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Theorem [Maróti, McKenzie, Mark, Siggers, Ol̂sák, Barto,
Kozik]

TFAE for a finite idempotent algebra A:

▶ A is a Taylor algebra.

▶ A satisfies a nontrivial h1-identity.

▶ there doesn’t exist essentially unary algebra B ∈ HS(A)

▶ A has a Siggers term operation, i.e.

s(y , x , y , z) = s(x , y , z , x)

▶ A has an Ol̂sák term operation, i.e.

t(x , y , y , y , x , x) = t(y , x , y , x , y , x) = t(y , y , x , x , x , y)

▶ A has a WNU term operation, i.e.

w(x , y , . . . , y) = w(y , x , y , . . . , y) = · · · = w(y , y , . . . , y , x)

▶ A has a cyclic term operation, i.e.

c(x1, x2, . . . , xn) = c(x2, x3, . . . , xn, x1)
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WNU

w(x , y , y , . . . , y) = w(y , x , y , . . . , y) = · · · = w(y , y , . . . , y , x)

2-WNU

w(x , x , y , y , . . . , y) = w(

m︷ ︸︸ ︷
y , . . . , y , x︸ ︷︷ ︸

ℓ

, y , . . . , y , x , y , . . . , y)

for all ℓ and m

WNU is an (x , y , y , . . . , y)-symmetric operation.
2-WNU is an (x , x , y , y , . . . , y)-symmetric operation.
k-WNU is an (x , . . . , x︸ ︷︷ ︸

k

, y , y , . . . , y)-symmetric operation.

Question

Given a finite algebra A. For which tuples τ of variables A has
τ -symmetric term operation?

What algebras have (x , y , y , z , z , z , z , . . . , z)-symmetric operations?
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Motivation

Why symmetric?

▶ They are cool!
▶ Symmetric operations characterize the algebra

▶ Semilattice algebra has totally symmetric terms of all arities
f (x1, . . . , xn) = f (y1, . . . , yn) whenever {x1, . . . , xn} = {y1, . . . , yn}.
▶ ({0, 1};maj) has symmetric majority term of all odd arities.
▶ ({0, 1}; x1 + x2 + x3) has a term x1 + · · ·+ x2n+1

▶ Important for the complexity of CSP and Promise CSP.
▶ we study minions ⇒ no composition ⇒ 4-ary and 6-ary

operations are useless ⇒ we need an infinite sequence...
▶ BLP algorithm for (Promise) CSP requires all symmetric

operations.
▶ BLP+AIP algorithm for (Promise) CSP requires symmetric

operations of sufficiently large arities.
▶ CLAP algorithm for (Promise) CSP requires symmetric

operations of sufficiently large arities on most tuples.
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Symmetric operations blockers

▶ (Zp; x − y + z) doesn’t have a WNU of arity n if p divides n.

▶ Pol

(
0 1 2
1 2 0

)
doesn’t have a symmetric operation of arity 3n.

▶ Pol

(
0 1 2 3 4
1 0 3 4 2

)
doesn’t have a symmetric operation of any

arity n ≥ 2.

How to avoid these obstacles?

1. Avoid operations of arity n if some p divides n.

2. Avoid tuples with an equal number of two elements.

A tuple (a1, . . . , an) is good if there does not exist S1 ∩ S2 = ∅ s.t.
|{i |ai ∈ S1}| = |{i |ai ∈ S2}| > 0.
(x , y , z , z , z , z , u, u, u, u, u, u, u, u, u) is a bad tuple
(x , y , y , z , z , z , u, u, u, u, u, u, u, u, u) is a bad tuple

(x , y , y , z , z , z , z , u, u, u, u, u, u, u, u) is a good tuple

Pol

(
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1 0 3 4 2

)
has an operation that is symmetric on all good tuples.
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Bounded width case

Theorem [Brady, 2022]

TFAE for a finite idempotent algebra A.

▶ A has a WNU term of all arities n ≥ 3

▶ there doesn’t exist an essentially unary B ∈ HS(A) or p-affine
B ∈ HS(A)

▶ for every n the algebra A has an n-ary term operation t that
is symmetric on all good tuples

This cannot be strengthened.

Lemma [Brady, 2022]

For every bad tuple τ there exists a finite algebra A with bounded
width not having τ -symmetric term operations.

Can we prove something similar for finite Taylor algebras?
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Counter Example

A = {0, 1, 2}, h(x , y , z) =


x + y + z , if x , y , z ∈ {0, 1}
2, if x = y = z = 2

first non-2, otherwise

Properties of ({0, 1, 2}; h)
▶ h is a WNU

▶ h is a minimal Taylor algebra

▶ {0, 1} binary absorbs A, {{0, 1}, {2}} is a congruence

▶ Clo(h) doesn’t have (x , . . . , x︸ ︷︷ ︸
k

, y , . . . , y︸ ︷︷ ︸
ℓ

, z . . . , z︸ ︷︷ ︸
m

)-symmetric

term operation for any k , ℓ,m

For any f ∈ Clo(h) the operation f (x1, . . . , xs , 2, 2, . . . , 2) is an

idempotent linear operation on {0, 1} ⇒ k + ℓ, k +m, and ℓ+m

are odd ⇒ Contradiction

▶ singletonBLP+AIP, CLAP, and similar algorithms fail on
CSP(Inv(h)).
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term operation for any k , ℓ,m

For any f ∈ Clo(h) the operation f (x1, . . . , xs , 2, 2, . . . , 2) is an

idempotent linear operation on {0, 1} ⇒ k + ℓ, k +m, and ℓ+m

are odd ⇒ Contradiction

▶ singletonBLP+AIP, CLAP, and similar algorithms fail on
CSP(Inv(h)).
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Main Result

f is XY-symmetric if it is symmetric on all tuples with just x and y .

i.e. f is (x , . . . , x︸ ︷︷ ︸
k

, y , . . . , y)-symmetric for every k .

Equivalently, f is XY-symmetric if it is symmetric on all tuples

(a1, . . . , an) s.t. |{a1, . . . , an}| = 2

Theorem

Suppose a finite algebra A has a WNU term of an odd arity n.
Then A has an XY-symmetric term of arity n.

Examples.

▶ Pol

(
0 1 2 3 4
1 0 3 4 2

)
has

f (x1, . . . , x2n+1) =

{
most popular, if it exists

x1, otherwise
▶ Clo(h) has

f (x1, . . . , x2n+1) =

{
x1 + · · ·+ x2n+1, If x1, . . . , x2n+1 ∈ {0, 1}
first non-2, otherwise
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Complexity of Promise CSP

A → B is a homomorphism of two relational structures.

PCSP(A;B)
Given a structure X.
Yes: if X → A
No: if X ̸→ B

Conjecture

If PCSP(A;B) is tractable then there exists C s.t.

▶ A → C → B
▶ CSP(C) is tractable

PCSP(A;B) is reducible to CSP(C).

▶ C must be infinite for some A and B on 2 elements (Asimi, Barto,
2021).

▶ C must be of size at least p for some A and B on 2 elements (Z,
Kazda, Mayr, 2021).
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Corollary

Suppose

1. A → C → B
2. |A| = 2,

3. |C | < ∞.

4. CSP(C) is tractable.
Then PCSP(A;B) is solvable by BLP+AIP.

Proof:
CSP(C) is tractable
⇒ Pol(C) has WNU operations
⇒ Pol(C) has XY-symmetric operations
⇒ Pol(A;B) has XY-symmetric operations
⇒ Pol(A;B) has symmetric operations
⇒ BLP+AIP solves PCSP(A;B).

This is not true for |A| > 2 (our counter-example Inv({0, 1, 2}; h)).



Corollary

Suppose

1. A → C → B

2. |A| = 2,

3. |C | < ∞.

4. CSP(C) is tractable.
Then PCSP(A;B) is solvable by BLP+AIP.

Proof:
CSP(C) is tractable
⇒ Pol(C) has WNU operations
⇒ Pol(C) has XY-symmetric operations
⇒ Pol(A;B) has XY-symmetric operations
⇒ Pol(A;B) has symmetric operations
⇒ BLP+AIP solves PCSP(A;B).

This is not true for |A| > 2 (our counter-example Inv({0, 1, 2}; h)).



Corollary

Suppose

1. A → C → B
2. |A| = 2,

3. |C | < ∞.

4. CSP(C) is tractable.
Then PCSP(A;B) is solvable by BLP+AIP.

Proof:
CSP(C) is tractable
⇒ Pol(C) has WNU operations
⇒ Pol(C) has XY-symmetric operations
⇒ Pol(A;B) has XY-symmetric operations
⇒ Pol(A;B) has symmetric operations
⇒ BLP+AIP solves PCSP(A;B).

This is not true for |A| > 2 (our counter-example Inv({0, 1, 2}; h)).



Corollary

Suppose

1. A → C → B
2. |A| = 2,

3. |C | < ∞.

4. CSP(C) is tractable.
Then PCSP(A;B) is solvable by BLP+AIP.

Proof:
CSP(C) is tractable
⇒ Pol(C) has WNU operations
⇒ Pol(C) has XY-symmetric operations
⇒ Pol(A;B) has XY-symmetric operations
⇒ Pol(A;B) has symmetric operations
⇒ BLP+AIP solves PCSP(A;B).

This is not true for |A| > 2 (our counter-example Inv({0, 1, 2}; h)).



Corollary

Suppose

1. A → C → B
2. |A| = 2,

3. |C | < ∞.

4. CSP(C) is tractable.

Then PCSP(A;B) is solvable by BLP+AIP.

Proof:
CSP(C) is tractable
⇒ Pol(C) has WNU operations
⇒ Pol(C) has XY-symmetric operations
⇒ Pol(A;B) has XY-symmetric operations
⇒ Pol(A;B) has symmetric operations
⇒ BLP+AIP solves PCSP(A;B).

This is not true for |A| > 2 (our counter-example Inv({0, 1, 2}; h)).



Corollary

Suppose

1. A → C → B
2. |A| = 2,

3. |C | < ∞.

4. CSP(C) is tractable.
Then PCSP(A;B) is solvable by BLP+AIP.

Proof:
CSP(C) is tractable
⇒ Pol(C) has WNU operations
⇒ Pol(C) has XY-symmetric operations
⇒ Pol(A;B) has XY-symmetric operations
⇒ Pol(A;B) has symmetric operations
⇒ BLP+AIP solves PCSP(A;B).

This is not true for |A| > 2 (our counter-example Inv({0, 1, 2}; h)).



Corollary

Suppose

1. A → C → B
2. |A| = 2,

3. |C | < ∞.

4. CSP(C) is tractable.
Then PCSP(A;B) is solvable by BLP+AIP.

Proof:

CSP(C) is tractable
⇒ Pol(C) has WNU operations
⇒ Pol(C) has XY-symmetric operations
⇒ Pol(A;B) has XY-symmetric operations
⇒ Pol(A;B) has symmetric operations
⇒ BLP+AIP solves PCSP(A;B).

This is not true for |A| > 2 (our counter-example Inv({0, 1, 2}; h)).



Corollary

Suppose

1. A → C → B
2. |A| = 2,

3. |C | < ∞.

4. CSP(C) is tractable.
Then PCSP(A;B) is solvable by BLP+AIP.

Proof:
CSP(C) is tractable

⇒ Pol(C) has WNU operations
⇒ Pol(C) has XY-symmetric operations
⇒ Pol(A;B) has XY-symmetric operations
⇒ Pol(A;B) has symmetric operations
⇒ BLP+AIP solves PCSP(A;B).

This is not true for |A| > 2 (our counter-example Inv({0, 1, 2}; h)).



Corollary

Suppose

1. A → C → B
2. |A| = 2,

3. |C | < ∞.

4. CSP(C) is tractable.
Then PCSP(A;B) is solvable by BLP+AIP.

Proof:
CSP(C) is tractable
⇒ Pol(C) has WNU operations

⇒ Pol(C) has XY-symmetric operations
⇒ Pol(A;B) has XY-symmetric operations
⇒ Pol(A;B) has symmetric operations
⇒ BLP+AIP solves PCSP(A;B).

This is not true for |A| > 2 (our counter-example Inv({0, 1, 2}; h)).



Corollary

Suppose

1. A → C → B
2. |A| = 2,

3. |C | < ∞.

4. CSP(C) is tractable.
Then PCSP(A;B) is solvable by BLP+AIP.

Proof:
CSP(C) is tractable
⇒ Pol(C) has WNU operations
⇒ Pol(C) has XY-symmetric operations

⇒ Pol(A;B) has XY-symmetric operations
⇒ Pol(A;B) has symmetric operations
⇒ BLP+AIP solves PCSP(A;B).

This is not true for |A| > 2 (our counter-example Inv({0, 1, 2}; h)).



Corollary

Suppose

1. A → C → B
2. |A| = 2,

3. |C | < ∞.

4. CSP(C) is tractable.
Then PCSP(A;B) is solvable by BLP+AIP.

Proof:
CSP(C) is tractable
⇒ Pol(C) has WNU operations
⇒ Pol(C) has XY-symmetric operations
⇒ Pol(A;B) has XY-symmetric operations

⇒ Pol(A;B) has symmetric operations
⇒ BLP+AIP solves PCSP(A;B).

This is not true for |A| > 2 (our counter-example Inv({0, 1, 2}; h)).



Corollary

Suppose

1. A → C → B
2. |A| = 2,

3. |C | < ∞.

4. CSP(C) is tractable.
Then PCSP(A;B) is solvable by BLP+AIP.

Proof:
CSP(C) is tractable
⇒ Pol(C) has WNU operations
⇒ Pol(C) has XY-symmetric operations
⇒ Pol(A;B) has XY-symmetric operations
⇒ Pol(A;B) has symmetric operations

⇒ BLP+AIP solves PCSP(A;B).

This is not true for |A| > 2 (our counter-example Inv({0, 1, 2}; h)).



Corollary

Suppose

1. A → C → B
2. |A| = 2,

3. |C | < ∞.

4. CSP(C) is tractable.
Then PCSP(A;B) is solvable by BLP+AIP.

Proof:
CSP(C) is tractable
⇒ Pol(C) has WNU operations
⇒ Pol(C) has XY-symmetric operations
⇒ Pol(A;B) has XY-symmetric operations
⇒ Pol(A;B) has symmetric operations
⇒ BLP+AIP solves PCSP(A;B).

This is not true for |A| > 2 (our counter-example Inv({0, 1, 2}; h)).



Corollary

Suppose

1. A → C → B
2. |A| = 2,

3. |C | < ∞.

4. CSP(C) is tractable.
Then PCSP(A;B) is solvable by BLP+AIP.

Proof:
CSP(C) is tractable
⇒ Pol(C) has WNU operations
⇒ Pol(C) has XY-symmetric operations
⇒ Pol(A;B) has XY-symmetric operations
⇒ Pol(A;B) has symmetric operations
⇒ BLP+AIP solves PCSP(A;B).

This is not true for |A| > 2 (our counter-example Inv({0, 1, 2}; h)).



Idea of the proof

Claim [Maróti, McKenzie, 2008]

Every finite Taylor algebra A has a WNU term of an arity n if there
are no primes p ≤ |A| dividing n.

Proof:
Consider a free algebra over {x , y} and generate a relation R from

n



y x . . . x
x y . . . x
...

...
. . .

...
x x . . . y


R ⊆ Dn is symmetric ⇒
1. either D has a strong (ternary absorbing) subalgebra

⇒ ∃B ≤ A s.t. Bn ∩ R ̸= ∅
2. or there exists a congruence σ on D s.t. D/σ is p-affine

⇒ it is sufficient to prove that every symmetric affine subspace
R ⊆ Zn

p has a constant tuple ⇒ p should not divide n.
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Claim [Maróti, McKenzie, 2008]

Every finite Taylor algebra A has a WNU term of an arity n if there
are no primes p ≤ |A| dividing n.

Proof:
Consider a free algebra over {x , y} and generate a relation R from

n



y x . . . x
x y . . . x
...

...
. . .

...
x x . . . y


R ⊆ Dn is symmetric ⇒
1. either D has a strong (ternary absorbing) subalgebra

⇒ ∃B ≤ A s.t. Bn ∩ R ̸= ∅
2. or there exists a congruence σ on D s.t. D/σ is p-affine

⇒ it is sufficient to prove that every symmetric affine subspace
R ⊆ Zn

p has a constant tuple ⇒ p should not divide n.



Idea of the proof
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Claim [Maróti, McKenzie, 2008]

Every finite Taylor algebra A has a WNU term of an arity n if there
are no primes p ≤ |A| dividing n.

Proof:
Consider a free algebra over {x , y} and generate a relation R from

n



y x . . . x
x y . . . x
...

...
. . .

...
x x . . . y


R ⊆ Dn is symmetric ⇒
1. either D has a strong (ternary absorbing) subalgebra

⇒ ∃B ≤ A s.t. Bn ∩ R ̸= ∅
2. or there exists a congruence σ on D s.t. D/σ is p-affine

⇒ it is sufficient to prove that every symmetric affine subspace
R ⊆ Zn

p has a constant tuple ⇒ p should not divide n.



Idea of the proof
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Claim [Z, Barto, Pinsker, Brady,..., 2022]

Every finite Taylor algebra A has a 2-WNU term of an arity n if
there are no primes p ≤ |A| dividing
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Claim [Z, Pinsker, 2023]
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Theorem

Suppose a finite algebra A has a WNU term of an odd arity n.
Then A has an XY-symmetric term of arity n.

Proof: Consider a free algebra over {x , y} and generate a relation
R of arity

(n
1

)
+

(n
1

)
+ · · ·+

( n
n−1

)
= 2n − 2

R has symmetries in each
(n
k

)
-part.

We build a sequence of reductions D(0) ⊇ D(1) ⊇ · · · ⊇ D(s).

1. either ∃D(s+1) s.t. R(s+1) ̸= ∅.

2. or there exists a congruence σ s.t. A/σ ⊆ C ⊠ Zp and σ cut

some D
(s)
x ,x ,...,y ,y .

f ∈ C ⊠ Zp ⇔ f (1)(x1, . . . , xn) = g1(x
(1)
1 , . . . , x

(1)
n )

f (2)(x1, . . . , xn) = g2(x
(1)
1 , . . . , x

(1)
n )+

a1x
(2)
1 + · · ·+ anx

(2)
n

▶ by induction take f such that f (1) is XY-symmetric.
▶ composing f we make f (2) XY-symmetric.
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Open questions

({0, 1, 2}; h) has no (x , y , y , z , z , z , z)-symmetric term but ...

({0, 1, 2}; h) has a term symmetric on (0, 1, 1, 2, 2, 2, 2).

SA = {(a1, . . . , an) | ∃f ∈ Clo(A) symmetric on(a1, . . . , an)}

Questions

A is a finite Taylor algebra.

1. Does SA contain infinitely many tuples with 3 different
elements?

2. Does SA contain infinitely many tuples with |A| different
elements?

3. Can we characterize all algebras not having symmetric
operations on (a1, . . . , an)?
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Thank you for your attention


