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Clone is a set of operations closed under composition and
containing all projections.

Examples of clones
» The clone of monotone operations.
» The clone of linear operations
» The clone of unary operations
» The clone of self-dual operations
>

Slupetsky maximal clone

Clones ordered by inclusion form a lattice.




The Lattice of Clones containing x + 1 on {0,1,2}
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The Lattice of Clones containing 2x +2y on {0, 1,2}




The lattice of all clones on two elements(for |A| = 2)
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Galois connection
Inv(F) is the set of relations preserved by every operation from F
Pol(S) is the set of operations preserving every relation from S

Relational clone is a set of relations closed under pp-formulas
and containing = and &.

Clo(F) is the clone generated by F.
RelClo(S) is the relational clone generated by S.

Theorem [Bodnarchuk, Kaluzhnin, Kotov, Romov, Geiger,
1969]

» Pol(Inv(C)) = C for any clone C.
Inv(Pol(R)) = R for any relational clone R.
Pol(Inv(F)) = Clo(F).

Inv(Pol(S)) = RelClo(S).
R1 C R = Pol(R1) 2 Pol(R>).
C1 C Co = Inv(Cq) 2 Inv(Cy).
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On There exists a continuum of clones for
/ |A] > 2 (Ju.l. Janov, A. A. Muchnik, 1959)

, Al maximal clones for |A| =
* were found (S. V. Jablonskij, 1955)

.AII maximal clones were found
(I. Rosenberg, 1970)

All 158 submaximal clones for |A| = 3 were
«found (D. Lau, H. Machida, J. Demetrovics,
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« |. Rosenberg classified all minimal clones

« All minimal clones for |A] = 3 were found
(B. Csakany, 1983)

. , Al minimal clones for |A| = 4 were found

Ja (Karsten Scholzer, 2012)
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For |Al > 2

Oa . Can we describe all subclones of
a maximal clone?

For the maximal clone of linear operations
« the lattice of subclones is finite and known
(|A] is a prime number) (A. A. Salomaa, 1964)

For the maximal clone of quasi-linear

operations the lattice of subclones is
* countable but not known

(if |Al is a power of a prime number)

of
Clones

For all other maximal clones the lattice of
« subclones is uncountable (J. Demetrovics,
L. Hannak, S. S. Marchenkov, 1983)
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A={0,1,2}

Clone of Self-Dual Operations

01 2
C3—P01<1 > 0)

» (3 is a maximal clone

» There exist continuum clones of self-dual operations (S.S.
Marchenkov, 1983).

(D. Zhuk, 2010)

A complete description of clones of self-dual operations on
three elements







I Finite class

I Countable class

[l Uncountable class
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lll. Revenge of the Continuum.



Clones with a majority operation on 3 elements
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Computer Calculations [Moiseev, Zhuk, 2017]
» There are exactly 1 918 040 clones on 3 elements
containing majority.
» There are exactly 2 079 040 clones on 3 elements
definable by binary relations.

» There are exactly 161 000 clones on 3 elements definable
by binary relations but not containing majority.

We will never understand that many clones... )
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if we cannot describe everything, let us hope that computer
can....

Computer should be able to solve the following problems.

Decision Problems

1. Given a set of operations F and a relation R. Decide
whether Clo(F) = Pol(R).

2. Given a relation R decide whether the clone Pol(R) is
finitely generated.

3. Given a set of operations F decide whether there exists a
relation R s.t. Pol(R) = Clo(F).

Theorem [Matthew Moore, 2019]
Problem 3 is undecidable.
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Are all the clones really different?

What is the difference between Cloa(x A y) and Clos(max)?

What is the difference between Cloz(x) and Clog(x + 1)?

Very similar!
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C1 = Pol(R4) is a clone on Ay, C, = Pol(R>) is a clone on A
Clone homomorphism £ : Cy — Co:

1. &(n]") =]

2. {(H(g1,---.9n) = E(N(&(g1), - - &(an))

R+ pp-interpret R, if if there exists d € N and a partial
surjective map f: Aﬁ’ — Ao such that preimages of relations of
R, are pp definable in R 4.

A set of identities is satisfied in a clone C if every functional
symbol can be instantiated with an operation of a clone.

Theorem [Birkhoff, Bodirsky]
C1 = Pol(R1), Co = Pol(R2) TFAE:
» There exists a homomorphism ¢ : Cy — Co
> Rq pp-interpret R»
» Any set of identities satisfied in Cq is also satisfied in Co.
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There are continuum clones of self-dual operations modulo
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C1 = Pol(R4) is a clone on Ay, C» = Pol(R>) is a clone on A,
Minor preserving map & : Cy — Co:

alxt, ... Xn) = (X, ... X;,) = &(9) (X1, ..., Xn) = E(H) (X - - -, Xiy)

R1 pp-construct R, if there exists a pp-power of R4
homomorphically equivalent to R, where pp-power is a
structure on domain A;’ pp-definable from R .

Minor identity is an identity of the form
f(Xq,..., %) = 9(Xi,, - - -, Xig)-

Theorem [Barto, Oprsal, Pinsker, 2018]

C1 = Pol(R1), Co = Pol(R2) TFAE:
» There exists a minor-preserving map £ : C1 — C»
> R4 pp-construct R,

> Any finite set of minor identities satisfied in C; is also
satisfied in Cs.
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Example

0O 0 1
M—Pol(o 1>

0 1 1
BQ—P01<1 1>

M is minor equivalent to M N 55
EM-o>MNBs

EF)(Xq,. .oy xn) = F(X1, ..., Xn) V (X1, ..., Xn),
where f*(X1,X2,...,Xn) = f(71,72,...,7n)

—
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Figure: Post Lattice



Clones of self-dual operations

Figure: The lattice of clones of
self-dual operations
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Cm,n = Pol(Bm, <, Dp,(0),(1),(2)) for2 <m < n.
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Bp={0,1}7\ {0}"
Dn = {1,237\ {1}"

00 1
S_<o11>

Cm’n - POI(Bm, S, Dn, (0), (1 ), (2)) fOI’ 2 S m S n.

Lemma
Clones C22,C23,C04,...,C33,C34,... are different modulo
minor equivalence.
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Computer Calculations [Zahalka, Barto, Zhuk, Starke, 2022]

» Using second pp-power for Cg O Cy 1 656 226 were
collapsed to 1 297

» Using inner automorphisms 1 297 were collapsed to 308

» Using mutual inclusion of clones from different classes 308
were collapsed to 293.
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» Using second pp-power for Cyg O Cy 1 656 226 were
collapsed to 1 297

» Using inner automorphisms 1 297 were collapsed to 308

» Using mutual inclusion of clones from different classes 308
were collapsed to 293.

» Florian Starke collapsed classes using 27th pp-power.

» Florian Starke implemented an automatic search for
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Computer calculations [Moiseev, Zhuk, 2017]
» There are 2 079 040 clones definable by binary relations
» There are 1 656 226 idempotent clones definable by binary
relations
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Computer Calculations [Zahalka, Barto, Zhuk, Starke, 2022]

» Using second pp-power for Cyg O Cy 1 656 226 were
collapsed to 1 297
» Using inner automorphisms 1 297 were collapsed to 308

» Using mutual inclusion of clones from different classes 308
were collapsed to 293.

» Florian Starke collapsed classes using 27th pp-power.

» Florian Starke implemented an automatic search for
identities and distinguished the remaining clones.
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Theorem

There are 133+1 clones on 3 elements definable by binary
relations up to minor preserving maps.
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Let us dream...

What will a full description of all clones modular minors give us?

» Beautiful picture? Hopefully

» A handbook of clones and h1-identities on 3 elements
M. B.: Can we generate majority from 3-cyclic and Maltsev?
A. V.: Just check in the book.

> A lot of new examples of finite algebras

» A lot of cool problems:
1. For every set of h1-identities find the number of clones.
2. Describe all clones satisfying some h1-identities.
3. Generalize the results for large domains.
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