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It is all about symmetries

✉ Message: CSP(A) is hard ⇐⇒ A lacks symmetry.
A,B: τ -structures (τ : finite relational signature).

Definition
A homomorphism from A to B is a map h : A → B s.t., for every R ∈ τ ,

(a1, . . . , an) ∈ RA =⇒ (h(a1), . . . , h(an)) ∈ RB.

In this case we write A → B.

CSP(A) is the membership problem of the class

{S | S is a τ -structure and S → A}.

Example

CSP(K3) is equivalent to the 3-colorability problem.
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It is all about symmetries

A: τ -structure;
ϕ(x1, . . . , xn): a τ -formula with n free-variables x1, . . . , xn.

Definition

We call R = {(a1, . . . , an) | A |= ϕ(a1, . . . , an)} the relation defined by ϕ.

If ϕ is primitive positive, then R is said to be pp-definable in A.

Definition
B is a pp-power of A if B is isomorphic to a structure P such that

the domain of P is An, n ≥ 1;
all the relations of P are pp-definable from A.

Definition
A pp-constructs B if B is homomorphically equivalent to a pp-power of A.
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It is all about symmetries

Theorem (Barto, Opršal, Pinsker 2015)

If A pp-constructs B, then CSP(B) ≤log CSP(A).

Aut(A) is NOT the right notion of symmetry!
For every finite structure A, there exists a finite structure B s.t.:

• A and B pp-construct each other (same complexity)
• Aut(B) = {idB}.

Since CSP(K3) is NP-complete: if A pp-constructs K3, then
CSP(A) in NP-complete.

Reason: K3 has few symmetries.
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It is all about symmetries

Definition

An operation f : An → A preserves a k-ary relation R on A if

a1,1
...

ak,1

a1,2
...

ak,2

. . .

a1,n
...

ak,n

∈
R

∈
R

∈
R

f( )

f( )

In this case, we also say that R is invariant under f .

A polymorphism of a relational structure A := (A; Γ) is on operation that
preserves R, for every R ∈ Γ.

By Pol(A) we denote the set of all polymorphisms of A.

Pol(A) is a clone! We call it the the polymorphism clone of A.
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Definition

f is a polymorphism of A = (A; Γ) if f preserves R, for every R ∈ Γ.
Pol(A) = {f | f is a polymorphism of A} (the polym. clone of A).
Inv(F ) = {R | R is invariant under every operation in F}.
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Clones

Definition
A clone C is a set of operations over a finite set A such that

C contains all the projections,
C is closed under composition.

If F is a set of operations, we denote by ⟨F ⟩ the clone generated by F .

Example

Consider the universe {0, 1}:
P2 := ⟨∅⟩ (the clone of all projections on {0, 1});
I2 := ⟨∧,m⟩ (the clone of all idempotent operations on {0, 1}).

Theorem (Geiger ’68; Bodnarčuk, Kalužnin, Kotov, Romov ’69)

If F is a set of operations on a finite domain, then Pol(Inv(F )) = ⟨F ⟩.
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A Galois connection for clones

Corollary

All clones over a finite n-element set form a lattice Ln under inclusion.

Theorem
A, B: relational structures on the same finite universe A,
A = Pol(A) and B = Pol(B).

A pp-defines B ⇐⇒ A ⊆ B.
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Clones over {0, 1, 2}

Continuum of clones

§ There exists a continuum of clones over {0, 1, 2} (Yanov, Muchnik ’59).
A
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Clones over {0, 1, 2}

aaaaaaaaaaaa © Description of all maximal and minimal clones.
aaaaaaaaaaaaaaaaaaaaa (Jablonskij ’54; Csákány ’83)



Clones over {0, 1, 2}

finitely many

L

§ All maximal clones – except the clone of all linear functions – contain
a continuum of subclones (Demetrovics, Hannak ’83; Marchenkov ’83).
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© D. Zhuk: "Continuum is not a problem" (2015).
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Coffee break!



A new order

What we want: A pp-constructs B ⇐⇒ Pol(A) ?? Pol(B).

Definition
τ : set of function symbols;
A minor identity (height 1 identity) is an identity of the form

f (x1, . . . , xn) ≈ g(y1, . . . , ym)

where f , g ∈ τ and x1, . . . , xn, y1, . . . , ym are not necessarily distinct.
Minor condition: Finite set of minor identities.

Example

f (x , y) ≈ f (y , x) ✔

f (f (x , y), z) ≈ f (x , f (y , z)) ✖

m(x , x , y) ≈ m(y , x , x) ≈ y ✖ (Mal’cev)
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A new order

Definition

We say that F satisfies Σ (F |= Σ) if there is a map ξ assigning to each
function symbol occurring in Σ an operation in F of the same arity, such
that if p ≈ q is in Σ, then ξ(p) = ξ(q).

A minor condition is trivial if it is satisfied by P2.

: Pol(K3) does not satisfy any non-trivial minor condition.
Equivalently: Pol(K3) does not satisfy

s(x , y , z , x , y , z) ≈ s(y , x , x , z , z , y).
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Minors and Reflections

Let f be any n-ary operation and σ : {1, . . . , n} → {1, . . . , r}.

We write fσ to denote fσ(x1, . . . , xr ) := f (xσ(1), . . . , xσ(n)).
Any operation of the form fσ is called a minor of f .

Definition
A minor-preserving map is a map ξ : A → B such that

ξ preserves arities;
ξ(fσ) = ξ(f )σ for any n-ary operation f ∈ A and σ : En → Er .

It is a weakening of the notion of clone homomorphism.

Theorem (Birkhoff, 1935)

Let A, B be clones over finite sets. The following are equivalent:
1 There exists a clone homomorphism from A to B;
2 B ∈ EHSPfin(A).
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Motivation: CSP

Theorem (Barto, Opršal, Pinsker, 2015)

Let A, B be finite relational structures; A = Pol(A), B = Pol(B). TFAE:
1 There exists a minor-preserving map from A to B (A ≤m B);
2 A pp-constructs B (A ≤Con B);
3 if A satisfies a minor condition Σ, then B |= Σ.

Great achievement: CSP Dichotomy Theorem!
positive solution to the Feder-Vardi conjecture, open since 1998;
new algebraic theories for finite algebras
(Absorption, Bulatov-edges, strong subalgebras,...)

Theorem (Bulatov 2017; Zhuk 2017)

If there is no minor-preserving map from A to P2, then CSP(A) is in P.
Otherwise, CSP(A) is NP-complete
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Algebra meets CSP

Theorem (Barto, Opršal, Pinsker, 2015)

Let A, B be finite relational structures; A = Pol(A), B = Pol(B). TFAE:
1 There exists a minor-preserving map from A to B (A ≤m B);
2 A pp-constructs B (A ≤Con B);
3 if A satisfies a minor condition Σ, then B |= Σ.

Great achievement: CSP Dichotomy Theorem!
positive solution to the Feder-Vardi conjecture, open since 1998;
new algebraic theories for finite algebras
(Absorption, Bulatov-edges, strong subalgebras,...)

Theorem (Bulatov 2017; Zhuk 2017)

If A satisfies a non-trivial minor condition, then CSP(A) is in P.
Otherwise, CSP(A) is NP-complete



The pp-constructability poset

≤m is a quasi order.

We write C ≡m D iff C ≤m D and D ≤m C. (minor-equivalent)

C is the ≡m-class of C.

Definition

Pfin :=
(
{C | C is a clone over some finite set};≤m

)
Pn :=

(
{C | C is a clone over {0, . . . , n − 1}};≤m

)
⟨0⟩

I2 = I3 = . . .

P2 = P3 = . . .
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Pfin is a semilattice

A and B be finite relational structures;

for every f ∈ Pol(A), g ∈ Pol(B); define an operation h on A× B
h := (f , g) ∈ Pol(A)× Pol(B) as follows

h((a1, b1), . . . , (an, bn)) := (f (a1, . . . , an), g(b1, . . . , bn))

where ai ∈ A and bi ∈ B for every i ∈ {1, . . . , n}.
ΓA⊗B := Inv({(f , g) | f ∈ Pol(A), g ∈ Pol(B)}); we define

A⊗ B := (A× B; ΓA⊗B).

Proposition

A⊗ B is the greatest lower bound of A and B.
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Are there atoms in Pfin?

Theorem
Pfin has no atoms.

Sketch of the proof:
given a finite structure A such that A ̸= K3, (⋆);
show: ∃B finite structure such that B <Con A and B ̸= K3;
from (⋆) it follows that A |= c(x1, . . . , xp) ≈ c(x2, . . . , xp, x1), for
some prime p > |A| (A |= Σp);
take B = A⊗ Cp

1 B ̸|= Σp =⇒ B <Con A
2 B |= Σq, for some q > p · |A| =⇒ B ̸= K3.



Are there atoms in Pfin?

Theorem
Pfin has no atoms.

Sketch of the proof:
given a finite structure A such that A ̸= K3, (⋆);
show: ∃B finite structure such that B <Con A and B ̸= K3;
from (⋆) it follows that A |= c(x1, . . . , xp) ≈ c(x2, . . . , xp, x1), for
some prime p > |A| (A |= Σp);
take B = A⊗ Cp

1 B ̸|= Σp =⇒ B <Con A
2 B |= Σq, for some q > p · |A| =⇒ B ̸= K3.



Are there atoms in Pfin?

Theorem
Pfin has no atoms.

Sketch of the proof:
given a finite structure A such that A ̸= K3, (⋆);
show: ∃B finite structure such that B <Con A and B ̸= K3;

from (⋆) it follows that A |= c(x1, . . . , xp) ≈ c(x2, . . . , xp, x1), for
some prime p > |A| (A |= Σp);
take B = A⊗ Cp

1 B ̸|= Σp =⇒ B <Con A
2 B |= Σq, for some q > p · |A| =⇒ B ̸= K3.



Are there atoms in Pfin?

Theorem
Pfin has no atoms.

Sketch of the proof:
given a finite structure A such that A ̸= K3, (⋆);
show: ∃B finite structure such that B <Con A and B ̸= K3;
from (⋆) it follows that A |= c(x1, . . . , xp) ≈ c(x2, . . . , xp, x1), for
some prime p > |A| (A |= Σp);

take B = A⊗ Cp

1 B ̸|= Σp =⇒ B <Con A
2 B |= Σq, for some q > p · |A| =⇒ B ̸= K3.



Are there atoms in Pfin?

Theorem
Pfin has no atoms.

Sketch of the proof:
given a finite structure A such that A ̸= K3, (⋆);
show: ∃B finite structure such that B <Con A and B ̸= K3;
from (⋆) it follows that A |= c(x1, . . . , xp) ≈ c(x2, . . . , xp, x1), for
some prime p > |A| (A |= Σp);
take B = A⊗ Cp

1 B ̸|= Σp =⇒ B <Con A
2 B |= Σq, for some q > p · |A| =⇒ B ̸= K3.



Are there atoms in Pn?

Where to look:
Minimal Taylor Clones
Barto, Brady, Bulatov, Kozik, and Zhuk (2021)

C atom in Pn =⇒ C is a minimal Taylor clone over {0, . . . , n − 1};
What about the other direction (⇐=)?

1 n = 2 Minimal Taylor clones: ⟨∨⟩, ⟨∧⟩, ⟨d3⟩, ⟨m⟩

Atoms in P2: ⟨∨⟩ = ⟨∧⟩, ⟨m⟩, ⟨d3⟩.

2 n = 3 False! =⇒ "Atoms are better than Minimal Taylor"
(Barto, Brady, Jankovec, V., Zhuk)
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Submaximal elements in P3

Cp: directed cycle of length p;
B2 = ({0, 1}; {(0, 1), (1, 0), (1, 1)}).

Theorem (V., Zhuk)

P3 has exactly three submaximal elements: C2, C3, and B2
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Below B2: Wild! (potentially 2ω elements) §



Ongoing and future

1 Is Pfin a lattice?

2 Cardinality of Pfin: We know where to look (again below B2).

Theorem (Aichinger, Mayr, McKenzie 2014)

There are only countably many clones over {0, . . . , n − 1} containing a
Mal’cev operation.

3 Mal’cev clones over {0, 1, 2} up to minor-equivalence
(Fioravanti, Rossi, V.).

4 Clones "defined by binary relations"
see D. Zhuk, PALS – 14 March 2023 (on Youtube)
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