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Oriented expressions of graph classes

Example 1 (Robbins 1939)
A graph G is 2-edge-connected if and only if it admits a strongly
connected orientation.

Example 2 (Standard definition)
A graph G is a comparability graph if and only if it admits a transitive
orientation.

Example 3 (Roy-Gallai-Hasse-Vitaver Theorem)
A graph G is k-colourable if and only if it admits an orientation with no
directed walk of length k.
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Oriented expressions of graph classes

Example 2 (Standard definition)
A graph G is a comparability graph if and only if it admits an F-free
orientation orientation.
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Oriented expressions of graph classes

Example 3 (k = 2 of RGHV-Theorem)
A graph G is a bipartite graph if and only if it admits an F-free
orientation.
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Oriented expressions of graph classes

Example 4 (Skrien 1982)
A connected graph G is a proper circular-arc graph if and only if it
admits an F-free orientation.

Santiago G.P. Forbidden Tournaments and the Orientation Problem



Oriented expressions of graph classes

Characterization Problem
Given a finite set of oriented graphs F characterize the class of graphs
that admit an F-free orientation (e.g., list their minimal obstructions).

▶ Orientations of P3 (Skrien 1982).

▶ Oriented graphs on 3 vertices (G.P. and Hernández-Cruz 2021).

▶ Open cases: F = {B1} and F = {B1,
−→
C 3}.

B1
−→
C 3
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Oriented expressions of graph classes

Complexity Problem
Given a finite set of oriented graphs F , determine the complexity of
deciding if an input graph G admits an F-free orientation?

▶ In P when F is a set of oriented graphs on 3 vertices (Urrutia and

Gavril 1992, Bang-Jensen and Gutin 2007, G.P. and Hernández-Cruz 2021).

▶ Open case: F = {B1,
−→
C 3}.

B1
−→
C 3
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Oriented expressions of graph classes

Complexity Problem (completion version)
Given a finite set of oriented graphs F , determine the complexity of
deciding if an input partially oriented graph G can be completed to an
F-free oriented graph?

▶ Orientations of P3 always in P (Bang-Jensen, Huang, Zhu, 2017).

▶ T3-free orientation completion problem in P.

▶ (Bang-Jensen, Huang, Zhu) NP-complete for:
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Complexity Classification
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Complexity Classification

1 2

3 4

G

1 2

3 4

G ′

Code orientation completions of G as
solutions to the sys. lin. eq. over Z2

xij + xji = 0 for ij ∈ U

xij = 1 for ij ∈ E

x12 = 1, x13 = 1, x23 = 1, x24 = 1, x34 = 1
x21 = 0, x31 = 0, x32 = 0, x42 = 0, x43 = 0
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Complexity Classification

1

2

3−→
C 3

1

2

3
T3

For each triangle i , j , k the following
equality holds:

xij + xjk = 0.

There exists a triangle i , j , k such that the
following equality holds:

xij + xjk = 1 for instance x23 + x31 = 1.
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Complexity Classification

1

2

3−→
C 3

1 2

3 4

G

For each triangle i , j , k the following
equality holds:

xij + xjk = 0.

Code T3-free orientation completions of G
as solutions to

xij + xji = 0 for ij ∈ U

xij = 1 for ij ∈ E

xij + xjk = 0 for ijk ∈ T
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Complexity Classification

1 2

3 4
T4

1 2

3 4
TC4

1 2

3 4
C−
3

1 2

3 4
C+
3

For each i , j , k , l in C−3 and in C+
3

xij + xjk + xkl + xli = 0.

x12 + x23 + x34 + x41 = 1 in T4

x12 + x23 + x34 + x41 = 1 in TC4
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Complexity Classification

1 2

3 4
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3 4
TC4

1 2

3 4
C−
3

1 2

3 4
C+
3

F-free orientation completions of G

xij + xji = 0 for ij ∈ U

xij = 1 for ij ∈ E

xij + xjk + xkl + xli = 0 for ijkl ∈ K4(G ).

x12 + x23 + x34 + x41 = 1 in T4

x12 + x23 + x34 + x41 = 1 in TC4
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Complexity Classification

NP-hard example
The

−→
C 3-free orientation completion problem in NP-complete, via

reduction from not-all-equal 3-sat

not-all-equal 3-sat problem
Input: (x1 ∨ y1 ∨ z1) ∧ · · · ∧ (xk ∨ yk ∨ zk)
Solution: a function f : V → {0, 1} such that

(f (xi ), f (yi ), f (zi )) ∈ {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}.
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Complexity Classification

a b
c

x0 x1

z0

z1 y0

y1

Gadget for (x ∨ y ∨ z) where

f (x) = 1 iff (x0, x1) in
−→
C 3-free orientation completion.
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Complexity Classification
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1
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3

minority

▶ −→
C 3-free tournaments are not preserved by the minority operation.

▶ T3-free tournaments are preserved by the minority operation.
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Complexity Classification

Theorem (Bodirsky, G.P., 23+)
For every finite set of finite tournaments F one of the following cases
holds.

1. Ff is preserved by the minority operation. In this case, the F-free
orientation completions of a partially oriented graph G correspond
to the solution space of a system of linear equations over Z2.

2. Otherwise, F-free orientation completion problem is NP-complete.

In the first case, the F-free orientation completion problem is in P.
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Complexity Classification

Theorem (Bodirsky, G.P., 23+)
For every finite set of finite tournaments F one of the following cases
holds.

1. F contains no transitive tournament. In this case, every graph
admits an F-free orientation.

2. Ff is preserved by the minority operation. In this case, the F-free
orientations of a graph G correspond to the solution space of a
system of linear equations over Z2.

3. Otherwise, F-free orientation problem is NP-complete.

In cases 1 and 2, the F-free orientation problem is in P.
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Proof overview

F DFBF

or. comp. problem CSP(DF ,U)CSP(BF , 0, 1)

CSP(DF ,U,S4)
S4:(x1→x2∧x3→x4)
∨(x1←x2∧x3←x4)

Fraissé-limit of F-free
oriented graphs

Code F-free tournament on [k]

as
(
k
2

)
boolean relation

U:x1→x2
∨x1←x2

≈
pol-time
reduction

pp-interpretation of (BF , 0, 1) ∗
in (DF ,U, S4)

pp-definition of S4 in (DF ,U)

∗via homogeneity of DF
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Proof overview

DF

CSP(DF ,U)

CSP(DF ,U,S4)
S4:(x1→x2∧x3→x4)
∨(x1←x2∧x3←x4)

U:x1→x2
∨x1←x2

pp-definition of S4 in (DF ,U)

Essentially combinatorial

x1 x2

x3 x4

pp-definition of S4 when F = {
−→
C 3}
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Proof overview

F DFBF

or. problem CSP(HF )CSP(BF )

CSP(HF ,S4)
S4:(x1→x2∧x3→x4)
∨(x1←x2∧x3←x4)

Fraissé-limit of F-free
oriented graphs

Code F-free tournament on [k]

as
(
k
2

)
boolean relation

Underlying graph

≈pol-time reduction

pp-interpretation of BF ∗
in (HF , S4)

pp-definition of S4 in HF

∗via homogeneity of DF
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Proof overview

DF

CSP(HF )

CSP(HF ,S4)

Underlying graph

pp-definition of S4 in HF

Aut(H)

⟨Aut(DF ),sw,−⟩

⟨Aut(DF ),−⟩⟨Aut(DF ),sw⟩

Aut(DF )

Classification of Aut(HF )
(Agarwal and Kompatscher, 2018)

From general principles ∗

∗orbits of k-tuples are pp-definable in
ω-categorical model complete cores
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