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A classic example

No Monochromatic Triangle

Given: a graph (V,E).
Task: to partition E in two classes
E1,E2 such that neither (V,E1)
nor (V,E2) contains a triangle.

(V,E)
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A classic example

No Monochromatic Triangle

Given: a graph (V,E).
Task: to partition E in two classes
E1,E2 such that neither (V,E1)
nor (V,E2) contains a triangle.

(V,E2)

2/10



A “real life” example

The participants of AAA
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A “real life” example

Two desks, three people

The AAA classroom
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A “real life” example

always
together

always
apart
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A “real life” example

Choose who sits together
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A formal definition of GMSNP

Given: a finite relational structure (e.g., a graph or a ternary AAA)

Task: assign to every relational tuple one of the several colours

s.t. the result is F -free, i.e., it contains no hom-images of structures
from a fixed finite forbidden family F .

F = F =
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GMSNP seen as a CSP

Let K := be the class of all finite F-free structures (all solutions).
Hubička, Nešeťril: there is a class K′ obtained from K by adding
finitely many new relations, K′ is closed under taking substructures
(HP) and has the amalgamation (AP) and Ramsey properties.

AP : &∈ K′ ∈ K′ & ∼= ∈ K′

Fräıssé: if K′ is closed under disjoint unions, has HP and AP, then
there is a homogeneous structure B such that Age(B) = K′.
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GMSNP seen as a CSP

τ

I Iσ

F
τ ∪ σ

K

τ ∪ σ ∪ ρ

K′

BBσBτ

HN

Fr

(τ ∪ σ)-reductτ -reduct

Observation

An input I has an F -free σ-expansion (I ∈ GMSNP(F)) if and only
if I homomorphically maps to Bτ (I ∈ CSP(Bτ )).
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The dichotomy question

P

NP-complete

NP-intermediate

NP=ESO
Ladner: If P ̸= NP, then NP has problems that
are neither in P nor NP-complete.
Fagin: The problems in NP are precisely those
that are described by sentences in Existential
Second-Order logic (ESO).

Question

For a given logic L ⊂ ESO, is L a subset of
(P ∪ NP-complete)?
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The dichotomy question

finite⊂MMSNP⊂ GMSNP ⊂ Monotonefirst-order reducts
of finitely bounded

homogeneous structures
CSP

⊂
SNP

CSPs of

Given: a finite relational structure.

Task: assign to every vertex one of the several colours

such that the result is F-free F =
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The dichotomy question

finite⊂MMSNP⊂ GMSNP ⊂ Monotonefirst-order reducts
of finitely bounded

homogeneous structures
CSP

⊂
SNP

CSPs of

Feder, Vardi: Every problem in MMSNP is P-time equivalent

to a finite CSP.

Zhuk, Bulatov: Finite CSPs have a dichotomy that is

characterized by algebraic properties of the template.
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The dichotomy question

finite⊂MMSNP⊂ GMSNP ⊂ Monotonefirst-order reducts
of finitely bounded

homogeneous structures
CSP

⊂
SNP

CSPs of

A is homogeneous if every isomorphism between its finite

substructures extends to an automorphism of A.
A is finitely bounded if for some finite family F
∀ B finite (B ⊂ A ⇔ ∀ F ∈ F F ̸→ B) (Age(A) is F-free)
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The dichotomy question

finite⊂MMSNP⊂ GMSNP ⊂ Monotonefirst-order reducts
of finitely bounded

homogeneous structures
CSP

⊂
SNP

CSPs of

B is a first-order reduct of A if B has the same domain as A
and if every relation of B is first-order definable in A.
Conjecture (Bodirsky, Pinsker): CSPs of FORoFBHS have a

dichotomy characterized by algebraic properties of the template.
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The dichotomy question

finite⊂MMSNP⊂ GMSNP ⊂ Monotonefirst-order reducts
of finitely bounded

homogeneous structures
CSP

⊂
SNP

CSPs of

Given: a finite relational structure A.
Task: assign a colour to each k-element subset of A (k is fixed)

s.t. the colours assigned to intersecting subsets are compatible.

t1 t2 A
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The dichotomy question

finite⊂MMSNP⊂ GMSNP ⊂ Monotonefirst-order reducts
of finitely bounded

homogeneous structures
CSP

⊂
SNP

CSPs of

Feder, Vardi: Every problem in NP is P-time equivalent

to a problem in Monotone SNP.
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The containment question

Given: two decision problems Φ and Ψ.
Task: to check whether every YES instance of Φ is a YES instance
of Ψ, denoted Φ ⊆ Ψ.

Observation

In general, containment is undecidable.

For A,B finite or FORoFBHS, we have CSP(A) ⊆ CSP(B) if
and only if A → B.
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Containment is decidable for GMSNP

r: {colours of Φ} → {colours of Ψ} is a recolouring from Φ to Ψ

if the preimage r−1(FΨ) has no FΦ-free structures

FΨr−1(FΨ)

FΦ

recolouring ⇒ containment
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Containment is decidable for GMSNP

A mapping h:A → B is canonical if for every n and every ā ∈ An

and every automorphism α ∈ Aut(A) there is β ∈ Aut(B) s.t.

ā

α(ā)

h(ā)

h(α(ā))

h

h

α β
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Containment is decidable for GMSNP

Φ ⊆ Ψ =⇒ ∃h:Bτ
Φ → Bτ

Ψ
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Containment is decidable for GMSNP

Φ ⊆ Ψ =⇒ ∃h:Bτ
Φ → Bτ

Ψ

Bodirsky, Pinsker, Tsankov:

Hubička, Nešeťril : Bτ
Φ has such an expansion BΦ!

B., Pinsker, Rydval: Φ transforms to an equivalent Φ′ s.t.

{colours of Φ′} ←→ {orbits of τ -tuples in BΦ′}bij

A canonical mapping h well-defines a recolouring

r: {colours of Φ′} → {colours of Ψ′}
containment ⇒ recolouring

Bτ
Φ has a homogeneous

Ramsey expansion BΦ

h can be made canonical w.r.t.
Aut(BΦ) and Aut(BΨ)

=⇒
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Thank You!
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