Constraint Satisfaction Problems
 An Algebraic Approach to Classifying Computational Complexity

Žaneta Semanišinová

Institute of Algebra

TU Dresden
PF UPJŠ Košice 8 Feb 2024

erc

European Research Council
ERC Synergy Grant POCOCOP (GA 101071674)

Outline

(1) Introduction to CSPs
(2) Tools for classifying complexity
(3) Infinite-domain CSPs
(4) Valued CSPs

Outline

(1) Introduction to CSPs

(2) Tools for classifying complexity

(3) Infinite-domain CSPs

(4) Valued CSPs

Computational problems

- 3-SAT

Input: a propositional formula ϕ in 3-CNF, e.g. $\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots$ Output: Is ϕ satisfiable?

Computational problems

- 3-SAT

Input: a propositional formula ϕ in 3-CNF, e.g. $\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots$

Output: Is ϕ satisfiable?

- graph 3-coloring

Input: an undirected graph $G=(V, E)$
Output: Is G 3-colorable?

Computational problems

- 3-SAT

Input: a propositional formula ϕ in 3-CNF, e.g. $\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots$

Output: Is ϕ satisfiable?

- graph 3-coloring

Input: an undirected graph $G=(V, E)$
Output: Is G 3-colorable?

- graph acyclicity

Input: a directed graph $G=(V, E)$
Output: Does G contain a directed cycle?

Computational problems

- 3-SAT

NP-complete
Input: a propositional formula ϕ in 3-CNF,
e.g. $\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots$

Output: Is ϕ satisfiable?

- graph 3-coloring

NP-complete
Input: an undirected graph $G=(V, E)$
Output: Is G 3-colorable?

- graph acyclicity

Input: a directed graph $G=(V, E)$
Output: Does G contain a directed cycle?
problems in $P=$ class of effectively solvable problems
NP-complete problems = problems with effectively verifiable solution; believed to be hard to solve

Constraint Satisfaction Problem

(relational) structure $\mathfrak{B}=\left(B ; R^{\mathfrak{B}}: R \in \tau\right)$; finite signature τ primitive positive formula: $\exists x_{1}, \ldots, x_{I}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right), \psi_{i}$ atomic formulas

Constraint Satisfaction Problem

(relational) structure $\mathfrak{B}=\left(B ; R^{\mathfrak{B}}: R \in \tau\right)$; finite signature τ primitive positive formula: $\exists x_{1}, \ldots, x_{I}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right), \psi_{i}$ atomic formulas \mathfrak{B} - fixed τ-structure

Definition (CSP($\mathfrak{B})$)

Input: a pp-formula ϕ over τ
Output: Does ϕ hold in \mathfrak{B} ?

Constraint Satisfaction Problem

(relational) structure $\mathfrak{B}=\left(B ; R^{\mathfrak{B}}: R \in \tau\right)$; finite signature τ primitive positive formula: $\exists x_{1}, \ldots, x_{I}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right), \psi_{i}$ atomic formulas \mathfrak{B} - fixed τ-structure

Definition (CSP($\mathfrak{B})$)

Input: a pp-formula ϕ over τ
Output: Does ϕ hold in \mathfrak{B} ?

Example (3-SAT):
$\mathfrak{B}=\left(\{0,1\} ; R_{000}, R_{001}, R_{011}, R_{111}\right)$, where $R_{i j k}=\{0,1\}^{3} \backslash\{(i, j, k)\}$ Rewrite input $\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots$ as

$$
\exists x_{1}, x_{2}, \ldots R_{001}\left(x_{1}, x_{3}, x_{2}\right) \wedge R_{011}\left(x_{4}, x_{3}, x_{2}\right) \wedge \ldots
$$

Then $\operatorname{CSP}(\mathfrak{B})$ is the same problem as 3-SAT.

Constraint Satisfaction Problem

\mathfrak{B} - fixed τ-structure

Definition (CSP($\mathfrak{B})$)

Input: finite τ-structure \mathfrak{A}
Output: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ? (Does $\mathfrak{A} \rightarrow \mathfrak{B}$?)

Constraint Satisfaction Problem

\mathfrak{B} - fixed τ-structure

Definition (CSP($\mathfrak{B})$)

Input: finite τ-structure \mathfrak{A}
Output: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ? (Does $\mathfrak{A} \rightarrow \mathfrak{B}$?)

Example (3-coloring):

$\mathfrak{B}=K_{3}$ (complete graph on 3 vertices)
$G \rightarrow \mathfrak{B}$ iff G is 3-colorable.

Constraint Satisfaction Problem

\mathfrak{B} - fixed τ-structure

Definition (CSP($\mathfrak{B})$)

Input: finite τ-structure \mathfrak{A}
Output: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ? (Does $\mathfrak{A} \rightarrow \mathfrak{B}$?)

Example (3-coloring):
$\mathfrak{B}=K_{3}$ (complete graph on 3 vertices)
$G \rightarrow \mathfrak{B}$ iff G is 3-colorable.

Example (graph acyclicity):
$\mathfrak{B}=(\mathbb{Q} ;<) \sim(\mathbb{Q} ; E)$
$G \rightarrow \mathfrak{B}$ iff G has no directed cycle.

Constraint Satisfaction Problem

\mathfrak{B} - fixed τ-structure

Definition (CSP($\mathfrak{B})$)

Input: finite τ-structure \mathfrak{A}
Output: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ? (Does $\mathfrak{A} \rightarrow \mathfrak{B}$?)
Example (3-coloring):
$\mathfrak{B}=K_{3}$ (complete graph on 3 vertices)
$G \rightarrow \mathfrak{B}$ iff G is 3 -colorable.

Example (graph acyclicity):
$\mathfrak{B}=(\mathbb{Q} ;<) \sim(\mathbb{Q} ; E)$
$G \rightarrow \mathfrak{B}$ iff G has no directed cycle.
Write edges of G in a pp-formula: $\exists x_{1}, x_{2}, \ldots E\left(x_{1}, x_{2}\right) \wedge E\left(x_{3}, x_{4}\right) \ldots$ is satisfiable in $(\mathbb{Q} ; E)$ iff G has no directed cycle.

Constraint Satisfaction Problem

\mathfrak{B} - fixed τ-structure

Definition (CSP($\mathfrak{B})$)

Input: finite τ-structure \mathfrak{A}
Output: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ? (Does $\mathfrak{A} \rightarrow \mathfrak{B}$?)
Example (3-coloring):
$\mathfrak{B}=K_{3}$ (complete graph on 3 vertices)
$G \rightarrow \mathfrak{B}$ iff G is 3 -colorable.

Example (graph acyclicity):
$\mathfrak{B}=(\mathbb{Q} ;<) \sim(\mathbb{Q} ; E)$
$G \rightarrow \mathfrak{B}$ iff G has no directed cycle.
Write edges of G in a pp-formula: $\exists x_{1}, x_{2}, \ldots E\left(x_{1}, x_{2}\right) \wedge E\left(x_{3}, x_{4}\right) \ldots$ is satisfiable in $(\mathbb{Q} ; E)$ iff G has no directed cycle.
Observation: Cannot be modelled over a finite template.

Complexity of CSPs

Conjecture (Feder, Vardi '93), now theorem:

Theorem (Bulatov ('17); Zhuk ('17))

For every finite $\mathfrak{B}, \operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

Outline

(1) Introduction to CSPs

(2) Tools for classifying complexity

(3) Infinite-domain CSPs

(4) Valued CSPs

Primitive positive definitions

pp-define $=$ define by a primitive positive formula
Example: The structure $\left(\{0,1\} ; R_{000}, R_{001}, R_{011}, R_{111}\right)$ pp-defines the relation $X O R=\{(0,1),(1,0)\}$ by

$$
R_{000}(x, y, y) \wedge R_{111}(x, y, y)
$$

Primitive positive definitions

pp-define $=$ define by a primitive positive formula
Example: The structure $\left(\{0,1\} ; R_{000}, R_{001}, R_{011}, R_{111}\right)$ pp-defines the relation $X O R=\{(0,1),(1,0)\}$ by

$$
R_{000}(x, y, y) \wedge R_{111}(x, y, y)
$$

Observation

If \mathfrak{B} pp-defines a relation R, then $\operatorname{CSP}(\mathfrak{B}, R)$ reduces to $\operatorname{CSP}(\mathfrak{B})$ in poly-time.

Primitive positive definitions

pp-define $=$ define by a primitive positive formula
Example: The structure $\left(\{0,1\} ; R_{000}, R_{001}, R_{011}, R_{111}\right)$ pp-defines the relation $X O R=\{(0,1),(1,0)\}$ by

$$
R_{000}(x, y, y) \wedge R_{111}(x, y, y)
$$

Observation

If \mathfrak{B} pp-defines a relation R, then $\operatorname{CSP}(\mathfrak{B}, R)$ reduces to $\operatorname{CSP}(\mathfrak{B})$ in poly-time.

Question: How to certify that a relation is not pp-definable?

Polymorphisms

Definition (polymorphism)

An operation $f: B^{n} \rightarrow B$ is a polymorphism of (or preserves) \mathfrak{B} if for every relation R of \mathfrak{B} and for all tuples $\overline{r_{1}}, \ldots, \overline{r_{n}} \in R$ also $f\left(\bar{r}_{1}, \ldots, \bar{r}_{n}\right) \in R$ (computed row-wise).
$\operatorname{Pol}(\mathfrak{B})$ - the set of all polymorphisms of \mathfrak{B}
Example: The operation min is a polymorphism of $(\mathbb{Q} ;<)$.

$$
\left(\begin{array}{l}
1 \\
\wedge \\
5
\end{array}\right)\left(\begin{array}{l}
2 \\
\wedge \\
3
\end{array}\right) \xrightarrow[\rightarrow]{\min }\left(\begin{array}{l}
1 \\
\wedge \\
3
\end{array}\right)
$$

Polymorphisms

Definition (polymorphism)

An operation $f: B^{n} \rightarrow B$ is a polymorphism of (or preserves) \mathfrak{B} if for every relation R of \mathfrak{B} and for all tuples $\overline{r_{1}}, \ldots, \overline{r_{n}} \in R$ also $f\left(\bar{r}_{1}, \ldots, \bar{r}_{n}\right) \in R$ (computed row-wise).
$\operatorname{Pol}(\mathfrak{B})$ - the set of all polymorphisms of \mathfrak{B}
Example: The operation \min is a polymorphism of $(\mathbb{Q} ;<)$.

$$
\left(\begin{array}{l}
1 \\
\wedge \\
5
\end{array}\right)\left(\begin{array}{l}
2 \\
\wedge \\
3
\end{array}\right) \xrightarrow[\rightarrow]{\min }\left(\begin{array}{l}
1 \\
\wedge \\
3
\end{array}\right)
$$

Example (projections): For every structure $\mathfrak{B}, n \in N$ and $i \in\{1, \ldots, n\}$, $\pi_{i}^{n}: B^{n} \rightarrow B$ defined by

$$
\pi_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i}
$$

is a polymorphism of \mathfrak{B}.

Use of polymorphisms

1. Certify that a relation is not pp-definable

Theorem (Bodnarčuk, Kalužnin, Kotov, Romov ('69); Geiger ('68))
$\mathfrak{B}, \mathfrak{B}^{\prime}$ - structures on the same finite domain
All relations of \mathfrak{B}^{\prime} are pp-definable in \mathfrak{B} iff $\operatorname{Pol}(\mathfrak{B}) \subseteq \operatorname{Pol}\left(\mathfrak{B}^{\prime}\right)$.

Use of polymorphisms

1. Certify that a relation is not pp-definable

Theorem (Bodnarčuk, Kalužnin, Kotov, Romov ('69); Geiger ('68))

$\mathfrak{B}, \mathfrak{B}^{\prime}$ - structures on the same finite domain
All relations of \mathfrak{B}^{\prime} are pp-definable in \mathfrak{B} iff $\operatorname{Pol}(\mathfrak{B}) \subseteq \operatorname{Pol}\left(\mathfrak{B}^{\prime}\right)$.
\leadsto if a relation R is not pp-definable, there is $f \in \operatorname{Pol}(\mathfrak{B})$ that does not preserve R
\sim complexity of $\operatorname{CSP}(\mathfrak{B})$ depends only on polymorphisms of \mathfrak{B}

Use of polymorphisms

1. Certify that a relation is not pp-definable

Theorem (Bodnarčuk, Kalužnin, Kotov, Romov ('69); Geiger ('68))

$\mathfrak{B}, \mathfrak{B}^{\prime}$ - structures on the same finite domain
All relations of \mathfrak{B}^{\prime} are pp-definable in \mathfrak{B} iff $\operatorname{Pol}(\mathfrak{B}) \subseteq \operatorname{Pol}\left(\mathfrak{B}^{\prime}\right)$.
\leadsto if a relation R is not pp-definable, there is $f \in \operatorname{Pol}(\mathfrak{B})$ that does not preserve R
\leadsto complexity of $\operatorname{CSP}(\mathfrak{B})$ depends only on polymorphisms of \mathfrak{B}

2. Provide algorithms

Simple example:
\mathfrak{B} has a constant polymorphism $\Rightarrow(c, \ldots, c) \in R^{\mathfrak{B}}$ for every $R^{\mathfrak{B}} \neq \emptyset$

Use of polymorphisms

1. Certify that a relation is not pp-definable

Theorem (Bodnarčuk, Kalužnin, Kotov, Romov ('69); Geiger ('68))

$\mathfrak{B}, \mathfrak{B}^{\prime}$ - structures on the same finite domain
All relations of \mathfrak{B}^{\prime} are pp-definable in \mathfrak{B} iff $\operatorname{Pol}(\mathfrak{B}) \subseteq \operatorname{Pol}\left(\mathfrak{B}^{\prime}\right)$.
\leadsto if a relation R is not pp-definable, there is $f \in \operatorname{Pol}(\mathfrak{B})$ that does not preserve R
\leadsto complexity of $\operatorname{CSP}(\mathfrak{B})$ depends only on polymorphisms of \mathfrak{B}

2. Provide algorithms

Simple example:
\mathfrak{B} has a constant polymorphism $\Rightarrow(c, \ldots, c) \in R^{\mathfrak{B}}$ for every $R^{\mathfrak{B}} \neq \emptyset$
\mathfrak{A} - input for $\operatorname{CSP}(\mathfrak{B})$:
If $R^{\mathfrak{A}} \neq \emptyset$ and $R^{\mathfrak{B}}=\emptyset$ for some R, then $\mathfrak{A} \nrightarrow \mathfrak{B}$.
Otherwise, $a \mapsto c, a \in A$ is a homomorphism $\mathfrak{A} \rightarrow \mathfrak{B}$.

Pp-constructions

pp-power of \mathfrak{B} : a σ-structure $\mathfrak{C}=\left(B^{d} ; R^{\mathfrak{C}}: R \in \sigma\right)$ for some $d \in \mathbb{N}$ where $R^{\mathfrak{C}} \subseteq B^{d k}$ is pp-definable in \mathfrak{B} for every $R \in \sigma$

Pp-constructions

pp-power of \mathfrak{B} : a σ-structure $\mathfrak{C}=\left(B^{d} ; R^{\mathfrak{C}}: R \in \sigma\right)$ for some $d \in \mathbb{N}$ where $R^{\mathfrak{C}} \subseteq B^{d k}$ is pp-definable in \mathfrak{B} for every $R \in \sigma$ homomorphic equivalence: \mathfrak{B} and \mathfrak{C} such that $\mathfrak{B} \rightarrow \mathfrak{C}$ and $\mathfrak{C} \rightarrow \mathfrak{B}$

Pp-constructions

pp-power of \mathfrak{B} : a σ-structure $\mathfrak{C}=\left(B^{d} ; R^{\mathfrak{C}}: R \in \sigma\right)$ for some $d \in \mathbb{N}$ where $R^{\mathfrak{C}} \subseteq B^{d k}$ is pp-definable in \mathfrak{B} for every $R \in \sigma$ homomorphic equivalence: \mathfrak{B} and \mathfrak{C} such that $\mathfrak{B} \rightarrow \mathfrak{C}$ and $\mathfrak{C} \rightarrow \mathfrak{B}$

Definition (pp-construction)

A structure \mathfrak{B} pp-constructs a structure \mathfrak{B}^{\prime} if \mathfrak{B}^{\prime} is homomorphically equivalent to a pp-power \mathfrak{C} of \mathfrak{B}.

Pp-constructions

pp-power of \mathfrak{B} : a σ-structure $\mathfrak{C}=\left(B^{d} ; R^{\mathfrak{C}}: R \in \sigma\right)$ for some $d \in \mathbb{N}$ where $R^{\mathfrak{C}} \subseteq B^{d k}$ is pp-definable in \mathfrak{B} for every $R \in \sigma$ homomorphic equivalence: \mathfrak{B} and \mathfrak{C} such that $\mathfrak{B} \rightarrow \mathfrak{C}$ and $\mathfrak{C} \rightarrow \mathfrak{B}$

Definition (pp-construction)

A structure \mathfrak{B} pp-constructs a structure \mathfrak{B}^{\prime} if \mathfrak{B}^{\prime} is homomorphically equivalent to a pp-power \mathfrak{C} of \mathfrak{B}.

Lemma (Barto, Opršal, Pinsker ('15))

If \mathfrak{B} pp-constructs \mathfrak{B}^{\prime}, then $\operatorname{CSP}\left(\mathfrak{B}^{\prime}\right)$ reduces to $\operatorname{CSP}(\mathfrak{B})$ in poly-time.

Algebraic description of pp-constructability

height-one (h1) identity: equation of the form

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} f\left(x_{1}, \ldots, x_{n}\right)=g\left(y_{1}, \ldots, y_{m}\right)
$$

$\operatorname{Pol}(\mathfrak{B})$ satisfies an identity iff $\exists f, g \in \operatorname{Pol}(\mathfrak{B})$ which satisfy the identity.

Algebraic description of pp-constructability

height-one (h1) identity: equation of the form

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} f\left(x_{1}, \ldots, x_{n}\right)=g\left(y_{1}, \ldots, y_{m}\right)
$$

$\operatorname{Pol}(\mathfrak{B})$ satisfies an identity iff $\exists f, g \in \operatorname{Pol}(\mathfrak{B})$ which satisfy the identity.
Theorem (Barto, Opršal, Pinsker ('15))
$\mathfrak{B}, \mathfrak{B}^{\prime}$ - finite structures
\mathfrak{B} pp-constructs \mathfrak{B}^{\prime} iff $\operatorname{Pol}\left(\mathfrak{B}^{\prime}\right)$ satisfies every h1-identity satisfied in $\operatorname{Pol}(\mathfrak{B})$.

Finite-domain CSP dichotomy theorem

Theorem (Bulatov ('17); Zhuk ('17))

If \mathfrak{B} is a finite structure, then precisely one of the following holds:

- \mathfrak{B} pp-constructs K_{3} and $\operatorname{CSP}(\mathfrak{B})$ is NP-complete.
- \mathfrak{B} has a cyclic polymorphism f of some arity n, i.e., f satisfying

$$
\forall x_{1}, \ldots, x_{n} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{2}, x_{3}, \ldots, x_{n}, x_{1}\right)
$$

and $\operatorname{CSP}(\mathfrak{B})$ is in P.

Finite-domain CSP dichotomy theorem

Theorem (Bulatov ('17); Zhuk ('17))

If \mathfrak{B} is a finite structure, then precisely one of the following holds:

- \mathfrak{B} pp-constructs K_{3} and $\operatorname{CSP}(\mathfrak{B})$ is NP-complete.
- \mathfrak{B} has a 4-ary Siggers polymorphism s, i.e., s satisfying

$$
\forall x, y, z s(x, y, z, x)=s(y, x, y, z)
$$

and $\operatorname{CSP}(\mathfrak{B})$ is in P.

Observation: It is decidable which of the two cases applies.

Finite-domain CSP dichotomy theorem

Theorem (Bulatov ('17); Zhuk ('17))

If \mathfrak{B} is a finite structure, then precisely one of the following holds:

- \mathfrak{B} pp-constructs K_{3} and $\operatorname{CSP}(\mathfrak{B})$ is NP-complete.
- \mathfrak{B} has a 4-ary Siggers polymorphism s, i.e., s satisfying

$$
\forall x, y, z \quad s(x, y, z, x)=s(y, x, y, z)
$$

and $\operatorname{CSP}(\mathfrak{B})$ is in P.

Observation: It is decidable which of the two cases applies.
Fact: $\operatorname{Pol}\left(K_{3}\right)$ satisfies the same $h 1$-identities as the projections on $\{0,1\}$.
Corollary: First item is equivalent to ${ }^{\prime} \operatorname{Pol}(\mathfrak{B})$ satisfies only the h1-identities satisfied by projections on $\{0,1\}$ '.

Outline

(1) Introduction to CSPs

(2) Tools for classifying complexity

(3) Infinite-domain CSPs

4) Valued CSPs

Oligomorphicity

Definition (oligomorphic group)

A permutation group G on a countable set B is oligomorphic if for every $k \in \mathbb{N}$ the action of G on B^{k} has only finitely many orbits.

Oligomorphicity

Definition (oligomorphic group)

A permutation group G on a countable set B is oligomorphic if for every $k \in \mathbb{N}$ the action of G on B^{k} has only finitely many orbits.

Fact: \mathfrak{B} on a countable domain, $\operatorname{Aut}(\mathfrak{B})$ is oligomorphic iff \mathfrak{B} is ω-categorical.

Oligomorphicity

Definition (oligomorphic group)

A permutation group G on a countable set B is oligomorphic if for every $k \in \mathbb{N}$ the action of G on B^{k} has only finitely many orbits.

Fact: \mathfrak{B} on a countable domain, $\operatorname{Aut}(\mathfrak{B})$ is oligomorphic iff \mathfrak{B} is ω-categorical.
Examples (structures with oligomorphic automorphism group):

- finite structures
- structures fo-definable in $(\mathbb{Q},<)$
- structures fo-definable in the countable random graph

Oligomorphicity

Definition (oligomorphic group)

A permutation group G on a countable set B is oligomorphic if for every $k \in \mathbb{N}$ the action of G on B^{k} has only finitely many orbits.

Fact: \mathfrak{B} on a countable domain, $\operatorname{Aut}(\mathfrak{B})$ is oligomorphic iff \mathfrak{B} is ω-categorical.
Examples (structures with oligomorphic automorphism group):

- finite structures
- structures fo-definable in $(\mathbb{Q},<)$
- structures fo-definable in the countable random graph

Theorem (Barto, Opršal, Pinsker ('15))

If $\operatorname{Aut}(\mathfrak{B})$ is oligomorphic, \mathfrak{B} pp-constructs K_{3} iff $\operatorname{Pol}(\mathfrak{B})$ satisfies only the h1-identities satisfied by projections on $\{0,1\}$.

Infinite-domain dichotomy conjecture

Definition

- \mathfrak{B} is finitely bounded if there exists a universal sentence ϕ such that a finite structure \mathfrak{A} embeds in \mathfrak{B} iff $\mathfrak{A} \models \phi$.
- \mathfrak{B} is homogeneous if every isomomorphism between finite substructures of \mathfrak{B} extends to an automorphism of \mathfrak{B}.

Infinite-domain dichotomy conjecture

Definition

- \mathfrak{B} is finitely bounded if there exists a universal sentence ϕ such that a finite structure \mathfrak{A} embeds in \mathfrak{B} iff $\mathfrak{A} \models \phi$.
- \mathfrak{B} is homogeneous if every isomomorphism between finite substructures of \mathfrak{B} extends to an automorphism of \mathfrak{B}.

Fact: If \mathfrak{B} a reduct of finitely bounded homogeneous structure, then Aut (\mathfrak{B}) oligomorphic and $\operatorname{CSP}(\mathfrak{B})$ is in NP.

Infinite-domain dichotomy conjecture

Definition

- \mathfrak{B} is finitely bounded if there exists a universal sentence ϕ such that a finite structure \mathfrak{A} embeds in \mathfrak{B} iff $\mathfrak{A} \models \phi$.
- \mathfrak{B} is homogeneous if every isomomorphism between finite substructures of \mathfrak{B} extends to an automorphism of \mathfrak{B}.

Fact: If \mathfrak{B} a reduct of finitely bounded homogeneous structure, then Aut (\mathfrak{B}) oligomorphic and $\operatorname{CSP}(\mathfrak{B})$ is in NP.

Conjecture (Bodirsky, Pinsker ('11), adapted)

Let \mathfrak{B} a reduct of fin. bounded homogeneous structure. Then either \mathfrak{B} pp-constructs K_{3} and $\operatorname{CSP}(\mathfrak{B})$ is NP-complete or $\operatorname{CSP}(\mathfrak{B})$ is in P.

Infinite-domain dichotomy conjecture

Definition

- \mathfrak{B} is finitely bounded if there exists a universal sentence ϕ such that a finite structure \mathfrak{A} embeds in \mathfrak{B} iff $\mathfrak{A} \models \phi$.
- \mathfrak{B} is homogeneous if every isomomorphism between finite substructures of \mathfrak{B} extends to an automorphism of \mathfrak{B}.

Fact: If \mathfrak{B} a reduct of finitely bounded homogeneous structure, then Aut (\mathfrak{B}) oligomorphic and $\operatorname{CSP}(\mathfrak{B})$ is in NP.

Conjecture (Bodirsky, Pinsker ('11), adapted)

Let \mathfrak{B} a reduct of fin. bounded homogeneous structure. Then either \mathfrak{B} pp-constructs K_{3} and $\operatorname{CSP}(\mathfrak{B})$ is NP-complete or $\operatorname{CSP}(\mathfrak{B})$ is in P.

Verified for structures fo-definable in: $(\mathbb{Q},<)$, any homogeneous graph, unary ω-categorical structures, ...

Outline

(1) Introduction to CSPs

(2) Tools for classifying complexity

(3) Infinite-domain CSPs

4) Valued CSPs

Constraint satisfaction variants

\mathfrak{B} - fixed relational structure
Input: list of constraints (e.g. as a pp-formula)

Output:

- CSP: Decide whether there is a solution that satisfies all constraints.
- MaxCSP: Find the maximal number of constraints that can be satisfied at once.
- VCSP: Find the minimal cost with which the constraints can be satisfied (each constraint comes with a cost depending on the chosen values).

Constraint satisfaction variants

\mathfrak{B} - fixed relational structure
Input: list of constraints (e.g. as a pp-formula)

Output:

- CSP: Decide whether there is a solution that satisfies all constraints.
- MaxCSP: Find the maximal number of constraints that can be satisfied at once.
- VCSP: Find the minimal cost with which the constraints can be satisfied (each constraint comes with a cost depending on the chosen values).

Observation: VCSP generalizes CSP and MaxCSP.
Proof: Model the tuples in relations with cost 0 and outside with cost 1 (for MaxCSP) or ∞ (for CSP).

A valued structure Γ consists of:

- (countable) domain D
- (finite, relational) signature τ
- for each $R \in \tau$ of arity k, a function $R^{\ulcorner }: D^{k} \rightarrow \mathbb{Q} \cup\{\infty\}$

VCSP

A valued structure Γ consists of:

- (countable) domain D
- (finite, relational) signature τ
- for each $R \in \tau$ of arity k, a function $R^{\ulcorner }: D^{k} \rightarrow \mathbb{Q} \cup\{\infty\}$

Definition (VCSP(Г))

Input: $u \in \mathbb{Q}$, an expression

$$
\phi\left(x_{1}, \ldots, x_{n}\right)=\sum_{i} \psi_{i}
$$

where each ψ_{i} is an atomic τ-formula
Question: Is

$$
\inf _{\bar{a} \in D^{n}} \phi(\bar{a}) \leq u \text { in } \Gamma ?
$$

Directed Max-Cut as a VCSP

Example:

Input: $G=(V, E)$ - finite directed graph
Goal: Find a partition $A \cup B$ of V such that $E \cap(A \times B)$ is maximal. Equivalently: $E \cap\left(A^{2} \cup B^{2} \cup B \times A\right)$ is minimal.

Directed Max-Cut as a VCSP

Example:

Input: $G=(V, E)$ - finite directed graph
Goal: Find a partition $A \cup B$ of V such that $E \cap(A \times B)$ is maximal. Equivalently: $E \cap\left(A^{2} \cup B^{2} \cup B \times A\right)$ is minimal.
Let Γ_{MC} be a valued structure where:

- $D=\{0,1\}$
- $\tau=\{R\}, R$ binary

$$
R(x, y)=\left\{\begin{array}{l}
0 \text { if } x=0 \text { and } y=1 \\
1 \text { otherwise }
\end{array}\right.
$$

Directed Max-Cut as a VCSP

Example:

Input: $G=(V, E)$ - finite directed graph
Goal: Find a partition $A \cup B$ of V such that $E \cap(A \times B)$ is maximal. Equivalently: $E \cap\left(A^{2} \cup B^{2} \cup B \times A\right)$ is minimal.
Let $\Gamma_{M C}$ be a valued structure where:

- $D=\{0,1\}$
- $\tau=\{R\}, R$ binary

$$
R(x, y)=\left\{\begin{array}{l}
0 \text { if } x=0 \text { and } y=1 \\
1 \text { otherwise }
\end{array}\right.
$$

Take vertices of G as variables. The size of a maximal cut of G is

$$
\min _{\bar{v} \in D^{n}} \sum_{\left(v_{i}, v_{j}\right) \in E} R\left(v_{i}, v_{j}\right) . \text { The partition of } V \text { is given by the values } 0 \text { and } 1 .
$$

Directed Max-Cut as a VCSP

Example:

Input: $G=(V, E)$ - finite directed graph
Goal: Find a partition $A \cup B$ of V such that $E \cap(A \times B)$ is maximal.
Equivalently: $E \cap\left(A^{2} \cup B^{2} \cup B \times A\right)$ is minimal.
Let $\Gamma_{M C}$ be a valued structure where:

- $D=\{0,1\}$
- $\tau=\{R\}, R$ binary

$$
R(x, y)=\left\{\begin{array}{l}
0 \text { if } x=0 \text { and } y=1 \\
1 \text { otherwise }
\end{array}\right.
$$

Take vertices of G as variables. The size of a maximal cut of G is
$\min _{\bar{v} \in D^{n}} \sum_{\left(v_{i}, v_{j}\right) \in E} R\left(v_{i}, v_{j}\right)$. The partition of V is given by the values 0 and 1.
every instance of $\operatorname{VCSP}\left(\Gamma_{\mathrm{MC}}\right)$ corresponds to a digraph
$\leadsto \operatorname{VCSP}\left(\Gamma_{\mathrm{MC}}\right)$ is the Directed Max-Cut problem (NP-complete)

Pp-constructions for VCSPs

- pp-definitions can be generalized to valued structures (e.g. $\wedge \sim+$, $\exists \leadsto$ inf, and more operators)
- we can define a notion of a pp-construction

```
Proposition (Bodirsky, Lutz, S.)
If Aut(\Gamma) and Aut(\Delta) are oligomorphic and \Gamma pp-constructs \Delta, then \(\operatorname{VCSP}(\Delta)\) reduces to \(\operatorname{VCSP}(\Gamma)\) in poly-time.
```


Pp-constructions for VCSPs

- pp-definitions can be generalized to valued structures (e.g. $\wedge \sim+$, $\exists \leadsto$ inf, and more operators)
- we can define a notion of a pp-construction

Proposition (Bodirsky, Lutz, S.)

If $\operatorname{Aut}(\Gamma)$ and $\operatorname{Aut}(\Delta)$ are oligomorphic and Γ pp-constructs Δ, then $\operatorname{VCSP}(\Delta)$ reduces to $\operatorname{VCSP}(\Gamma)$ in poly-time.
K_{3} can be viewed as the valued structure on $(\{0,1,2\} ; E)$ where

$$
E(x, y)=\left\{\begin{array}{l}
0 \text { if } x \neq y \\
\infty \text { if } x=y
\end{array}\right.
$$

Pp-constructions for VCSPs

- pp-definitions can be generalized to valued structures (e.g. $\wedge \sim+$, $\exists \leadsto$ inf, and more operators)
- we can define a notion of a pp-construction

Proposition (Bodirsky, Lutz, S.)

If $\operatorname{Aut}(\Gamma)$ and $\operatorname{Aut}(\Delta)$ are oligomorphic and Γ pp-constructs Δ, then $\operatorname{VCSP}(\Delta)$ reduces to $\operatorname{VCSP}(\Gamma)$ in poly-time.
K_{3} can be viewed as the valued structure on $(\{0,1,2\} ; E)$ where

$$
E(x, y)=\left\{\begin{array}{l}
0 \text { if } x \neq y \\
\infty \text { if } x=y
\end{array}\right.
$$

Corollary

If Aut (Γ) is oligomorphic and Γ pp-constructs K_{3}, then $\operatorname{VCSP}(\Gamma)$ is NP-hard.

Fractional polymorphisms

Definition (fractional polymorphism)

Γ - valued τ-structure with domain D
A fractional polymorphism of Γ of arity n is a probablity distribution ω on operations $D^{n} \rightarrow D$ such that for every k-ary $R \in \tau$ and $a^{1}, \ldots, a^{n} \in D^{k}$

$$
\underbrace{E_{\omega}\left[f \mapsto R\left(f\left(a^{1}, \ldots, a^{n}\right)\right)\right]}_{\text {expected value }} \leq \underbrace{\frac{1}{n} \sum_{j=1}^{n} R\left(a^{j}\right)}_{\text {arithmetic mean }} .
$$

Fractional polymorphisms

Definition (fractional polymorphism)

Γ - valued τ-structure with domain D
A fractional polymorphism of Γ of arity n is a probablity distribution ω on operations $D^{n} \rightarrow D$ such that for every k-ary $R \in \tau$ and $a^{1}, \ldots, a^{n} \in D^{k}$

$$
\underbrace{E_{\omega}\left[f \mapsto R\left(f\left(a^{1}, \ldots, a^{n}\right)\right)\right]}_{\text {expected value }} \leq \underbrace{\frac{1}{n} \sum_{j=1}^{n} R\left(a^{j}\right)}_{\text {arithmetic mean }} .
$$

Example: For every Γ and $n \in \mathbb{N}, \omega$ defined by

$$
\omega\left(\pi_{i}^{n}\right)=\frac{1}{n} \text { for every } i \in\{1, \ldots, n\}
$$

is a fractional polymorphism of Γ.

Tractability for VCSPs

Known for finite-domain VCSPs:
Theorem (adapted from Kozik, Ochremiak ('15) and Kolmogorov, Krokhin, Rolínek ('15))
If Γ is a finite valued structure, then precisely one of the following holds:

- 「 pp-constructs K_{3} and $\operatorname{VCSP}(\Gamma)$ is NP-complete.- 「 has a cyclic fractional polymorphism and $\operatorname{VCSP}(\Gamma)$ is in P.

Tractability for VCSPs

Known for finite-domain VCSPs:
Theorem (adapted from Kozik, Ochremiak ('15) and Kolmogorov, Krokhin, Rolínek ('15))
If Γ is a finite valued structure, then precisely one of the following holds:

- 「 pp-constructs K_{3} and $\operatorname{VCSP}(\Gamma)$ is NP-complete.
- Γ has a cyclic fractional polymorphism and $\operatorname{VCSP}(\Gamma)$ is in P.

Theorem (Bodirsky, Lutz, S.)

Let \mathfrak{B} be a finitely bounded homogeneous structure such that Aut $(\Gamma)=\operatorname{Aut}(\mathfrak{B})$. If Γ has a canonical pseudo cyclic fractional polymorphism, then $\operatorname{VCSP}(\Gamma)$ is in P.

Application of infinite-domain VCSPs

Definition (Resilience)

q - fixed conjunctive query (pp-formula)

Input: a finite database \mathfrak{A} (relational structure)
Output: minimal number of tuples to be removed from relations of \mathfrak{A}, so that $\mathfrak{A} \mid \neq q$

Appears first in the paper of Meliou, Gatterbauer, Moore, Suciu ('10).

Application of infinite-domain VCSPs

Definition (Resilience)

q - fixed conjunctive query (pp-formula)

Input: a finite database \mathfrak{A} (relational structure)
Output: minimal number of tuples to be removed from relations of \mathfrak{A}, so that $\mathfrak{A} \mid \neq q$

Appears first in the paper of Meliou, Gatterbauer, Moore, Suciu ('10). Goal: Classify complexity of resilience for all q.

Application of infinite-domain VCSPs

Definition (Resilience)

q - fixed conjunctive query (pp-formula)
Input: a finite database \mathfrak{A} (relational structure)
Output: minimal number of tuples to be removed from relations of \mathfrak{A}, so that $\mathfrak{A} \not \vDash q$

Appears first in the paper of Meliou, Gatterbauer, Moore, Suciu ('10). Goal: Classify complexity of resilience for all q.

- Can be modelled as a VCSP when considered over bag databases (each tuple appears with a multiplicity $m \in \mathbb{N}$).
- All queries that contain a cycle require infinite-domain valued structures as templates.
- Enables systematic study of resilience problems.

Thank you for your attention

Funding statement: Funded by the European Union (ERC, POCOCOP, 101071674).
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

