mathfrak{A} \text{ finite } | \mathfrak{A} \models \Phi\};$$

• $(\mathfrak{B}, <)$ is Ramsey and ω -categorical.

Remarks.

- Uses partite method from structural Ramsey theory (Nešetřil-Rödl).
- Thus: $Aut(\mathfrak{B}, <)$ is extremely amenable.

Theorem (consequence of Hubička+Nešetřil'16).

For every CSP described by an MSNP sentence Φ there exists a structure \mathfrak{B} and a linear order < on B so that

•
$$CSP(\mathfrak{B}) = \{\mathfrak{A} \text{ finite } | \mathfrak{A} \models \Phi\};$$

• $(\mathfrak{B}, <)$ is Ramsey and ω -categorical.

Remarks.

- Uses partite method from structural Ramsey theory (Nešetřil-Rödl).
- Thus: $Aut(\mathfrak{B}, <)$ is extremely amenable.

(3) Ramsey Expansion Conjecture.

Theorem (consequence of Hubička+Nešetřil'16).

For every CSP described by an MSNP sentence Φ there exists a structure \mathfrak{B} and a linear order < on B so that

•
$$CSP(\mathfrak{B}) = \{\mathfrak{A} \text{ finite } | \mathfrak{A} \models \Phi\};$$

• $(\mathfrak{B}, <)$ is Ramsey and ω -categorical.

Remarks.

- Uses partite method from structural Ramsey theory (Nešetřil-Rödl).
- Thus: $Aut(\mathfrak{B}, <)$ is extremely amenable.

(3) Ramsey Expansion Conjecture. Every homogeneous structure with finite relational signature has a finite homogeneous Ramsey expansion.

 $\mathfrak{B} {:}$ reduct of homogeneous structure \mathfrak{C} with finite relational signature.

 $\mathfrak{B} :$ reduct of homogeneous structure \mathfrak{C} with finite relational signature.

1 (Thomas) Does $Aut(\mathfrak{B})$ always have finitely many closed supergroups?

 $\mathfrak{B} :$ reduct of homogeneous structure \mathfrak{C} with finite relational signature.

- **1** (Thomas) Does Aut(B) always have finitely many closed supergroups?
- 2 (Reconstruction of Topology) Aut(\mathfrak{B}) \simeq Aut(\mathfrak{B}') \Rightarrow Aut(\mathfrak{B}) \simeq_t Aut(\mathfrak{B}')?

 $\mathfrak{B} :$ reduct of homogeneous structure \mathfrak{C} with finite relational signature.

- **1** (Thomas) Does Aut(B) always have finitely many closed supergroups?
- 2 (Reconstruction of Topology) Aut(\mathfrak{B}) \simeq Aut(\mathfrak{B}') \Rightarrow Aut(\mathfrak{B}) \simeq_t Aut(\mathfrak{B}')?
- 3 (Ramsey Expansion) Does \mathfrak{B} always have a finite homogeneous expansion with the Ramsey property?

 $\mathfrak{B} {:}$ reduct of homogeneous structure \mathfrak{C} with finite relational signature.

- **1** (Thomas) Does Aut(B) always have finitely many closed supergroups?
- 2 (Reconstruction of Topology) Aut(\mathfrak{B}) \simeq Aut(\mathfrak{B}') \Rightarrow Aut(\mathfrak{B}) \simeq_t Aut(\mathfrak{B}')?
- 3 (Ramsey Expansion) Does \mathfrak{B} always have a finite homogeneous expansion with the Ramsey property?

How to attack?

 $\mathfrak{B} {:}$ reduct of homogeneous structure \mathfrak{C} with finite relational signature.

- **1** (Thomas) Does Aut(B) always have finitely many closed supergroups?
- 2 (Reconstruction of Topology) Aut(\mathfrak{B}) \simeq Aut(\mathfrak{B}') \Rightarrow Aut(\mathfrak{B}) \simeq_t Aut(\mathfrak{B}')?
- 3 (Ramsey Expansion) Does \mathfrak{B} always have a finite homogeneous expansion with the Ramsey property?

How to attack?

■ Additionally assume that 𝔅 is NIP ('not the independence property').

 $\mathfrak{B} {:}$ reduct of homogeneous structure \mathfrak{C} with finite relational signature.

- **1** (Thomas) Does Aut(B) always have finitely many closed supergroups?
- 2 (Reconstruction of Topology) Aut(\mathfrak{B}) \simeq Aut(\mathfrak{B}') \Rightarrow Aut(\mathfrak{B}) \simeq_t Aut(\mathfrak{B}')?
- 3 (Ramsey Expansion) Does \mathfrak{B} always have a finite homogeneous expansion with the Ramsey property?

How to attack?

- Additionally assume that 𝔅 is NIP ('not the independence property').
- Additionally assume that \mathfrak{C} is NIP and has binary signature.