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Conjunctive Queries
Database: relational structure A.

Adam Eva

Kain Abel

Henoch

x is parent of y
Adam Kain
Eva Kain
Adam Abel
Eva Abel
Kain Henoch

Conjunctive query: primitive positive formula q, e.g.

∃x , y , z
(
parent(x , y)∧ parent(y , z)

)
x y z

P3

In our example:

A |= q

P3 → A
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Resilience

Resilience problem (for q): Given finite database A,
how many tuples must be removed from relations of A s.t.

A 6|= q?

Computational complexity depends on q!

Examples. Meliou+Gatterbauer+Moore+Suciu (DVLDB’10),
Freire+Gatterbauer+Immerman+Meliou (VLDB’2015,PODS’20).

∃x , y , z(R(x , y)∧ S(y , z)∧ T (z, x)).
‘Triad’: Resilience problem is NP-hard.
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∃x , y(R(x , y)∧ R(y , y)∧ R(y , x)∧ S(x))
Complexity left open in PODS’20.
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Research Goal:
Classify complexity of resilience
for all conjunctive queries q!
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Valued Constraint Satisfaction Problems

Given: a finite set of variables, a finite set of constraints.

CSP (Constraint Satisfaction Problem):
decide whether there exists a solution that satisfies all constraints.

Max CSP: find a solution that satisfies as many constraints as possible.

Valued CSP: Find solution of minimal cost: each constraint comes with
costs depending on the chosen values.

Example. Max Cut (NP-hard)
Given a finite directed graph (V ,E), find a partition A,B of V such that

E ∩ (A× B) is maximal.

Equivalently: E ∩ (A2 ∪ B2 ∪ B × A) is minimal.

A
B
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Valued Structures
Γ : valued structure.
(Countable) domain D.
(Finite, relational) signature τ.
For each R ∈ τ of arity k , function RΓ : Dk → Q ∪ {∞}︸ ︷︷ ︸

‘costs’

.

Example 1. ΓMC .
D = {0,1}.
τ = {E} where E is binary relation symbol.
EΓMC : D2 → Q ∪ {∞} given by

EΓMC (a,b) =

{
0 if a = 0 and b = 1,

1 otherwise.
0

1

P2

Example 2. K3. D = {0,1,2}, τ = {E}.

EK3(a,b) =

{
0 if a 6= b,∞ otherwise.

0 1

2

K3
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VCSPs, Formal Definition

Fixed: valued structure Γ .

Definition (VCSP(Γ))

Input: u ∈ Q, and an expression φ of the form

infx∈Dn

∑
i∈{1,...,m}

ψi

where each ψi is of the form R(xi1 , . . . , xik )

for R ∈ τ of arity k and i1, . . . , ik ∈ {1, . . . ,n}.

Question: φ ≤ u in Γ?

Examples.

VCSP(ΓMC) is the Max Cut Problem! A
B

VCSP(K3) is 3-colorability Problem!

(Both problems NP-hard)
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Finite-Domain VCSP Dichotomy

Γ : valued structure with a finite domain.

Theorem.

VCSP(Γ) is in P or NP-hard.

Guide to the literature:

Cohen, Cooper, Jeavons (CP’2006): ‘An algebraic characterisation of
complexity for valued constraints’

Živný+Thapper (STOC’13): proof if no∞ costs.

Kozik+Ochremiak (ICALP’15): hardness condition.
If hardness condition does not apply:
Γ has cyclic fractional polymorphism of arity at least two.

Kolmogorov+Rolı́nek+Krokhin (FOCS’15): in this case, VCSP(Γ) is in P
if the finite-domain Feder-Vardi CSP dichotomy conjecture is true.

Bulatov (FOCS’17), Zhuk (FOCS’17):
proof of Feder-Vardi conjecture.
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Resilience Problems as VCSPs

Homomorphism duality: for every finite digraph G we have

P3 6→ G if and only if G→ P2

Turn P2 into a valued structure Γ with signature {E}: define

EΓ (a,b) :=

{
0 if (a,b) ∈ E

1 otherwise

Note: Γ = ΓMC !

Consequence: The following problems are identical:

The resilience problem for q := ∃x , y , z
(
E(x , y)∧ E(y , z)

)
(bag semantics: the same tuple might appear multiple times in database)

The VCSP for ΓMC (Mac-Cut).

Consequence: Resilience problem for q is NP-hard.
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Homomorphism Dualities

For which queries q is there a dual structure B such that for every finite
structure A

A 6|= q if and only if A→ B ?

Definition. Incidence graph I(q):
bipartite undirected multigraph.
First colour class: variables of q.
Second colour class: conjuncts of q.
Edges link conjuncts with their variables.

y

x

z

E(x,y)

E(y,z)

I(q)

q := 
∃x,y,z (E(x,y) ⋀ E(y,z))

Theorem (Nešetřil+Tardiff’00; Larose+Loten+Tardif’07; Foniok’07).
A conjunctive query q has a finite dual if and only if I(q) is a tree.
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Dichotomy for Acyclic Queries

Theorem (B.+Lutz+Semanišinová).

Let q be a conjunctive query such that I(q) is a tree.
Then the resilience problem for q is NP-hard or in P.

Proof idea: turn the finite dual Bq of q into a valued structure Γq
(all cost functions take values in {0,1}).

Generalisations:
1 Presence of ‘exogenous’ tuples:

the tuples for some specified relations R may not be removed.
Use cost∞ instead of 1 for valued relation R in the dual.

2 ‘(Finite) unions of conjunctive queries’ instead of conjunctive queries.
3 It suffices that I(q) is acyclic.

But what if I(q) contains cycles?
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Cherlin-Shelah-Shi
q: conjunctive query such that I(q) is connected.

Theorem (Cherlin+Shelah+Shi Adv.Appl.Math’99).

q has a countable dual B such that Aut(B) is oligomorphic.

A permutation group G on a countably infinite set B is called oligomorphic
if G y Bn has finitely many orbits for every n ≥ 1.

Example. Aut(Q;<) is oligomorphic.
(However, (Q;<) is not a dual of a single conjunctive query.)

Theorem (Hubicka+Nešetřil MVLSC’16).

There exists a dual B of q which is reduct of a finitely bounded homogeneous
structure.

B is finitely bounded if there exists a finite set of structures F such that
A ↪→ B if and only if F 6↪→ A for all F ∈ F .
B is homogeneous if all isomorphisms between finite substructures of B
extend to automorphisms of B.
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Arbitrary Resilience Problems as VCSPs

q: conjunctive query such that I(q) is connected.
Bq : dual of q such that Aut(Bq) is oligomorphic.
Γq : valued structure obtained from Bq .

Theorem (B., Lutz, Semanišinová).

The resilience problem for q equals VCSP(Γq).

Again:

Also works with exogeneous tuples.

Also works for unions of conjunctive queries.

Assumption that I(q) is connected can be made wlog.
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Fractional Homomorphisms

Definition. A fractional map from D to C is a probability distribution(
CD, B(CD)︸ ︷︷ ︸

Borel σ-algebra

,ω : B(CD)→ [0,1]
)
.

∆, Γ : valued structures with same signature τ and domains D and C.
A fractional homomorphism ∆→ Γ is fractional map from D to C such that
for every R ∈ τ of arity k and every a ∈ Dk

1 Eω[f 7→ RΓ (f (a))] exists (always exists if Aut(Γ) is oligomorphic), and

2 Eω[f 7→ RΓ (f (a))] ≤ R∆(a).

Remarks.

Fractional homomorphisms compose.

Hence: may define fractional homomorphic equivalence.

Fractional homomorphic equivalence preserves complexity of VCSP.
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Expressive Power of Valued Structures

Γ : valued structure with domain D and signature τ.
φ: τ-expression

∑
i∈{1,...,m}ψi .

R : Dk → Q ∪∞.

Definition. φ(x1, . . . , xk , y1, . . . , yl) expresses R in Γ if for all a ∈ Dk

R(a) = infb∈DkφΓ (a,b)

Fact. If Aut(Γ) is oligomorphic, then VCSP(Γ,R) reduces to VCSP(Γ).

Other complexity-preserving expansions of Γ :

R∅(a) :=∞ for all a ∈ D.

R=(a,b) := 0 if x = y and R=(a,b) =∞ otherwise.

non-negative scaling: r · R for r ∈ Q≥0.

shifting: R + s for s ∈ Q.

Feas(R) := {a ∈ Dk | R(a) <∞}.

Opt(R) := {a ∈ Feas(R) | R(a) ≤ R(b) for every b ∈ Dk }.
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Hardness

Definition

〈Γ〉: valued structure obtained from Γ by adding R∅ and R= and closing
under expressibility, non-negative scaling, shifting, Feas, and Opt.

d-th pp-pwer of Γ : valued structure ∆ with domain Dd such that
for every R of arity k in ∆ there exists S of arity dk in 〈Γ〉 such that

R
(
(a1

1, . . . ,a
1
d ), . . . , (a

k
1 , . . . ,a

k
d )
)
= S(a1

1, . . . ,a
1
d , . . . ,a

k
1 , . . . ,a

k
d ).

Γ pp-constructs ∆ if ∆ is fractionally homomorphically equivalent to a
pp-power of Γ .

Fact. If Aut(Γ) is oligomorphic and Γ pp-constructs ∆,
then VCSP(∆) reduces to VCSP(Γ).

Corollary. If Aut(Γ) is oligomorphic and Γ pp-constructs K3,
then VCSP(Γ) is NP-hard.
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Example 1

Recall: Resilience problem for q = ∃x , y , z(R(x , y)∧ R(y , z))

x y z

P3

equals VCSP(ΓMC), i.e., MaxCut, and is NP-hard.

0

1

P2

ΓMC pp-constructs K3: Suffices to show that ΓMC pp-constructs

NAE := ({0,1}; {0,1}3 \ {(0,0,0), (1,1,1)})

because it is known that NAE pp-constructs K3.

NAE(x , y , z) = Opt
(
R(x , y) + R(y , z) + R(z, x)

)
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Example 2

q = ∃x , y , z
(
R(x , y)∧ R(y , z)∧ H(x , y , z)

) 0 1 2R RH

Fact: q has homogeneous dual Bq (Reason: Gaifman graph of q is clique)
Note: No finite dual!
Γq : corresponding valued structure.

Claim: Γq pp-constructs K3.
Fact: Suffices to show that Γq pp-constructs

OIT :=
(
{0,1}; {(0,0,1), (0,1,0), (1,0,0)}

)
.

Define
S(x , y , z) := R(x , y) + R(y , z) + Opt(H(x , y , z))
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Example 2, pp-construction

G(u, v ,u ′, v ′,u ′′, v ′′) := Opt
( ≥3︷ ︸︸ ︷

S(u, v , v ′) + S(u ′, v ′, v ′′) + S(u ′′, v ′′, v)

+ S(v , v ′, v ′′) + S(v ′, v ′′, v) + S(v ′′, v , v ′)︸ ︷︷ ︸
≥2

)

v v’

v’’

R

RR

u’’

u’

u
R

R

Rpp-power ∆ with domain B2

and OIT∆((u, v), (u ′, v ′), (u ′′, v ′′)) := G(u, v ,u ′, v ′,u ′′, v ′′).

∆ is homomorphically equivalent to ({0,1};OIT) :

h(u, v) :=

{
0 if(u, v) ∈ RB

1 otherwise

Pick u, v , x , y ∈ B such that {u, v , x , y }3 ⊆ HB,
(u, v) ∈ RB, (x , y) /∈ RB.
Define g(0) := (u, v), g(1) := (x , y).
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Example 3

q := ∃x , y , z
(
R(x , y)∧ S(y , z)∧ T (z, x)

)
x y

z

R
ST

Known: NP-hard (Freire, Gatterbauer, Immerman, Meliou VLDB’2015)
‘Self-join free’: every relation symbol appears at most once.

Fact. Γq pp-constructs K3.

Consequences.

VCSP(Γq) is NP-hard.

Resilience problem for q is NP-hard.
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Fractional Polymorphisms

Γ : valued structure with domain D and signature τ.
Fractional polymorphism of Γ :
fractional homomorphism ω from specific pp power Γ ` to Γ :
for every R ∈ τ of arity k

RΓ
`

((a1
1, . . . ,a

1
`), . . . , (a

k
1 , . . . ,a

k
` )) :=

1
`

∑
i∈{1,...,`}

RΓ (a1
i , . . . ,a

k
i ).

Idea:

Expected cost of a k -tuple obtained from applying ω to ` tuples
≤ the average cost of these tuples.

Example. π`i : D` → D given by π`i (x1, . . . , x`) = xi .
Id` given by Id`({π`i }) :=

1
`

for every i ∈ {1, . . . , `}
is fractional polymorphism for every Γ .
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Polynomial-time Tractability

f : D` → D is cyclic if for all x1, . . . , x` ∈ D:

f (x1, . . . , x`) = f (x2, . . . , x`, x1).

ω is called cyclic if for every A ∈ B(DD`

) we have

ω(A) = ω
(
{f ∈ A | f is cyclic}

)
Theorem.
Γ : valued structure over finite domain. Then

If K3 has no pp-construction in Γ , then Γ has a cyclic fractional
polymorphism of arity ` ≥ 2 (essentially Kozik+Ochremiak).

If Γ has a cyclic fractional polymorphism of arity ` ≥ 2,
then VCSP(Γ) is in P (Kolmogorov+Krokhin+Rolı́nek)
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Tractability Conjecture

q: conjunctive query.

Conjecture. If K3 does not have a pp-construction in Γq , then

VCSP(Γq) is in P and

the resilience problem for q is in P
(for bag semantics, therefore also for set semantics)

Theorem (B.,Lutz,Semanišinová).

If Γq has fractional polymorphism which is canonical and pseudo-cyclic with
respect to Aut(Γq), then VCSP(Γq) is in P.

Proof by reduction to the finite, similarly as for CSPs in B.+Mottet (LICS’16).

Example q := ∃x , y
(
R(x , y)∧ R(y , y)∧ R(y , x)∧ S(x)

)
Complexity left open at PODS’20.

x y

R

R RSΓq has such a polymorphism.
Hence: Resilience problem for q is in P.
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Example 4

x1x0 x2 xn…

R1 R2
Rn

q

q acyclic and self-join free!

has finite dual D.

is linear: Resilience problem for q is in P (Gatterbauer, Immerman,
Meliou VLDB’2015)

D: vertex vS for every S ⊆ {1, . . . ,n − 1}.
Idea: vS satisfies φi(x) for all i ∈ S, where

φi(x) := ∃xi+1, . . . , xn
(
Ri+1(x , xi+1)∧ · · ·∧ Rn(xn−1, xn)

)
.

Ri(vS, vT ) holds iff

i < n and i /∈ T , or

i > 1 and (i − 1) ∈ S.
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Example 4: Fractional Polymorphisms!

f : D2 → D: (vS, vT ) 7→ vS∪T .

g : D2 → D: (vS, vT ) 7→ vS∩T .

ω: binary fractional polymorphism defined by

ω(f ) = ω(g) :=
1
2

Verify:

ω is cyclic!

ω is fractional polymorphism of Γq .

In this case: cost functions are submodular.
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Example 5: Cyclic and Self-joins

x y

C2q:q cyclic and with self-join. No finite dual!
Infinite dual D: ‘the random oriented graph’, i.e.,
countable homogeneous universal oriented graph.
Exists f : D2 ↪→ D.

f injective, not cyclic!

f is pseudo-cyclic: there exist α,β ∈ Aut(D) such that

α(f (x , y)) = β(f (y , x)).

f is canonical: for s, t ∈ Dn,
the orbit of f (s, t) in Aut(D)

only depends on the orbit of s
and the orbit of t in Aut(D).

ω defined by ω(f ) := 1 is
canonical pseudo-cyclic
fractional polymorphism of Γq .

x1x0 x2 x3

y1y0 y2 y3

f(x1,y1)f(x0,y0) f(x2,y2) f(x3,y3)
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Summary

Universal Algebra:
pp constructions,

(fractional) polymorphisms

Theoretical Computer Science:
valued CSPs, complexity dichotomies

Database Theory:
conjunctive queries, 

the resilience problem

Model Theory
graph homomorphisms, Cherlin-Shelah-Shi, 

homogeneous structures, oligomorphic 
automorphism groups, the Ramsey property 

Tractability Conjecture

Dichotomy for Acylic 
Conjunctive Queries

Tractability Conditions

Hardness Conditions
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