# On symmetric term operations in finite Taylor algebras 

Dmitriy Zhuk<br>zhuk.dmitriy@gmail.com

Charles University
Prague
The 103rd Workshop on General Algebra
Tartu, Estonia
June 9-11, 2023


Funded by the European Union (ERC, POCOCOP, 101071674) and (ERC, CoCoSym, 771005).
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Theorem [Maróti, McKenzie, Mark, Siggers, Olŝák, Barto, Kozik]
TFAE for a finite idempotent algebra $\mathbf{A}$ :

Theorem [Maróti, McKenzie, Mark, Siggers, Olŝák, Barto, Kozik]
TFAE for a finite idempotent algebra $\mathbf{A}$ :

- A is a Taylor algebra.

Theorem [Maróti, McKenzie, Mark, Siggers, Olŝák, Barto, Kozik]
TFAE for a finite idempotent algebra $\mathbf{A}$ :

- A is a Taylor algebra.
- A satisfies a nontrivial h1-identity.

Theorem [Maróti, McKenzie, Mark, Siggers, Olsák, Barto, Kozik]
TFAE for a finite idempotent algebra $\mathbf{A}$ :

- A is a Taylor algebra.
- A satisfies a nontrivial h1-identity.
- there doesn't exist essentially unary algebra $\mathbf{B} \in H S(\mathbf{A})$

Theorem [Maróti, McKenzie, Mark, Siggers, Olŝák, Barto, Kozik]
TFAE for a finite idempotent algebra $\mathbf{A}$ :

- A is a Taylor algebra.
- A satisfies a nontrivial h1-identity.
- there doesn't exist essentially unary algebra $\mathbf{B} \in H S(\mathbf{A})$
- A has a Siggers term operation, i.e.

$$
s(y, x, y, z)=s(x, y, z, x)
$$

## Theorem [Maróti, McKenzie, Mark, Siggers, Olŝák, Barto, Kozik]

TFAE for a finite idempotent algebra $\mathbf{A}$ :

- A is a Taylor algebra.
- A satisfies a nontrivial h1-identity.
- there doesn't exist essentially unary algebra $\mathbf{B} \in H S(\mathbf{A})$
- A has a Siggers term operation, i.e.

$$
s(y, x, y, z)=s(x, y, z, x)
$$

- A has an Olsáák term operation, i.e.

$$
t(x, y, y, y, x, x)=t(y, x, y, x, y, x)=t(y, y, x, x, x, y)
$$

## Theorem [Maróti, McKenzie, Mark, Siggers, Olsáák, Barto, Kozik]

TFAE for a finite idempotent algebra $\mathbf{A}$ :

- A is a Taylor algebra.
- A satisfies a nontrivial h1-identity.
- there doesn't exist essentially unary algebra $\mathbf{B} \in H S(\mathbf{A})$
- A has a Siggers term operation, i.e.

$$
s(y, x, y, z)=s(x, y, z, x)
$$

- A has an Olŝák term operation, i.e.

$$
t(x, y, y, y, x, x)=t(y, x, y, x, y, x)=t(y, y, x, x, x, y)
$$

- A has a WNU term operation, i.e.

$$
w(x, y, \ldots, y)=w(y, x, y, \ldots, y)=\cdots=w(y, y, \ldots, y, x)
$$

## Theorem [Maróti, McKenzie, Mark, Siggers, Olsáák, Barto, Kozik]

TFAE for a finite idempotent algebra $\mathbf{A}$ :

- A is a Taylor algebra.
- A satisfies a nontrivial h1-identity.
- there doesn't exist essentially unary algebra $\mathbf{B} \in H S(\mathbf{A})$
- A has a Siggers term operation, i.e.

$$
s(y, x, y, z)=s(x, y, z, x)
$$

- A has an Olŝák term operation, i.e.

$$
t(x, y, y, y, x, x)=t(y, x, y, x, y, x)=t(y, y, x, x, x, y)
$$

- A has a WNU term operation, i.e.

$$
w(x, y, \ldots, y)=w(y, x, y, \ldots, y)=\cdots=w(y, y, \ldots, y, x)
$$

- A has a cyclic term operation, i.e.

$$
c\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c\left(x_{2}, x_{3}, \ldots, x_{n}, x_{1}\right)
$$

Theorem [Maróti, McKenzie, Mark, Siggers, Olsáa, Barto, Kozik]
TFAE for a finite idempotent algebra $\mathbf{A}$ :

- A is a Taylor algebra.
- A satisfies a nontrivial h1-identity.
- there doesn't exist essentially unary algebra $\mathbf{B} \in H S(\mathbf{A})$
- A has a Siggers term operation, i.e.

$$
s(y, x, y, z)=s(x, y, z, x)
$$

- A has an Olŝák term operation, i.e.

$$
t(x, y, y, y, x, x)=t(y, x, y, x, y, x)=t(y, y, x, x, x, y)
$$

- A has a WNU term operation, i.e.

$$
w(x, y, \ldots, y)=w(y, x, y, \ldots, y)=\cdots=w(y, y, \ldots, y, x)
$$

- A has a cyclic term operation, i.e.

$$
c\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c\left(x_{2}, x_{3}, \ldots, x_{n}, x_{1}\right)
$$

## WNU

$$
w(x, y, y, \ldots, y)=w(y, x, y, \ldots, y)=\cdots=w(y, y, \ldots, y, x)
$$

## WNU

$$
w(x, y, y, \ldots, y)=w(y, x, y, \ldots, y)=\cdots=w(y, y, \ldots, y, x)
$$

## 2-WNU

$$
w(x, x, y, y, \ldots, y)=w(\overbrace{\ell}^{y, \ldots, y, x}, y, \ldots, y, x, y, \ldots, y)
$$

for all $\ell$ and $m$

## WNU

$w(x, y, y, \ldots, y)=w(y, x, y, \ldots, y)=\cdots=w(y, y, \ldots, y, x)$

## 2-WNU

$w(x, x, y, y, \ldots, y)=w(\overbrace{\underbrace{y, \ldots, y, x}_{\ell}, y, \ldots, y, x}^{m}, y, \ldots, y)$
for all $\ell$ and $m$
WNU is an $(x, y, y, \ldots, y)$-symmetric operation.

## WNU

$w(x, y, y, \ldots, y)=w(y, x, y, \ldots, y)=\cdots=w(y, y, \ldots, y, x)$

## 2-WNU

$w(x, x, y, y, \ldots, y)=w(\overbrace{\ell}^{y_{\ell}, \ldots, y, x}, y, \ldots, y, x, y, \ldots, y)$
for all $\ell$ and $m$
WNU is an $(x, y, y, \ldots, y)$-symmetric operation.
$2-\mathrm{WNU}$ is an $(x, x, y, y, \ldots, y)$-symmetric operation.

## WNU

$$
w(x, y, y, \ldots, y)=w(y, x, y, \ldots, y)=\cdots=w(y, y, \ldots, y, x)
$$

## 2-WNU

$$
w(x, x, y, y, \ldots, y)=w(\overbrace{\ell}^{y, \ldots, y, x}, y, \ldots, y, x, y, \ldots, y)
$$

for all $\ell$ and $m$
WNU is an $(x, y, y, \ldots, y)$-symmetric operation.
2 -WNU is an $(x, x, y, y, \ldots, y)$-symmetric operation. $k$-WNU is an $(\underbrace{x, \ldots, x}_{k}, y, y, \ldots, y)$-symmetric operation.

## WNU

$$
w(x, y, y, \ldots, y)=w(y, x, y, \ldots, y)=\cdots=w(y, y, \ldots, y, x)
$$

## 2-WNU

$w(x, x, y, y, \ldots, y)=w(\overbrace{\underbrace{y, \ldots, y, x}_{\ell}, y, \ldots, y, x}^{m}, y, \ldots, y)$
for all $\ell$ and $m$
WNU is an $(x, y, y, \ldots, y)$-symmetric operation.
2 -WNU is an $(x, x, y, y, \ldots, y)$-symmetric operation.
$k$-WNU is an $(\underbrace{x, \ldots, x}_{k}, y, y, \ldots, y)$-symmetric operation.

## Question

Given a finite algebra $\mathbf{A}$. For which tuples $\tau$ of variables $\mathbf{A}$ has $\tau$-symmetric term operation?

## WNU

$$
w(x, y, y, \ldots, y)=w(y, x, y, \ldots, y)=\cdots=w(y, y, \ldots, y, x)
$$

## 2-WNU

$w(x, x, y, y, \ldots, y)=w(\overbrace{\underbrace{y, \ldots, y, x}_{\ell}, y, \ldots, y, x}^{m}, y, \ldots, y)$
for all $\ell$ and $m$
WNU is an $(x, y, y, \ldots, y)$-symmetric operation.
2 -WNU is an $(x, x, y, y, \ldots, y)$-symmetric operation.
$k$-WNU is an $(\underbrace{x, \ldots, x}_{k}, y, y, \ldots, y)$-symmetric operation.

## Question

Given a finite algebra $\mathbf{A}$. For which tuples $\tau$ of variables $\mathbf{A}$ has $\tau$-symmetric term operation?

What algebras have $(x, y, y, z, z, z, z, \ldots, z)$-symmetric operations?

Motivation

## Motivation

Why symmetric?

## Motivation

## Why symmetric?

- They are cool!


## Motivation

## Why symmetric?

- They are cool!
- Symmetric operations characterize the algebra


## Motivation

## Why symmetric?

- They are cool!
- Symmetric operations characterize the algebra
- Semilattice algebra has totally symmetric terms of all arities $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$ whenever $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\}$.


## Motivation

## Why symmetric?

- They are cool!
- Symmetric operations characterize the algebra
- Semilattice algebra has totally symmetric terms of all arities $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$ whenever $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\}$. - $(\{0,1\} ;$ maj $)$ has symmetric majority term of all odd arities.


## Motivation

## Why symmetric?

- They are cool!
- Symmetric operations characterize the algebra
- Semilattice algebra has totally symmetric terms of all arities $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$ whenever $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\}$.
- $(\{0,1\} ;$ maj $)$ has symmetric majority term of all odd arities.
- $\left(\{0,1\} ; x_{1}+x_{2}+x_{3}\right)$ has a term $x_{1}+\cdots+x_{2 n+1}$


## Motivation

## Why symmetric?

- They are cool!
- Symmetric operations characterize the algebra
- Semilattice algebra has totally symmetric terms of all arities $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$ whenever $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\}$.
- $(\{0,1\} ;$ maj $)$ has symmetric majority term of all odd arities.
- $\left(\{0,1\} ; x_{1}+x_{2}+x_{3}\right)$ has a term $x_{1}+\cdots+x_{2 n+1}$
- Important for the complexity of CSP and Promise CSP.


## Motivation

## Why symmetric?

- They are cool!
- Symmetric operations characterize the algebra
- Semilattice algebra has totally symmetric terms of all arities $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$ whenever $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\}$.
- $(\{0,1\} ;$ maj $)$ has symmetric majority term of all odd arities.
- $\left(\{0,1\} ; x_{1}+x_{2}+x_{3}\right)$ has a term $x_{1}+\cdots+x_{2 n+1}$
- Important for the complexity of CSP and Promise CSP.
- we study minions


## Motivation

## Why symmetric?

- They are cool!
- Symmetric operations characterize the algebra
- Semilattice algebra has totally symmetric terms of all arities $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$ whenever $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\}$.
- $(\{0,1\} ;$ maj $)$ has symmetric majority term of all odd arities.
- $\left(\{0,1\} ; x_{1}+x_{2}+x_{3}\right)$ has a term $x_{1}+\cdots+x_{2 n+1}$
- Important for the complexity of CSP and Promise CSP.
- we study minions $\Rightarrow$ no composition


## Motivation

## Why symmetric?

- They are cool!
- Symmetric operations characterize the algebra
- Semilattice algebra has totally symmetric terms of all arities $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$ whenever $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\}$.
- $(\{0,1\} ;$ maj $)$ has symmetric majority term of all odd arities.
- $\left(\{0,1\} ; x_{1}+x_{2}+x_{3}\right)$ has a term $x_{1}+\cdots+x_{2 n+1}$
- Important for the complexity of CSP and Promise CSP.
- we study minions $\Rightarrow$ no composition $\Rightarrow 4$-ary and 6 -ary operations are useless


## Motivation

## Why symmetric?

- They are cool!
- Symmetric operations characterize the algebra
- Semilattice algebra has totally symmetric terms of all arities $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$ whenever $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\}$.
- $(\{0,1\} ;$ maj $)$ has symmetric majority term of all odd arities.
- $\left(\{0,1\} ; x_{1}+x_{2}+x_{3}\right)$ has a term $x_{1}+\cdots+x_{2 n+1}$
- Important for the complexity of CSP and Promise CSP.
- we study minions $\Rightarrow$ no composition $\Rightarrow 4$-ary and 6 -ary operations are useless $\Rightarrow$ we need an infinite sequence...


## Motivation

## Why symmetric?

- They are cool!
- Symmetric operations characterize the algebra
- Semilattice algebra has totally symmetric terms of all arities $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$ whenever $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\}$.
- $(\{0,1\} ;$ maj $)$ has symmetric majority term of all odd arities.
- $\left(\{0,1\} ; x_{1}+x_{2}+x_{3}\right)$ has a term $x_{1}+\cdots+x_{2 n+1}$
- Important for the complexity of CSP and Promise CSP.
- we study minions $\Rightarrow$ no composition $\Rightarrow 4$-ary and 6-ary operations are useless $\Rightarrow$ we need an infinite sequence...
- BLP algorithm for (Promise) CSP requires all symmetric operations.


## Motivation

## Why symmetric?

- They are cool!
- Symmetric operations characterize the algebra
- Semilattice algebra has totally symmetric terms of all arities $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$ whenever $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\}$.
- $(\{0,1\} ;$ maj $)$ has symmetric majority term of all odd arities.
- $\left(\{0,1\} ; x_{1}+x_{2}+x_{3}\right)$ has a term $x_{1}+\cdots+x_{2 n+1}$
- Important for the complexity of CSP and Promise CSP.
- we study minions $\Rightarrow$ no composition $\Rightarrow 4$-ary and 6 -ary operations are useless $\Rightarrow$ we need an infinite sequence...
- BLP algorithm for (Promise) CSP requires all symmetric operations.
- BLP+AIP algorithm for (Promise) CSP requires symmetric operations of sufficiently large arities.


## Motivation

## Why symmetric?

- They are cool!
- Symmetric operations characterize the algebra
- Semilattice algebra has totally symmetric terms of all arities $f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)$ whenever $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\}$.
- $(\{0,1\} ;$ maj $)$ has symmetric majority term of all odd arities.
- $\left(\{0,1\} ; x_{1}+x_{2}+x_{3}\right)$ has a term $x_{1}+\cdots+x_{2 n+1}$
- Important for the complexity of CSP and Promise CSP.
- we study minions $\Rightarrow$ no composition $\Rightarrow 4$-ary and 6 -ary operations are useless $\Rightarrow$ we need an infinite sequence...
- BLP algorithm for (Promise) CSP requires all symmetric operations.
- BLP+AIP algorithm for (Promise) CSP requires symmetric operations of sufficiently large arities.
- CLAP algorithm for (Promise) CSP requires symmetric operations of sufficiently large arities on most tuples.

Symmetric operations blockers

## Symmetric operations blockers

- $\left(\mathbb{Z}_{p} ; x-y+z\right)$ doesn't have a WNU of arity $n$ if $p$ divides $n$.


## Symmetric operations blockers

- $\left(\mathbb{Z}_{p} ; x-y+z\right)$ doesn't have a WNU of arity $n$ if $p$ divides $n$.
- Pol $\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right)$ doesn't have a symmetric operation of arity $3 n$.


## Symmetric operations blockers

- $\left(\mathbb{Z}_{p} ; x-y+z\right)$ doesn't have a WNU of arity $n$ if $p$ divides $n$.
- Pol $\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right)$ doesn't have a symmetric operation of arity $3 n$.
- Pol $\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 4 & 2\end{array}\right)$ doesn't have a symmetric operation of any arity $n \geq 2$.


## Symmetric operations blockers

- $\left(\mathbb{Z}_{p} ; x-y+z\right)$ doesn't have a WNU of arity $n$ if $p$ divides $n$.
- Pol $\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right)$ doesn't have a symmetric operation of arity $3 n$.
- Pol $\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 4 & 2\end{array}\right)$ doesn't have a symmetric operation of any arity $n \geq 2$.

How to avoid these obstacles?

## Symmetric operations blockers

- $\left(\mathbb{Z}_{p} ; x-y+z\right)$ doesn't have a WNU of arity $n$ if $p$ divides $n$.
- Pol $\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right)$ doesn't have a symmetric operation of arity $3 n$.
- Pol $\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 4 & 2\end{array}\right)$ doesn't have a symmetric operation of any arity $n \geq 2$.

How to avoid these obstacles?

1. Avoid operations of arity $n$ if some $p$ divides $n$.

## Symmetric operations blockers

- $\left(\mathbb{Z}_{p} ; x-y+z\right)$ doesn't have a WNU of arity $n$ if $p$ divides $n$.
- Pol $\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right)$ doesn't have a symmetric operation of arity $3 n$.
- Pol $\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 4 & 2\end{array}\right)$ doesn't have a symmetric operation of any arity $n \geq 2$.


## How to avoid these obstacles?

1. Avoid operations of arity $n$ if some $p$ divides $n$.
2. Avoid tuples with an equal number of two elements.

## Symmetric operations blockers

- $\left(\mathbb{Z}_{p} ; x-y+z\right)$ doesn't have a WNU of arity $n$ if $p$ divides $n$.
- Pol $\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right)$ doesn't have a symmetric operation of arity $3 n$.
- Pol $\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 4 & 2\end{array}\right)$ doesn't have a symmetric operation of any arity $n \geq 2$.


## How to avoid these obstacles?

1. Avoid operations of arity $n$ if some $p$ divides $n$.
2. Avoid tuples with an equal number of two elements.

A tuple $\left(a_{1}, \ldots, a_{n}\right)$ is good if there does not exist $S_{1} \cap S_{2}=\varnothing$ s.t. $\left|\left\{i \mid a_{i} \in S_{1}\right\}\right|=\left|\left\{i \mid a_{i} \in S_{2}\right\}\right|>0$.

## Symmetric operations blockers

- $\left(\mathbb{Z}_{p} ; x-y+z\right)$ doesn't have a WNU of arity $n$ if $p$ divides $n$.
- Pol $\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right)$ doesn't have a symmetric operation of arity $3 n$.
- Pol $\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 4 & 2\end{array}\right)$ doesn't have a symmetric operation of any arity $n \geq 2$.


## How to avoid these obstacles?

1. Avoid operations of arity $n$ if some $p$ divides $n$.
2. Avoid tuples with an equal number of two elements.

A tuple $\left(a_{1}, \ldots, a_{n}\right)$ is good if there does not exist $S_{1} \cap S_{2}=\varnothing$ s.t. $\left|\left\{i \mid a_{i} \in S_{1}\right\}\right|=\left|\left\{i \mid a_{i} \in S_{2}\right\}\right|>0$.

## Symmetric operations blockers

- $\left(\mathbb{Z}_{p} ; x-y+z\right)$ doesn't have a WNU of arity $n$ if $p$ divides $n$.
- Pol $\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right)$ doesn't have a symmetric operation of arity $3 n$.
- Pol $\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 4 & 2\end{array}\right)$ doesn't have a symmetric operation of any arity $n \geq 2$.


## How to avoid these obstacles?

1. Avoid operations of arity $n$ if some $p$ divides $n$.
2. Avoid tuples with an equal number of two elements.

A tuple $\left(a_{1}, \ldots, a_{n}\right)$ is good if there does not exist $S_{1} \cap S_{2}=\varnothing$ s.t. $\left|\left\{i \mid a_{i} \in S_{1}\right\}\right|=\left|\left\{i \mid a_{i} \in S_{2}\right\}\right|>0$.
( $x, y, z, z, z, z, u, u, u, u, u, u, u, u, u)$ is a bad tuple

## Symmetric operations blockers

- $\left(\mathbb{Z}_{p} ; x-y+z\right)$ doesn't have a WNU of arity $n$ if $p$ divides $n$.
- Pol $\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right)$ doesn't have a symmetric operation of arity $3 n$.
- Pol $\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 4 & 2\end{array}\right)$ doesn't have a symmetric operation of any arity $n \geq 2$.


## How to avoid these obstacles?

1. Avoid operations of arity $n$ if some $p$ divides $n$.
2. Avoid tuples with an equal number of two elements.

A tuple $\left(a_{1}, \ldots, a_{n}\right)$ is good if there does not exist $S_{1} \cap S_{2}=\varnothing$ s.t. $\left|\left\{i \mid a_{i} \in S_{1}\right\}\right|=\left|\left\{i \mid a_{i} \in S_{2}\right\}\right|>0$.
( $x, y, z, z, z, z, u, u, u, u, u, u, u, u, u)$ is a bad tuple $(x, y, y, z, z, z, u, u, u, u, u, u, u, u, u)$ is a bad tuple

## Symmetric operations blockers

- $\left(\mathbb{Z}_{p} ; x-y+z\right)$ doesn't have a WNU of arity $n$ if $p$ divides $n$.
- Pol $\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right)$ doesn't have a symmetric operation of arity $3 n$.
- Pol $\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 4 & 2\end{array}\right)$ doesn't have a symmetric operation of any arity $n \geq 2$.


## How to avoid these obstacles?

1. Avoid operations of arity $n$ if some $p$ divides $n$.
2. Avoid tuples with an equal number of two elements.

A tuple $\left(a_{1}, \ldots, a_{n}\right)$ is good if there does not exist $S_{1} \cap S_{2}=\varnothing$ s.t. $\left|\left\{i \mid a_{i} \in S_{1}\right\}\right|=\left|\left\{i \mid a_{i} \in S_{2}\right\}\right|>0$.
( $x, y, z, z, z, z, u, u, u, u, u, u, u, u, u)$ is a bad tuple
$(x, y, y, z, z, z, u, u, u, u, u, u, u, u, u)$ is a bad tuple
$(x, y, y, z, z, z, z, u, u, u, u, u, u, u, u)$ is a good tuple

## Symmetric operations blockers

- $\left(\mathbb{Z}_{p} ; x-y+z\right)$ doesn't have a WNU of arity $n$ if $p$ divides $n$.
- Pol $\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right)$ doesn't have a symmetric operation of arity $3 n$.
- Pol $\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 4 & 2\end{array}\right)$ doesn't have a symmetric operation of any arity $n \geq 2$.


## How to avoid these obstacles?

1. Avoid operations of arity $n$ if some $p$ divides $n$.
2. Avoid tuples with an equal number of two elements.

A tuple $\left(a_{1}, \ldots, a_{n}\right)$ is good if there does not exist $S_{1} \cap S_{2}=\varnothing$ s.t.
$\left|\left\{i \mid a_{i} \in S_{1}\right\}\right|=\left|\left\{i \mid a_{i} \in S_{2}\right\}\right|>0$.
( $x, y, z, z, z, z, u, u, u, u, u, u, u, u, u)$ is a bad tuple
$(x, y, y, z, z, z, u, u, u, u, u, u, u, u, u)$ is a bad tuple
$(x, y, y, z, z, z, z, u, u, u, u, u, u, u, u)$ is a good tuple
$\operatorname{Pol}\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 4 & 2\end{array}\right)$ has an operation that is symmetric on all good tuples.

## Bounded width case

## Bounded width case

Theorem [Brady, 2022]
TFAE for a finite idempotent algebra $\mathbf{A}$.

## Bounded width case

Theorem [Brady, 2022]
TFAE for a finite idempotent algebra $\mathbf{A}$.

- A has a WNU term of all arities $n \geq 3$


## Bounded width case

## Theorem [Brady, 2022]

TFAE for a finite idempotent algebra $\mathbf{A}$.

- A has a WNU term of all arities $n \geq 3$
- there doesn't exist an essentially unary $\mathbf{B} \in H S(\mathbf{A})$ or $p$-affine $\mathbf{B} \in H S(\mathbf{A})$


## Bounded width case

## Theorem [Brady, 2022]

TFAE for a finite idempotent algebra $\mathbf{A}$.

- A has a WNU term of all arities $n \geq 3$
- there doesn't exist an essentially unary $\mathbf{B} \in H S(\mathbf{A})$ or $p$-affine $\mathbf{B} \in H S(\mathbf{A})$
- for every $n$ the algebra $\mathbf{A}$ has an $n$-ary term operation $t$ that is symmetric on all good tuples


## Bounded width case

## Theorem [Brady, 2022]

TFAE for a finite idempotent algebra $\mathbf{A}$.

- A has a WNU term of all arities $n \geq 3$
- there doesn't exist an essentially unary $\mathbf{B} \in H S(\mathbf{A})$ or $p$-affine $\mathbf{B} \in H S(\mathbf{A})$
- for every $n$ the algebra $\mathbf{A}$ has an $n$-ary term operation $t$ that is symmetric on all good tuples

This cannot be strengthened.

## Bounded width case

## Theorem [Brady, 2022]

TFAE for a finite idempotent algebra $\mathbf{A}$.

- A has a WNU term of all arities $n \geq 3$
- there doesn't exist an essentially unary $\mathbf{B} \in H S(\mathbf{A})$ or $p$-affine $\mathbf{B} \in H S(\mathbf{A})$
- for every $n$ the algebra $\mathbf{A}$ has an $n$-ary term operation $t$ that is symmetric on all good tuples

This cannot be strengthened.

## Lemma [Brady, 2022]

For every bad tuple $\tau$ there exists a finite algebra $\mathbf{A}$ with bounded width not having $\tau$-symmetric term operations.

## Bounded width case

## Theorem [Brady, 2022]

TFAE for a finite idempotent algebra $\mathbf{A}$.

- A has a WNU term of all arities $n \geq 3$
- there doesn't exist an essentially unary $\mathbf{B} \in H S(\mathbf{A})$ or $p$-affine $\mathbf{B} \in H S(\mathbf{A})$
- for every $n$ the algebra $\mathbf{A}$ has an $n$-ary term operation $t$ that is symmetric on all good tuples

This cannot be strengthened.

## Lemma [Brady, 2022]

For every bad tuple $\tau$ there exists a finite algebra $\mathbf{A}$ with bounded width not having $\tau$-symmetric term operations.

Can we prove something similar for finite Taylor algebras?

Counter Example

## Counter Example

$$
A=\{0,1,2\}
$$

## Counter Example

$$
A=\{0,1,2\}, \quad h(x, y, z)= \begin{cases}x+y+z, & \text { if } x, y, z \in\{0,1\} \\ 2, & \text { if } x=y=z=2 \\ \text { first non-2, } & \text { otherwise }\end{cases}
$$

## Counter Example

$$
A=\{0,1,2\}, \quad h(x, y, z)= \begin{cases}x+y+z, & \text { if } x, y, z \in\{0,1\} \\ 2, & \text { if } x=y=z=2 \\ \text { first non-2, } & \text { otherwise }\end{cases}
$$

Properties of $(\{0,1,2\} ; h)$

## Counter Example

$$
A=\{0,1,2\}, \quad h(x, y, z)= \begin{cases}x+y+z, & \text { if } x, y, z \in\{0,1\} \\ 2, & \text { if } x=y=z=2 \\ \text { first non-2, } & \text { otherwise }\end{cases}
$$

Properties of $(\{0,1,2\} ; h)$

- $h$ is a WNU


## Counter Example

$$
A=\{0,1,2\}, \quad h(x, y, z)= \begin{cases}x+y+z, & \text { if } x, y, z \in\{0,1\} \\ 2, & \text { if } x=y=z=2 \\ \text { first non-2, } & \text { otherwise }\end{cases}
$$

Properties of $(\{0,1,2\} ; h)$

- $h$ is a WNU
- $h$ is a minimal Taylor algebra


## Counter Example

$$
A=\{0,1,2\}, \quad h(x, y, z)= \begin{cases}x+y+z, & \text { if } x, y, z \in\{0,1\} \\ 2, & \text { if } x=y=z=2 \\ \text { first non-2, } & \text { otherwise }\end{cases}
$$

Properties of $(\{0,1,2\} ; h)$

- $h$ is a WNU
- $h$ is a minimal Taylor algebra
- $\{0,1\}$ binary absorbs $\mathbf{A},\{\{0,1\},\{2\}\}$ is a congruence


## Counter Example

$$
A=\{0,1,2\}, \quad h(x, y, z)= \begin{cases}x+y+z, & \text { if } x, y, z \in\{0,1\} \\ 2, & \text { if } x=y=z=2 \\ \text { first non-2, } & \text { otherwise }\end{cases}
$$

## Properties of $(\{0,1,2\} ; h)$

- $h$ is a WNU
- $h$ is a minimal Taylor algebra
- $\{0,1\}$ binary absorbs $\mathbf{A},\{\{0,1\},\{2\}\}$ is a congruence
- $\mathrm{Clo}(h)$ doesn't have $(\underbrace{x, \ldots, x}_{k}, \underbrace{y, \ldots, y}_{\ell}, \underbrace{z \ldots, z}_{m})$-symmetric term operation for any $k, \ell, m$


## Counter Example

$$
A=\{0,1,2\}, \quad h(x, y, z)= \begin{cases}x+y+z, & \text { if } x, y, z \in\{0,1\} \\ 2, & \text { if } x=y=z=2 \\ \text { first non-2, } & \text { otherwise }\end{cases}
$$

## Properties of $(\{0,1,2\} ; h)$

- $h$ is a WNU
- $h$ is a minimal Taylor algebra
- $\{0,1\}$ binary absorbs $\mathbf{A},\{\{0,1\},\{2\}\}$ is a congruence
- $\mathrm{Clo}(h)$ doesn't have $(\underbrace{x, \ldots, x}_{k}, \underbrace{y, \ldots, y}_{\ell}, \underbrace{z \ldots, z}_{m})$-symmetric term operation for any $k, \ell, m$

For any $f \in \operatorname{Clo}(h)$ the operation $f\left(x_{1}, \ldots, x_{s}, 2,2, \ldots, 2\right)$ is an idempotent linear operation on $\{0,1\}$

## Counter Example

$$
A=\{0,1,2\}, \quad h(x, y, z)= \begin{cases}x+y+z, & \text { if } x, y, z \in\{0,1\} \\ 2, & \text { if } x=y=z=2 \\ \text { first non-2, } & \text { otherwise }\end{cases}
$$

## Properties of $(\{0,1,2\} ; h)$

- $h$ is a WNU
- $h$ is a minimal Taylor algebra
- $\{0,1\}$ binary absorbs $\mathbf{A},\{\{0,1\},\{2\}\}$ is a congruence
- $\mathrm{Clo}(h)$ doesn't have $(\underbrace{x, \ldots, x}_{k}, \underbrace{y, \ldots, y}_{\ell}, \underbrace{z \ldots, z}_{m})$-symmetric term operation for any $k, \ell, m$

For any $f \in \operatorname{Clo}(h)$ the operation $f\left(x_{1}, \ldots, x_{s}, 2,2, \ldots, 2\right)$ is an idempotent linear operation on $\{0,1\} \Rightarrow k+\ell, k+m$, and $\ell+m$ are odd

## Counter Example

$$
A=\{0,1,2\}, \quad h(x, y, z)= \begin{cases}x+y+z, & \text { if } x, y, z \in\{0,1\} \\ 2, & \text { if } x=y=z=2 \\ \text { first non-2, } & \text { otherwise }\end{cases}
$$

## Properties of $(\{0,1,2\} ; h)$

- $h$ is a WNU
- $h$ is a minimal Taylor algebra
- $\{0,1\}$ binary absorbs $\mathbf{A},\{\{0,1\},\{2\}\}$ is a congruence
- $\mathrm{Clo}(h)$ doesn't have $(\underbrace{x, \ldots, x}_{k}, \underbrace{y, \ldots, y}_{\ell}, \underbrace{z \ldots, z}_{m})$-symmetric term operation for any $k, \ell, m$

For any $f \in \operatorname{Clo}(h)$ the operation $f\left(x_{1}, \ldots, x_{s}, 2,2, \ldots, 2\right)$ is an idempotent linear operation on $\{0,1\} \Rightarrow k+\ell, k+m$, and $\ell+m$ are odd $\Rightarrow$ Contradiction

## Counter Example

$$
A=\{0,1,2\}, \quad h(x, y, z)= \begin{cases}x+y+z, & \text { if } x, y, z \in\{0,1\} \\ 2, & \text { if } x=y=z=2 \\ \text { first non-2, } & \text { otherwise }\end{cases}
$$

## Properties of $(\{0,1,2\} ; h)$

- $h$ is a WNU
- $h$ is a minimal Taylor algebra
- $\{0,1\}$ binary absorbs $\mathbf{A},\{\{0,1\},\{2\}\}$ is a congruence
- $\mathrm{Clo}(h)$ doesn't have $(\underbrace{x, \ldots, x}_{k}, \underbrace{y, \ldots, y}_{\ell}, \underbrace{z \ldots, z}_{m})$-symmetric term operation for any $k, \ell, m$

For any $f \in \operatorname{Clo}(h)$ the operation $f\left(x_{1}, \ldots, x_{s}, 2,2, \ldots, 2\right)$ is an idempotent linear operation on $\{0,1\} \Rightarrow k+\ell, k+m$, and $\ell+m$ are odd $\Rightarrow$ Contradiction

- singletonBLP+AIP, CLAP, and similar algorithms fail on $\operatorname{CSP}(\operatorname{lnv}(h))$.


## Main Result

$f$ is XY -symmetric if it is symmetric on all tuples with just $x$ and $y$.

## Main Result

$f$ is XY -symmetric if it is symmetric on all tuples with just $x$ and $y$. i.e. f is $(\underbrace{x, \ldots, x}_{k}, y, \ldots, y)$-symmetric for every $k$.

## Main Result

$f$ is XY -symmetric if it is symmetric on all tuples with just $x$ and $y$. i.e. f is $(\underbrace{x, \ldots, x}_{k}, y, \ldots, y)$-symmetric for every $k$.

Equivalently, $f$ is XY -symmetric if it is symmetric on all tuples $\left(a_{1}, \ldots, a_{n}\right)$ s.t. $\left|\left\{a_{1}, \ldots, a_{n}\right\}\right|=2$

## Main Result

$f$ is $X Y$-symmetric if it is symmetric on all tuples with just $x$ and $y$. i.e. f is $(\underbrace{x, \ldots, x}_{k}, y, \ldots, y)$-symmetric for every $k$.

Equivalently, $f$ is XY -symmetric if it is symmetric on all tuples $\left(a_{1}, \ldots, a_{n}\right)$ s.t. $\left|\left\{a_{1}, \ldots, a_{n}\right\}\right|=2$

## Theorem

Suppose a finite algebra A has a WNU term of an odd arity $n$. Then $\mathbf{A}$ has an XY-symmetric term of arity $n$.

## Main Result

$f$ is $X Y$-symmetric if it is symmetric on all tuples with just $x$ and $y$. i.e. f is $(\underbrace{x, \ldots, x}_{k}, y, \ldots, y)$-symmetric for every $k$.

Equivalently, $f$ is XY -symmetric if it is symmetric on all tuples $\left(a_{1}, \ldots, a_{n}\right)$ s.t. $\left|\left\{a_{1}, \ldots, a_{n}\right\}\right|=2$

## Theorem

Suppose a finite algebra A has a WNU term of an odd arity $n$. Then $\mathbf{A}$ has an XY-symmetric term of arity $n$.

## Examples.

## Main Result

$f$ is $X Y$-symmetric if it is symmetric on all tuples with just $x$ and $y$. i.e. f is $(\underbrace{x, \ldots, x}_{k}, y, \ldots, y)$-symmetric for every $k$.

Equivalently, $f$ is XY -symmetric if it is symmetric on all tuples $\left(a_{1}, \ldots, a_{n}\right)$ s.t. $\left|\left\{a_{1}, \ldots, a_{n}\right\}\right|=2$

## Theorem

Suppose a finite algebra $\mathbf{A}$ has a WNU term of an odd arity $n$. Then $\mathbf{A}$ has an XY-symmetric term of arity $n$.

## Examples.

- Pol $\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 4 & 2\end{array}\right)$ has

$$
f\left(x_{1}, \ldots, x_{2 n+1}\right)= \begin{cases}\text { most popular, } & \text { if it exists } \\ x_{1}, & \text { otherwise }\end{cases}
$$

## Main Result

$f$ is $X Y$-symmetric if it is symmetric on all tuples with just $x$ and $y$. i.e. f is $(\underbrace{x, \ldots, x}_{k}, y, \ldots, y)$-symmetric for every $k$.

Equivalently, $f$ is XY -symmetric if it is symmetric on all tuples $\left(a_{1}, \ldots, a_{n}\right)$ s.t. $\left|\left\{a_{1}, \ldots, a_{n}\right\}\right|=2$

## Theorem

Suppose a finite algebra $\mathbf{A}$ has a WNU term of an odd arity $n$. Then $\mathbf{A}$ has an XY-symmetric term of arity $n$.

## Examples.

- Pol $\left(\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 4 & 2\end{array}\right)$ has

$$
f\left(x_{1}, \ldots, x_{2 n+1}\right)= \begin{cases}\text { most popular, } & \text { if it exists } \\ x_{1}, & \text { otherwise }\end{cases}
$$

- $\mathrm{Clo}(h)$ has

$$
f\left(x_{1}, \ldots, x_{2 n+1}\right)= \begin{cases}x_{1}+\cdots+x_{2 n+1}, & \text { If } x_{1}, \ldots, x_{2 n+1} \in\{0,1\} \\ \text { first non-2, } & \text { otherwise }\end{cases}
$$

## Complexity of Promise CSP

## Complexity of Promise CSP

$\mathbb{A} \rightarrow \mathbb{B}$ is a homomorphism of two relational structures.

## Complexity of Promise CSP

$\mathbb{A} \rightarrow \mathbb{B}$ is a homomorphism of two relational structures.
$\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$
Given a structure $\mathbb{X}$.
Yes: if $\mathbb{X} \rightarrow \mathbb{A}$
No: if $\mathbb{X} \nrightarrow \mathbb{B}$

## Complexity of Promise CSP

$\mathbb{A} \rightarrow \mathbb{B}$ is a homomorphism of two relational structures.
$\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$
Given a structure $\mathbb{X}$.
Yes: if $\mathbb{X} \rightarrow \mathbb{A}$
No: if $\mathbb{X} \nrightarrow \mathbb{B}$

## Conjecture

If $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is tractable

## Complexity of Promise CSP

$\mathbb{A} \rightarrow \mathbb{B}$ is a homomorphism of two relational structures.
$\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$
Given a structure $\mathbb{X}$.
Yes: if $\mathbb{X} \rightarrow \mathbb{A}$
No: if $\mathbb{X} \nrightarrow \mathbb{B}$

## Conjecture

If $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is tractable then there exists $\mathbb{C}$ s.t.

## Complexity of Promise CSP

$\mathbb{A} \rightarrow \mathbb{B}$ is a homomorphism of two relational structures.
$\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$
Given a structure $\mathbb{X}$.
Yes: if $\mathbb{X} \rightarrow \mathbb{A}$
No: if $\mathbb{X} \nrightarrow \mathbb{B}$

## Conjecture

If $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is tractable then there exists $\mathbb{C}$ s.t.

- $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$


## Complexity of Promise CSP

$\mathbb{A} \rightarrow \mathbb{B}$ is a homomorphism of two relational structures.
$\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$
Given a structure $\mathbb{X}$.
Yes: if $\mathbb{X} \rightarrow \mathbb{A}$
No: if $\mathbb{X} \nrightarrow \mathbb{B}$

## Conjecture

If $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is tractable then there exists $\mathbb{C}$ s.t.

- $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
- $\operatorname{CSP}(\mathbb{C})$ is tractable


## Complexity of Promise CSP

$\mathbb{A} \rightarrow \mathbb{B}$ is a homomorphism of two relational structures.
$\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$
Given a structure $\mathbb{X}$.
Yes: if $\mathbb{X} \rightarrow \mathbb{A}$
No: if $\mathbb{X} \nrightarrow \mathbb{B}$

## Conjecture

If $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is tractable then there exists $\mathbb{C}$ s.t.

- $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
- $\operatorname{CSP}(\mathbb{C})$ is tractable
$\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is reducible to $\operatorname{CSP}(\mathbb{C})$.


## Complexity of Promise CSP

$\mathbb{A} \rightarrow \mathbb{B}$ is a homomorphism of two relational structures.

## $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$

Given a structure $\mathbb{X}$.
Yes: if $\mathbb{X} \rightarrow \mathbb{A}$
No: if $\mathbb{X} \nrightarrow \mathbb{B}$

## Conjecture

If $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is tractable then there exists $\mathbb{C}$ s.t.

- $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
- $\operatorname{CSP}(\mathbb{C})$ is tractable
$\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is reducible to $\operatorname{CSP}(\mathbb{C})$.
- $\mathbb{C}$ must be infinite for some $\mathbb{A}$ and $\mathbb{B}$ on 2 elements (Asimi, Barto, 2021).


## Complexity of Promise CSP

$\mathbb{A} \rightarrow \mathbb{B}$ is a homomorphism of two relational structures.

## $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$

Given a structure $\mathbb{X}$.
Yes: if $\mathbb{X} \rightarrow \mathbb{A}$
No: if $\mathbb{X} \nrightarrow \mathbb{B}$

## Conjecture

If $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is tractable then there exists $\mathbb{C}$ s.t.

- $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
- $\operatorname{CSP}(\mathbb{C})$ is tractable
$\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is reducible to $\operatorname{CSP}(\mathbb{C})$.
- $\mathbb{C}$ must be infinite for some $\mathbb{A}$ and $\mathbb{B}$ on 2 elements (Asimi, Barto, 2021).
- $\mathbb{C}$ must be of size at least $p$ for some $\mathbb{A}$ and $\mathbb{B}$ on 2 elements ( $Z$, Kazda, Mayr, 2021).

Corollary

## Corollary

Suppose

1. $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$

## Corollary

Suppose

1. $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
2. $|A|=2$,

## Corollary

Suppose

1. $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
2. $|A|=2$,
3. $|C|<\infty$.

## Corollary

Suppose

1. $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
2. $|A|=2$,
3. $|C|<\infty$.
4. $\operatorname{CSP}(\mathbb{C})$ is tractable.

## Corollary

Suppose

1. $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
2. $|A|=2$,
3. $|C|<\infty$.
4. $\operatorname{CSP}(\mathbb{C})$ is tractable.

Then $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is solvable by BLP+AIP.

## Corollary

Suppose

1. $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
2. $|A|=2$,
3. $|C|<\infty$.
4. $\operatorname{CSP}(\mathbb{C})$ is tractable.

Then $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is solvable by $\operatorname{BLP}+\mathrm{AIP}$.
Proof:

## Corollary

Suppose

1. $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
2. $|A|=2$,
3. $|C|<\infty$.
4. $\operatorname{CSP}(\mathbb{C})$ is tractable.

Then $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is solvable by $\operatorname{BLP}+\mathrm{AIP}$.
Proof:
$\operatorname{CSP}(\mathbb{C})$ is tractable

## Corollary

Suppose

1. $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
2. $|A|=2$,
3. $|C|<\infty$.
4. $\operatorname{CSP}(\mathbb{C})$ is tractable.

Then $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is solvable by $\operatorname{BLP}+\mathrm{AIP}$.
Proof:
$\operatorname{CSP}(\mathbb{C})$ is tractable
$\Rightarrow \operatorname{Pol}(\mathbb{C})$ has WNU operations

## Corollary

Suppose

1. $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
2. $|A|=2$,
3. $|C|<\infty$.
4. $\operatorname{CSP}(\mathbb{C})$ is tractable.

Then $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is solvable by $\operatorname{BLP}+\mathrm{AIP}$.
Proof:
$\operatorname{CSP}(\mathbb{C})$ is tractable
$\Rightarrow \operatorname{Pol}(\mathbb{C})$ has WNU operations
$\Rightarrow \operatorname{Pol}(\mathbb{C})$ has XY-symmetric operations

## Corollary

Suppose

1. $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
2. $|A|=2$,
3. $|C|<\infty$.
4. $\operatorname{CSP}(\mathbb{C})$ is tractable.

Then $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is solvable by $\operatorname{BLP}+\mathrm{AIP}$.

## Proof:

$\operatorname{CSP}(\mathbb{C})$ is tractable
$\Rightarrow \operatorname{Pol}(\mathbb{C})$ has WNU operations
$\Rightarrow \operatorname{Pol}(\mathbb{C})$ has XY-symmetric operations
$\Rightarrow \operatorname{Pol}(\mathbb{A} ; \mathbb{B})$ has XY -symmetric operations

## Corollary

Suppose

1. $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
2. $|A|=2$,
3. $|C|<\infty$.
4. $\operatorname{CSP}(\mathbb{C})$ is tractable.

Then $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is solvable by $\operatorname{BLP}+\mathrm{AIP}$.

## Proof:

$\operatorname{CSP}(\mathbb{C})$ is tractable
$\Rightarrow \operatorname{Pol}(\mathbb{C})$ has WNU operations
$\Rightarrow \operatorname{Pol}(\mathbb{C})$ has XY-symmetric operations
$\Rightarrow \operatorname{Pol}(\mathbb{A} ; \mathbb{B})$ has XY -symmetric operations
$\Rightarrow \operatorname{Pol}(\mathbb{A} ; \mathbb{B})$ has symmetric operations

## Corollary

Suppose

1. $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
2. $|A|=2$,
3. $|C|<\infty$.
4. $\operatorname{CSP}(\mathbb{C})$ is tractable.

Then $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is solvable by $\operatorname{BLP}+\mathrm{AIP}$.

## Proof:

$\operatorname{CSP}(\mathbb{C})$ is tractable
$\Rightarrow \operatorname{Pol}(\mathbb{C})$ has WNU operations
$\Rightarrow \operatorname{Pol}(\mathbb{C})$ has XY-symmetric operations
$\Rightarrow \operatorname{Pol}(\mathbb{A} ; \mathbb{B})$ has XY -symmetric operations
$\Rightarrow \operatorname{Pol}(\mathbb{A} ; \mathbb{B})$ has symmetric operations
$\Rightarrow \operatorname{BLP}+\mathrm{AIP}$ solves $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$.

## Corollary

Suppose

1. $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
2. $|A|=2$,
3. $|C|<\infty$.
4. $\operatorname{CSP}(\mathbb{C})$ is tractable.

Then $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$ is solvable by $\operatorname{BLP}+\mathrm{AIP}$.

## Proof:

$\operatorname{CSP}(\mathbb{C})$ is tractable
$\Rightarrow \operatorname{Pol}(\mathbb{C})$ has WNU operations
$\Rightarrow \operatorname{Pol}(\mathbb{C})$ has XY-symmetric operations
$\Rightarrow \operatorname{Pol}(\mathbb{A} ; \mathbb{B})$ has XY -symmetric operations
$\Rightarrow \operatorname{Pol}(\mathbb{A} ; \mathbb{B})$ has symmetric operations
$\Rightarrow \operatorname{BLP}+\mathrm{AIP}$ solves $\operatorname{PCSP}(\mathbb{A} ; \mathbb{B})$.

This is not true for $|A|>2$ (our counter-example $\operatorname{Inv}(\{0,1,2\} ; h)$ ).

Idea of the proof

## Idea of the proof

## Claim [Maróti, McKenzie, 2008]

Every finite Taylor algebra $\mathbf{A}$ has a WNU term of an arity $n$ if there are no primes $p \leq|A|$ dividing $n$.

## Idea of the proof

## Claim [Maróti, McKenzie, 2008]

Every finite Taylor algebra $\mathbf{A}$ has a WNU term of an arity $n$ if there are no primes $p \leq|A|$ dividing $n$.

## Proof:

## Idea of the proof

## Claim [Maróti, McKenzie, 2008]

Every finite Taylor algebra $\mathbf{A}$ has a WNU term of an arity $n$ if there are no primes $p \leq|A|$ dividing $n$.

## Proof:

Consider a free algebra over $\{x, y\}$ and generate a relation $R$ from

## Idea of the proof

## Claim [Maróti, McKenzie, 2008]

Every finite Taylor algebra $\mathbf{A}$ has a WNU term of an arity $n$ if there are no primes $p \leq|A|$ dividing $n$.

## Proof:

Consider a free algebra over $\{x, y\}$ and generate a relation $R$ from

$$
n\left\{\left(\begin{array}{cccc}
y & x & \ldots & x \\
x & y & \ldots & x \\
\vdots & \vdots & \ddots & \vdots \\
x & x & \ldots & y
\end{array}\right)\right.
$$

## Idea of the proof

## Claim [Maróti, McKenzie, 2008]

Every finite Taylor algebra $\mathbf{A}$ has a WNU term of an arity $n$ if there are no primes $p \leq|A|$ dividing $n$.

## Proof:

Consider a free algebra over $\{x, y\}$ and generate a relation $R$ from

$$
n\left\{\left(\begin{array}{cccc}
y & x & \ldots & x \\
x & y & \ldots & x \\
\vdots & \vdots & \ddots & \vdots \\
x & x & \ldots & y
\end{array}\right)\right.
$$

$R \subseteq \mathbf{D}^{n}$ is symmetric

## Idea of the proof

## Claim [Maróti, McKenzie, 2008]

Every finite Taylor algebra $\mathbf{A}$ has a WNU term of an arity $n$ if there are no primes $p \leq|A|$ dividing $n$.

## Proof:

Consider a free algebra over $\{x, y\}$ and generate a relation $R$ from

$$
n\left\{\left(\begin{array}{cccc}
y & x & \ldots & x \\
x & y & \ldots & x \\
\vdots & \vdots & \ddots & \vdots \\
x & x & \ldots & y
\end{array}\right)\right.
$$

$R \subseteq \mathbf{D}^{n}$ is symmetric $\Rightarrow$

1. either $\mathbf{D}$ has a strong (ternary absorbing) subalgebra

## Idea of the proof

## Claim [Maróti, McKenzie, 2008]

Every finite Taylor algebra $\mathbf{A}$ has a WNU term of an arity $n$ if there are no primes $p \leq|A|$ dividing $n$.

## Proof:

Consider a free algebra over $\{x, y\}$ and generate a relation $R$ from

$$
n\left\{\left(\begin{array}{cccc}
y & x & \ldots & x \\
x & y & \ldots & x \\
\vdots & \vdots & \ddots & \vdots \\
x & x & \ldots & y
\end{array}\right)\right.
$$

$R \subseteq \mathbf{D}^{n}$ is symmetric $\Rightarrow$

1. either $\mathbf{D}$ has a strong (ternary absorbing) subalgebra $\Rightarrow \exists \mathbf{B} \leq \mathbf{A}$ s.t. $B^{n} \cap R \neq \varnothing$

## Idea of the proof

## Claim [Maróti, McKenzie, 2008]

Every finite Taylor algebra $\mathbf{A}$ has a WNU term of an arity $n$ if there are no primes $p \leq|A|$ dividing $n$.

## Proof:

Consider a free algebra over $\{x, y\}$ and generate a relation $R$ from

$$
n\left\{\left(\begin{array}{cccc}
y & x & \ldots & x \\
x & y & \ldots & x \\
\vdots & \vdots & \ddots & \vdots \\
x & x & \ldots & y
\end{array}\right)\right.
$$

$R \subseteq \mathbf{D}^{n}$ is symmetric $\Rightarrow$

1. either $\mathbf{D}$ has a strong (ternary absorbing) subalgebra $\Rightarrow \exists \mathbf{B} \leq \mathbf{A}$ s.t. $B^{n} \cap R \neq \varnothing$
2. or there exists a congruence $\sigma$ on $\mathbf{D}$ s.t. $\mathbf{D} / \sigma$ is $p$-affine

## Idea of the proof

## Claim [Maróti, McKenzie, 2008]

Every finite Taylor algebra $\mathbf{A}$ has a WNU term of an arity $n$ if there are no primes $p \leq|A|$ dividing $n$.

## Proof:

Consider a free algebra over $\{x, y\}$ and generate a relation $R$ from

$$
n\left\{\left(\begin{array}{cccc}
y & x & \ldots & x \\
x & y & \ldots & x \\
\vdots & \vdots & \ddots & \vdots \\
x & x & \ldots & y
\end{array}\right)\right.
$$

$R \subseteq \mathbf{D}^{n}$ is symmetric $\Rightarrow$

1. either $\mathbf{D}$ has a strong (ternary absorbing) subalgebra $\Rightarrow \exists \mathbf{B} \leq \mathbf{A}$ s.t. $B^{n} \cap R \neq \varnothing$
2. or there exists a congruence $\sigma$ on $\mathbf{D}$ s.t. $\mathbf{D} / \sigma$ is $p$-affine $\Rightarrow$ it is sufficient to prove that every symmetric affine subspace $R \subseteq \mathbb{Z}_{p}^{n}$ has a constant tuple

## Idea of the proof

## Claim [Maróti, McKenzie, 2008]

Every finite Taylor algebra $\mathbf{A}$ has a WNU term of an arity $n$ if there are no primes $p \leq|A|$ dividing $n$.

## Proof:

Consider a free algebra over $\{x, y\}$ and generate a relation $R$ from

$$
n\left\{\left(\begin{array}{cccc}
y & x & \ldots & x \\
x & y & \ldots & x \\
\vdots & \vdots & \ddots & \vdots \\
x & x & \ldots & y
\end{array}\right)\right.
$$

$R \subseteq \mathbf{D}^{n}$ is symmetric $\Rightarrow$

1. either $\mathbf{D}$ has a strong (ternary absorbing) subalgebra $\Rightarrow \exists \mathbf{B} \leq \mathbf{A}$ s.t. $B^{n} \cap R \neq \varnothing$
2. or there exists a congruence $\sigma$ on $\mathbf{D}$ s.t. $\mathbf{D} / \sigma$ is $p$-affine $\Rightarrow$ it is sufficient to prove that every symmetric affine subspace $R \subseteq \mathbb{Z}_{p}^{n}$ has a constant tuple $\Rightarrow p$ should not divide $n$.

## Claim [Z, Barto, Pinsker, Brady,..., 2022]

Every finite Taylor algebra $\mathbf{A}$ has a $2-\mathrm{WNU}$ term of an arity $n$ if there are no primes $p \leq|A|$ dividing $\binom{n}{2} \cdot n$.

## Claim [Z, Barto, Pinsker, Brady,..., 2022]

Every finite Taylor algebra $\mathbf{A}$ has a $2-\mathrm{WNU}$ term of an arity $n$ if there are no primes $p \leq|A|$ dividing $\binom{n}{2} \cdot n$.

## Proof:

## Claim [Z, Barto, Pinsker, Brady,..., 2022]

Every finite Taylor algebra $\mathbf{A}$ has a $2-\mathrm{WNU}$ term of an arity $n$ if there are no primes $p \leq|A|$ dividing $\binom{n}{2} \cdot n$.

## Proof:

Consider a free algebra over $\{x, y\}$ and generate a relation $R$ from

$$
\binom{n}{2}\left\{\left(\begin{array}{ccccc}
y & y & x & \ldots & x \\
y & x & y & \ldots & x \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x & x & \ldots & y & y
\end{array}\right)\right.
$$

$R \subseteq \mathbf{D}\binom{n}{2}$ has $\binom{n}{2}$-symmetries

## Claim [Z, Barto, Pinsker, Brady,..., 2022]

Every finite Taylor algebra $\mathbf{A}$ has a $2-W N U$ term of an arity $n$ if there are no primes $p \leq|A|$ dividing $\binom{n}{2} \cdot n$.

## Proof:

Consider a free algebra over $\{x, y\}$ and generate a relation $R$ from

$$
\binom{n}{2}\left\{\left(\begin{array}{ccccc}
y & y & x & \ldots & x \\
y & x & y & \ldots & x \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x & x & \ldots & y & y
\end{array}\right)\right.
$$

$R \subseteq \mathbf{D}^{\binom{n}{2}}$ has $\binom{n}{2}$-symmetries $\Rightarrow$

1. either $\mathbf{D}$ has a strong (ternary absorbing) subalgebra

## Claim [Z, Barto, Pinsker, Brady,..., 2022]

Every finite Taylor algebra $\mathbf{A}$ has a $2-W N U$ term of an arity $n$ if there are no primes $p \leq|A|$ dividing $\binom{n}{2} \cdot n$.

## Proof:

Consider a free algebra over $\{x, y\}$ and generate a relation $R$ from

$$
\binom{n}{2}\left\{\left(\begin{array}{ccccc}
y & y & x & \ldots & x \\
y & x & y & \ldots & x \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x & x & \ldots & y & y
\end{array}\right)\right.
$$

$R \subseteq \mathbf{D}^{\binom{n}{2}}$ has $\binom{n}{2}$-symmetries $\Rightarrow$

1. either $\mathbf{D}$ has a strong (ternary absorbing) subalgebra

$$
\Rightarrow \exists \mathbf{B} \leq \mathbf{A} \text { s.t. } B\binom{n}{2} \cap R \neq \varnothing
$$

## Claim [Z, Barto, Pinsker, Brady,..., 2022]

Every finite Taylor algebra $\mathbf{A}$ has a $2-W N U$ term of an arity $n$ if there are no primes $p \leq|A|$ dividing $\binom{n}{2} \cdot n$.

## Proof:

Consider a free algebra over $\{x, y\}$ and generate a relation $R$ from

$$
\binom{n}{2}\left\{\left(\begin{array}{ccccc}
y & y & x & \ldots & x \\
y & x & y & \ldots & x \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x & x & \ldots & y & y
\end{array}\right)\right.
$$

$R \subseteq \mathbf{D}^{\binom{n}{2}}$ has $\binom{n}{2}$-symmetries $\Rightarrow$

1. either $\mathbf{D}$ has a strong (ternary absorbing) subalgebra

$$
\Rightarrow \exists \mathbf{B} \leq \mathbf{A} \text { s.t. } B\binom{n}{2} \cap R \neq \varnothing
$$

2. or there exists a congruence $\sigma$ on $\mathbf{D}$ s.t. $\mathbf{D} / \sigma$ is $p$-affine

## Claim [Z, Barto, Pinsker, Brady,..., 2022]

Every finite Taylor algebra $\mathbf{A}$ has a $2-W N U$ term of an arity $n$ if there are no primes $p \leq|A|$ dividing $\binom{n}{2} \cdot n$.

## Proof:

Consider a free algebra over $\{x, y\}$ and generate a relation $R$ from

$$
\binom{n}{2}\left\{\left(\begin{array}{ccccc}
y & y & x & \ldots & x \\
y & x & y & \ldots & x \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x & x & \ldots & y & y
\end{array}\right)\right.
$$

$R \subseteq \mathbf{D}^{\binom{n}{2}}$ has $\binom{n}{2}$-symmetries $\Rightarrow$

1. either $\mathbf{D}$ has a strong (ternary absorbing) subalgebra $\Rightarrow \exists \mathbf{B} \leq \mathbf{A}$ s.t. $B\binom{n}{2} \cap R \neq \varnothing$
2. or there exists a congruence $\sigma$ on $\mathbf{D}$ s.t. $\mathbf{D} / \sigma$ is $p$-affine $\Rightarrow$ it is sufficient to prove that every $\binom{n}{2}$-symmetric affine subspace $R \subseteq \mathbb{Z}_{p}^{\binom{n}{2}}$ has a constant tuple

## Claim [Z, Barto, Pinsker, Brady,..., 2022]

Every finite Taylor algebra $\mathbf{A}$ has a $2-W N U$ term of an arity $n$ if there are no primes $p \leq|A|$ dividing $\binom{n}{2} \cdot n$.

## Proof:

Consider a free algebra over $\{x, y\}$ and generate a relation $R$ from

$$
\binom{n}{2}\left\{\left(\begin{array}{ccccc}
y & y & x & \ldots & x \\
y & x & y & \ldots & x \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x & x & \ldots & y & y
\end{array}\right)\right.
$$

$R \subseteq \mathbf{D}^{\binom{n}{2}}$ has $\binom{n}{2}$-symmetries $\Rightarrow$

1. either $\mathbf{D}$ has a strong (ternary absorbing) subalgebra $\Rightarrow \exists \mathbf{B} \leq \mathbf{A}$ s.t. $B\binom{n}{2} \cap R \neq \varnothing$
2. or there exists a congruence $\sigma$ on $\mathbf{D}$ s.t. $\mathbf{D} / \sigma$ is $p$-affine $\Rightarrow$ it is sufficient to prove that every $\binom{n}{2}$-symmetric affine subspace $R \subseteq \mathbb{Z}_{p}^{\binom{n}{2}}$ has a constant tuple $\Rightarrow p$ should not divide $\binom{n}{2} \cdot n$.

## Claim [Z, Pinsker, 2023]

Every finite Taylor algebra $\mathbf{A}$ has a $k$-WNU term of an arity $n$ if there are no primes $p \leq|A|$ dividing $\binom{n}{k} \cdot k!$.

## Proof:

Consider a free algebra over $\{x, y\}$ and generate a relation $R$ from

$$
\binom{n}{k}\left\{\left(\begin{array}{cccccc}
y & \ldots & y & x & \ldots & x \\
y & \ldots & x & y & \ldots & x \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
x & x & x & \ldots & y &
\end{array}\right)\right.
$$

$R \subseteq \mathbf{D}\binom{n}{k}$ has $\binom{n}{k}$-symmetries $\Rightarrow$

1. either $\mathbf{D}$ has a strong (ternary absorbing) subalgebra $\Rightarrow \exists \mathbf{B} \leq \mathbf{A}$ s.t. $B\binom{n}{k} \cap R \neq \varnothing$
2. or there exists a congruence $\sigma$ on $\mathbf{D}$ s.t. $\mathbf{D} / \sigma$ is $p$-affine $\Rightarrow$ it is sufficient to prove that every $\binom{n}{k}$-symmetric affine subspace $R \subseteq \mathbb{Z}_{p}^{\binom{n}{k}}$ has a constant tuple $\Rightarrow p$ should not divide $\binom{n}{k} \cdot k!$.

## Theorem

Suppose a finite algebra $\mathbf{A}$ has a WNU term of an odd arity $n$. Then $\mathbf{A}$ has an XY-symmetric term of arity $n$.

## Theorem

Suppose a finite algebra $\mathbf{A}$ has a WNU term of an odd arity $n$. Then $\mathbf{A}$ has an XY-symmetric term of arity $n$.

Proof: Consider a free algebra over $\{x, y\}$ and generate a relation $R$ of arity $\binom{n}{1}+\binom{n}{1}+\cdots+\binom{n}{n-1}=2^{n}-2$

## Theorem

Suppose a finite algebra $\mathbf{A}$ has a WNU term of an odd arity $n$. Then $\mathbf{A}$ has an XY-symmetric term of arity $n$.

Proof: Consider a free algebra over $\{x, y\}$ and generate a relation $R$ of arity $\binom{n}{1}+\binom{n}{1}+\cdots+\binom{n}{n-1}=2^{n}-2$
$R$ has symmetries in each $\binom{n}{k}$-part.

## Theorem

Suppose a finite algebra $\mathbf{A}$ has a WNU term of an odd arity $n$. Then $\mathbf{A}$ has an XY-symmetric term of arity $n$.

Proof: Consider a free algebra over $\{x, y\}$ and generate a relation $R$ of arity $\binom{n}{1}+\binom{n}{1}+\cdots+\binom{n}{n-1}=2^{n}-2$
$R$ has symmetries in each $\binom{n}{k}$-part.
We build a sequence of reductions $D^{(0)} \supseteq D^{(1)} \supseteq \cdots \supseteq D^{(s)}$.

## Theorem

Suppose a finite algebra $\mathbf{A}$ has a WNU term of an odd arity $n$. Then $\mathbf{A}$ has an XY-symmetric term of arity $n$.

Proof: Consider a free algebra over $\{x, y\}$ and generate a relation $R$ of arity $\binom{n}{1}+\binom{n}{1}+\cdots+\binom{n}{n-1}=2^{n}-2$
$R$ has symmetries in each $\binom{n}{k}$-part.
We build a sequence of reductions $D^{(0)} \supseteq D^{(1)} \supseteq \cdots \supseteq D^{(s)}$.

1. either $\exists D^{(s+1)}$ s.t. $R^{(s+1)} \neq \varnothing$.

## Theorem

Suppose a finite algebra $\mathbf{A}$ has a WNU term of an odd arity $n$. Then $\mathbf{A}$ has an XY-symmetric term of arity $n$.

Proof: Consider a free algebra over $\{x, y\}$ and generate a relation $R$ of arity $\binom{n}{1}+\binom{n}{1}+\cdots+\binom{n}{n-1}=2^{n}-2$
$R$ has symmetries in each $\binom{n}{k}$-part.
We build a sequence of reductions $D^{(0)} \supseteq D^{(1)} \supseteq \cdots \supseteq D^{(s)}$.

1. either $\exists D^{(s+1)}$ s.t. $R^{(s+1)} \neq \varnothing$.
2. or there exists a congruence $\sigma$ s.t. $\mathbf{A} / \sigma \subseteq C \boxtimes \mathbb{Z}_{p}$ and $\sigma$ cut some $D_{x, x, \ldots, y, y}^{(s)}$.

## Theorem

Suppose a finite algebra $\mathbf{A}$ has a WNU term of an odd arity $n$. Then $\mathbf{A}$ has an XY-symmetric term of arity $n$.

Proof: Consider a free algebra over $\{x, y\}$ and generate a relation $R$ of arity $\binom{n}{1}+\binom{n}{1}+\cdots+\binom{n}{n-1}=2^{n}-2$
$R$ has symmetries in each $\binom{n}{k}$-part.
We build a sequence of reductions $D^{(0)} \supseteq D^{(1)} \supseteq \cdots \supseteq D^{(s)}$.

1. either $\exists D^{(s+1)}$ s.t. $R^{(s+1)} \neq \varnothing$.
2. or there exists a congruence $\sigma$ s.t. $\mathbf{A} / \sigma \subseteq C \boxtimes \mathbb{Z}_{p}$ and $\sigma$ cut some $D_{x, x, \ldots, y, y}^{(s)}$.

$$
\begin{aligned}
f \in C \boxtimes \mathbb{Z}_{p} \Leftrightarrow & f^{(1)}\left(x_{1}, \ldots, x_{n}\right)= \\
& f_{1}\left(x_{1}^{(1)}, \ldots, x_{n}^{(1)}\right) \\
& \left(x_{1}, \ldots, x_{n}\right)=g_{2}\left(x_{1}^{(1)}, \ldots, x_{n}^{(1)}\right)+ \\
& a_{1} x_{1}^{(2)}+\cdots+a_{n} x_{n}^{(2)}
\end{aligned}
$$

## Theorem

Suppose a finite algebra $\mathbf{A}$ has a WNU term of an odd arity $n$. Then $\mathbf{A}$ has an XY-symmetric term of arity $n$.

Proof: Consider a free algebra over $\{x, y\}$ and generate a relation $R$ of arity $\binom{n}{1}+\binom{n}{1}+\cdots+\binom{n}{n-1}=2^{n}-2$
$R$ has symmetries in each $\binom{n}{k}$-part.
We build a sequence of reductions $D^{(0)} \supseteq D^{(1)} \supseteq \cdots \supseteq D^{(s)}$.

1. either $\exists D^{(s+1)}$ s.t. $R^{(s+1)} \neq \varnothing$.
2. or there exists a congruence $\sigma$ s.t. $\mathbf{A} / \sigma \subseteq C \boxtimes \mathbb{Z}_{p}$ and $\sigma$ cut some $D_{x, x, \ldots, y, y}^{(s)}$.

$$
\begin{aligned}
f \in C \boxtimes \mathbb{Z}_{p} \Leftrightarrow & f^{(1)}\left(x_{1}, \ldots, x_{n}\right)= \\
& f_{1}\left(x_{1}^{(1)}, \ldots, x_{n}^{(1)}\right) \\
& \left(x_{1}, \ldots, x_{n}\right)=g_{2}\left(x_{1}^{(1)}, \ldots, x_{n}^{(1)}\right)+ \\
& a_{1} x_{1}^{(2)}+\cdots+a_{n} x_{n}^{(2)}
\end{aligned}
$$

- by induction take $f$ such that $f^{(1)}$ is XY-symmetric.


## Theorem

Suppose a finite algebra $\mathbf{A}$ has a WNU term of an odd arity $n$. Then $\mathbf{A}$ has an XY-symmetric term of arity $n$.

Proof: Consider a free algebra over $\{x, y\}$ and generate a relation $R$ of arity $\binom{n}{1}+\binom{n}{1}+\cdots+\binom{n}{n-1}=2^{n}-2$
$R$ has symmetries in each $\binom{n}{k}$-part.
We build a sequence of reductions $D^{(0)} \supseteq D^{(1)} \supseteq \cdots \supseteq D^{(s)}$.

1. either $\exists D^{(s+1)}$ s.t. $R^{(s+1)} \neq \varnothing$.
2. or there exists a congruence $\sigma$ s.t. $\mathbf{A} / \sigma \subseteq C \boxtimes \mathbb{Z}_{p}$ and $\sigma$ cut some $D_{x, x, \ldots, y, y}^{(s)}$.

$$
\begin{aligned}
f \in C \boxtimes \mathbb{Z}_{p} \Leftrightarrow & f^{(1)}\left(x_{1}, \ldots, x_{n}\right)= \\
& f_{1}\left(x_{1}^{(1)}, \ldots, x_{n}^{(1)}\right) \\
& \left(x_{1}, \ldots, x_{n}\right)=g_{2}\left(x_{1}^{(1)}, \ldots, x_{n}^{(1)}\right)+ \\
& a_{1} x_{1}^{(2)}+\cdots+a_{n} x_{n}^{(2)}
\end{aligned}
$$

- by induction take $f$ such that $f^{(1)}$ is XY-symmetric.
- composing $f$ we make $f^{(2)} \mathrm{XY}$-symmetric.

Open questions

## Open questions

$(\{0,1,2\} ; h)$ has no $(x, y, y, z, z, z, z)$-symmetric term but $\ldots$

## Open questions

( $\{0,1,2\} ; h$ ) has no $(x, y, y, z, z, z, z)$-symmetric term but $\ldots$
$(\{0,1,2\} ; h)$ has a term symmetric on $(0,1,1,2,2,2,2)$.

## Open questions

( $\{0,1,2\} ; h$ ) has no ( $x, y, y, z, z, z, z$ )-symmetric term but $\ldots$
$(\{0,1,2\} ; h)$ has a term symmetric on $(0,1,1,2,2,2,2)$.
$S_{\mathbf{A}}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid \exists f \in \operatorname{Clo}(\mathbf{A})\right.$ symmetric on $\left.\left(a_{1}, \ldots, a_{n}\right)\right\}$

## Open questions

( $\{0,1,2\} ; h$ ) has no ( $x, y, y, z, z, z, z$ )-symmetric term but $\ldots$
$(\{0,1,2\} ; h)$ has a term symmetric on $(0,1,1,2,2,2,2)$.
$S_{\mathbf{A}}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid \exists f \in \operatorname{Clo}(\mathbf{A})\right.$ symmetric on $\left.\left(a_{1}, \ldots, a_{n}\right)\right\}$

## Questions

A is a finite Taylor algebra.

## Open questions

( $\{0,1,2\} ; h$ ) has no ( $x, y, y, z, z, z, z$ )-symmetric term but $\ldots$
$(\{0,1,2\} ; h)$ has a term symmetric on $(0,1,1,2,2,2,2)$.
$S_{\mathbf{A}}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid \exists f \in \operatorname{Clo}(\mathbf{A})\right.$ symmetric on $\left.\left(a_{1}, \ldots, a_{n}\right)\right\}$

## Questions

A is a finite Taylor algebra.

1. Does $S_{\mathbf{A}}$ contain infinitely many tuples with 3 different elements?

## Open questions

( $\{0,1,2\} ; h$ ) has no ( $x, y, y, z, z, z, z$ )-symmetric term but $\ldots$
$(\{0,1,2\} ; h)$ has a term symmetric on $(0,1,1,2,2,2,2)$.
$S_{\mathbf{A}}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid \exists f \in \operatorname{Clo}(\mathbf{A})\right.$ symmetric on $\left.\left(a_{1}, \ldots, a_{n}\right)\right\}$

## Questions

A is a finite Taylor algebra.

1. Does $S_{\mathrm{A}}$ contain infinitely many tuples with 3 different elements?
2. Does $S_{\mathrm{A}}$ contain infinitely many tuples with $|A|$ different elements?

## Open questions

( $\{0,1,2\} ; h$ ) has no ( $x, y, y, z, z, z, z$ )-symmetric term but $\ldots$
$(\{0,1,2\} ; h)$ has a term symmetric on $(0,1,1,2,2,2,2)$.
$S_{\mathbf{A}}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid \exists f \in \operatorname{Clo}(\mathbf{A})\right.$ symmetric on $\left.\left(a_{1}, \ldots, a_{n}\right)\right\}$

## Questions

A is a finite Taylor algebra.

1. Does $S_{\mathrm{A}}$ contain infinitely many tuples with 3 different elements?
2. Does $S_{\mathrm{A}}$ contain infinitely many tuples with $|A|$ different elements?
3. Can we characterize all algebras not having symmetric operations on $\left(a_{1}, \ldots, a_{n}\right)$ ?

Thank you for your attention

