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Outline

1 Constraint Satisfaction Problems: definition and examples

2 Computational complexity of finite domain CSPs:
The universal-algebraic approach (‘polymorphisms’)

3 Complexity of CSPs over the rationals
(a) Convex and Essentially Convex Semialgebraic Constraints
(b) First-order Reducts of (Q;<).
(c) Max-closed Semilinear Constraints

For this audience: focus on geometric aspects.
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Constraint Satisfaction Problems, informally

Constraint Satisfaction Problem (CSP)

A computational problem:

Input: A finite set of variables and
a finite set of constraints imposed on these variables

Question: Is there a satisfying assignment?

Examples and applications e.g. in:
Artificial Intelligence, Verification,
Computational Linguistics, Database Theory,
Computational Biology, Computer algebra, . . .

Central Question:
computational complexity of CSPs. NP

NP hard

P

≠∅ Ladner
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Famous Examples

Satisfiability of Linear Inequalities:

Input: a set of variables V and
a set of linear inequalities.

Question: Is there a solution over Q, i.e.,
a map c : V → Q that
satisfies all the inequalities?

Complexity: in P (there exists a polynomial-time algorithm)

3-Colorability:

Input: a finite graph (V ;E).

Question: Is there a valid 3-colouring, i.e.,
a map c : V → {0,1,2} such that
{x , y } ∈ E ⇒ c(x) 6= c(y)?

Complexity: NP-complete
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Constraint Satisfaction Problems, formally

Let τ be a set of relation symbols.
Let B = (B;R1, . . . ,Rl) be a τ-structure (the ‘template’).

CSP(B)

Input: A finite conjunction of atomic τ-formulas,
i.e., formulas of the form R(xi1 , . . . , xik ) for R ∈ τ.

Question: Is Φ satisfiable in B?

Examples:
CSP(K3): Graph 3-Colorability.
CSP(Q;<): directed graph acyclicity.

Example input: x1<x2 ∧ x2<x3 ∧ x3<x1

x1 x2

x3
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The Feder-Vardi Dichotomy Conjecture

What can be said about CSP(B) when B has a finite domain?

Conjecture (Feder-Vardi’93).

For finite B, the problem CSP(B) is either in P or NP-complete.

This dichotomy has been confirmed in many special cases, for example

For 2-element structures B (Schaefer’78)
and 3-element structures B (Bulatov’06)

For graphs (Hell+Nešetřil’90)
and digraphs without sources and sinks (Barto+Kozik+Niven’08)

For all finite structures (Bulatov’17, Zhuk’17/20)

The CSPs in P have an elegant universal-algebraic characterisation.
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Polymorphisms

A function f : Dk → D preserves R ⊆ Dm if for all a1, . . . ,ak ∈ R(
f (a1

1, . . . ,a
k
1), . . . , f (a

1
m, . . . ,ak

m)
)
∈ R.

‘R is closed under f ’.

Examples:

(x , y) 7→ (x + y)/2 preserves all convex relations R ⊆ Rm.

(x , y) 7→ x preserves all relations.

f is called a polymorphism of B if f preserves all relations of B.
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Weak Near Unanimities

Assume that B has a finite domain D.

Theorem (Bulatov+Jeavons+Krokhin’05, Maroti+McKenzie’08).

Let B be a finite structure. Then B has a weak near unanimity polymorphism,
that is, a polymorphism f of arity k ≥ 2 such that for all elements x , y of B

f (y , x , . . . , x) = f (x , y , . . . , x) = · · · = f (x , . . . , x , y) ,

or CSP(B) is NP-hard.

Example:
(x , y) 7→ (x + y)/2

is a weak near unanimity polymorphism of (Q;<).

If CSP(B) is in P, then B must have ‘Higher-dimensional symmetry’
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Finite-Domain Tractability Theorem

Bulatov’17, Zhuk’17/20:

Theorem.
If B is a finite structure with a weak near unanimity polymorphism,
then CSP(B) is in P.

Both Bulatov and Zhuk combine two algorithmic techniques:

Generalizations of Gaussian elimination

Constraint Propagation (aka Local Consistency aka Datalog)

Both algorithms and correctness proofs are complicated.

What can be said about CSP(B) for infinite-domain B?

Theorem (B.+Grohe’08). For every computational problem C there exists a
structure B such that C is equivalent (under polynomial-time Turing
reductions) to CSP(B).
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The Rational Numbers

Definition.

R ⊆ Qk is semilinear if R has a first-order definition in (Q; +,1,≤).

∀, ∃, ∧, ∨, ¬

Ferrante and Rackoff’75: A relation is semilinear if and only if
it is a finite intersection of finite unions of (open or closed) linear half spaces.

Big challenge:
Classify the complexity of CSP(Q;R1, . . . ,R`)
for all semilinear relations R1, . . . ,R`.

Remark. Exists solution over Q ⇔ exists solution over R.
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Examples

1 CSP(Q;≤,R+,R=1) where

R+ := {(x , y , z) | x = y + z}

R=1 := {1}

All constraints convex.
Polymorphism (x , y) 7→ (x + y)/2.
In P (e.g., Ellipsoid method).

2 CSP(Q;≤,R+,R=1, 6=).
In P: standard tricks.

3 CSP(Q;≤,R+,R=1, 6=,H) where

H := {(x , y ,u, v) ∈ Q4 | x = y ⇒ u = v }

In P (Jonsson+Bäckström’98).
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(a) Essential Convexity

Def. R ⊆ Qm is essentially convex if for all a,b ∈ R the set ab \ R is finite.

Examples.

All convex relations are essentially convex,

6=, H.

Theorem (B.+Jonsson+von Oertzen’09).

Let R1, . . . ,R` be semilinear relations. Then one of the following applies:

R1, . . . ,R` are essentially convex,
and CSP(Q;≤,R+,R=1,R1, . . . ,R`) is in P.

One of R1, . . . ,R` is not essentially convex,
and CSP(Q;≤,R+,R=1,R1, . . . ,R`) is NP hard.

Jonsson+Thapper’16: remove ≤,R=1 from the assumptions.
Bodirsky+Mamino’17:

all polymorphisms of (Q;R+,R=1,H) are projections;
polymorphism description of essential convexity over Q[x ].
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(b) First-order Reducts of (Q;<)

B = (Q;R1, . . . ,R`) such that R1, . . . ,R` are first-order definable over (Q;<).
B is called ‘First-order reduct of (Q;<)’.

Examples:

CSP(Q; {(x , y , z) | x < y < z ∨ z < y < x}).
‘Betweenness problem’, classic NP-hard problem.

CSP(Q; {(x , y , z) | x = y < z ∨ y = z < x ∨ z = x < y }).
Complexity? Geometric interpretation?!

Remark. In this case:

B is ω-categorical (all countable models of the first-order theory of B
are isomorphic);

Aut(B) is oligomorphic (the componentwise action of Aut(B) on Bn

has only finitely many orbits of n-tuples for all n);

Complexity of CSP(B) is captured by the polymorphisms of B
(B.+Nešetřil’03).
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Classification

B: first-order reduct of (Q;<).

Theorem (B.+Kara’08).

CSP(B) is in P if

All relations contain the tuple (0, . . . ,0), or

All relations of B are essentially convex, or

All relations of B are preserved by (x , y) 7→ max(x , y) or by
(x , y) 7→ min(x , y), or

(TWO MORE CASES)

Otherwise, CSP(B) is NP-hard.

Remarks.

Proof makes essential use of Ramsey theory.

Open: Are CSPs for semilinear constraints preserved by max in P?
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Max-closed Semilinear Constraints

Examples of semilinear relations preserved by max.

Rmax := {(u, v ,w) ∈ Q3 | u < max(v ,w)}.
‘tropically convex’: preserved by max and by translations x 7→ c + x .

R ⊆ {0,1}m is preserved by max if and only if
R can be defined in conjunctive normal form such that
every clause has a most one negative literal.

Example: (X ∨ Y ∨ ¬Z )∧ (Y ∨ U ∨ ¬V )

A linear inequality a1x1 + · · ·+ amxm ≤ a0

is preserved by max if and only if
at most one of a1, . . . ,am ∈ Q is positive.

x1+x2 ≤ 1
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Example

The enclosed subset of R2 is preserved by max.
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Characterisation

Theorem (B-Mamino’17).

Let R be semilinear. The following are equivalent:

R is preserved by max.

R can be defined by a conjunction of disjunctions of the form

ci ≺i

m∨
i=1

�ai �x

where ≺i ∈ {≤, <}, c1, . . . , cm ∈ Q, �a1, . . . , �am ∈ Qn,
and there is a k ≤ n such that �ai,j ≥ 0 for all i and j 6= k .

R is projection of solution space of an instance of
CSP(Q;<, {1}, {−1},S1,S2,S3) where

S1 := {(x , y) : 2x ≤ y },

S2 := {(x , y , z) : x ≤ y + z}

S3 := {(x , y , z) : x ≤ y ∨ x ≤ z}
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Max-Atoms

And/Or Precedence Constraints (Möhring+Stork+Skutella’04)
aka Max-Atom Problem (Bezem,Nieuwenhuis+Rodriguez-Charbonell’08)
equiv to Emptyness of Tropical Polyhedra (Akian+Gaubert+Guterman’11)
equiv to Solvability of Tropical Linear Systems (Grigoriev+Podelskii’15) :

Definition.
Input: A finite set of variables V , and a finite set of constraints

(y1 + c1 ≤ x)∨ (y2 + c2 ≤ x) where x , y1, y2 ∈ V

and c1, c2 ∈ Z are represented in binary.

Question: Is there a mapping V → Q that satisfies all constraints?

MSS’04, BNR’08, AGG’11: in coNP.

MSS’04: Max-Atoms ≡P Mean Payoff Games.

Propositional µ-calculus ≡P Parity Games ≤P Mean-Payoff Games,
containment in P is long-standing open problem

Semilinear Constraints Manuel Bodirsky 18
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Tropically Convex Sets

Develin-Sturmfels’04:

Definition.
A subset R of Qn is called tropically convex if

R is preserved by max, and

R is preserved by all translations x 7→ x + c for all c ∈ Q.

Max-Atoms relations are tropically convex

x ≤ y + z is preserved by max, but not tropically convex.

x ≤ (y + z)/2 is tropically convex

Theorem (B+Mamino’17).

Let S1, . . . ,S` be tropically convex semilinear relations.
Then CSP(Q;S1, . . . ,S`) is in NP ∩ coNP.

Semilinear Constraints Manuel Bodirsky 19
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Overview State of the Art
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Step 1: Characterisation of Tropical Convexity

Theorem (B-Mamino’17).

Let R be semilinear. The following are equivalent:

R is topically convex.

R can be defined by a conjunction of disjunctions of the form

ci ≺i

m∨
i=1

�ai �x

where ≺i ∈ {≤, <}, c1, . . . , cm ∈ Q, �a1, . . . , �am ∈ Qn, and there is a k ≤ n
such that �ai,j ≥ 0 for all i and j 6= k and

∑
j ai,j = 0 for all i .

R has a primitive positive definition in (Q;<,S3,T1,T−1,S4) where

T±1 := {(x , y) : x ≤ y ± 1}

S4 := {(x , y , z) : x ≤ (y + z)/2}.
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Step 2: Duality for Max-Plus-Average Ineqs

P: a system of n strict inequalities on n variables,
each having one the following three forms

xi < max(xj1 + k1, . . . , xjm + km) (1)

xi < min(xj1 + k1, . . . , xjm + km) (2)

xi < (α1xj1 + · · ·+ αmxjm)/(α1 + · · ·+ αm) + k (3)

where α1, . . . , αm > 0.
The dual D of P: replace < by ≥.

Theorem (B+Mamino’17).

P has a solution in Qn if and only if D has no solution in (Q ∪ {+∞})n \ {+∞}n.

Convention: +∞ < +∞.
Dual without type (3) independently by Grigoriev and Podolskii STACS’15.
Consequence: satisfiability of P is in NP ∩ coNP.
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Step 3: Stochastic Mean Payoff Games
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Payoff

Let e1,e2, . . . be a play.
Limiting Average Payoff:

v1 := liminfT→∞ 1
T

T∑
i=1

payoff(ei)

Discounted payoff with discounting factor β ∈ [0,1[:

vβ := (1 − β)

∞∑
i=1

payoff(ei)β
i−1

Known facts (Filar-Vrieze’96):

for each of the players min and max, there is a (positional) optimal
strategy for the game starting in vertex x (for both notions of payoff)

v1(x) = limβ→1vβ(x)

vβ(x1), . . . , vβ(xn) can be described by a limit discount equation.
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Link between CSP and Game

P: system of n constraints on n variables.
D: dual of P.

v1(x): limiting average payoff of the corresponding game G, starting in x .

Theorem (B+Mamino’17).

D is satisfiable if and only if v1(xi) ≤ 0 for some vertex xi of G.

P is satisfiable if and only if v1(xi) > 0 for all vertices xi of G.

Comments:

This implies the duality theorem

Reduction from tropical convex constraints to max-plus-average
inequalities requires further work . . .
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Open Problems

Is every CSP for semilinear constraints in P or NP-complete?

Is every CSP for semilinear constraints preserved by max in P?

Further open problems:

Classify CSP(B) for all first-order reducts B of (Q;R=1,R+).

Classify the CSP for all semilinear constraints
that are preserved by translations.
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