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General setting

Homomorphism: Edge-preserving function f : V (G ) → V (H)
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Observation: A graph G is k-colourable if and only if G → Kk
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General setting

Homomorphism: Arc-preserving function f : V (G ) → V (H)
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Observation: An oriented graph G ′ has a directed walk on k vertices if

and only if
−→
P k → G ′
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General setting

Embedding: Injective homomorphism f : G → H that preserves
non-edges
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Observation: G < H if and only if H contains G as an induced subgraph
(up to isomorphism)
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General setting

Embedding: Injective homomorphism f : G → H that preserves
non-edges
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Observation: Injective homomorphism G → H if and only if G is a
subgraph of H (up to isomorphism)
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General setting

Hereditary class (property): A class C such that for each G ∈ C if
H < G then H ∈ C

▶ Bipartite graphs

▶ Triangle-free graphs

▶ Forests

▶ H-colourable graphs

▶ Circular-arc graphs

F-free graphs: A graph G is F-free if G does not contain any F ∈ F as
induced subgraph
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General setting

Theorem template (for hereditary classes): A graph G is a
YYY -graph if and only if G is FY -free

▶ Triangle-free graphs — K3

▶ Forests — Cn with n ≥ 3

▶ Perfect graphs — Odd holes and odd anti-holes

▶ Trivially-perfect graphs — C4 and P4

▶ Bipartite graphs — Odd cycle

▶ k-colourable graphs — Unknown for k ≥ 3
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Oriented expressions of graph classes
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Oriented expressions of graph classes

Roy-Gallai-Hasse-Vitaver Theorem (60s)

A graph G is k-colourable if and only if there is an orientation G ′

of G with no directed walk on k + 1 vertices.

X0 X1 Xk

Conversely, let c(v) be the length of the largest directed walk of G ′ ending in
v . If (x , y) ∈ E(G ′), then c(x) < c(y). Thus, if xy ∈ E(G), then c(x) > c(y)
or c(y) > c(x).
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Oriented expressions of graph classes

Comparability graphs

The comparability graph of a poset (P,≤) is the graph with vertex
set P and xy ∈ E if x and y are comparable in (P,≤).

A graph G is a comparability graph if G is the comparability graph
of some poset P.

Theorem: A graph G is a comparability graph if and only if it is
an F -free graph1

1Screenshot: graphclasses.org
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Oriented expressions of graph classes

Comparability graphs

The comparability graph of a poset (P,≤) is the graph with vertex
set P and xy ∈ E if x and y are comparable in (P,≤).

A graph G is a comparability graph if G is the comparability graph
of some poset P.

Observation: A graph G is a comparability graph if and only if it
admits an F-free orientation
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Oriented expressions of graph classes

Skrien (1982)

B1 B2 B3

▶ Comparability graphs

▶ Trivially perfect graphs

▶ Proper circular-arc graphs

▶ Perfectly orientable graphs
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Oriented expressions of graph classes

Skrien (1982)

B1 B2 B3

Perfectly orientable graphs

Gavril and Urrutia (1992): polynomial-time recognition algorithm
Hartinger and Milanic (2016–2017): towards structural characterization

General algorithm

Bang-Jensen and Gutin (2009): uniform reduction to 2-SAT
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Oriented expressions of graph classes

Extending Skrien

B1 B2 B3

T1 + T2 T3
−→
C 3
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Oriented expressions of graph classes

List of graph classes expressible by forbidden orientations on three vertices:

▶ Perfectly orientable graphs

▶ Comparability graphs

▶ Odd closed strip hom.-free graphs

▶ Proper circular-arc graphs

▶ Trivially perfect graphs

▶ Transitive-perfectly orientable graphs

▶ Unicyclic graphs

▶ Triangle-free unicyclic graphs

▶ 3-colourable comparability graphs

▶ Triangle-free graphs

▶ Clusters

▶ Proper Helly circular-arc graphs

▶ Triangle-free proper circular-arc
graphs

▶ Paths and cycles

▶ Paths and cycles but no triangles

▶ Triangles and stars

▶ Star forests

▶ Stars and empty graphs

▶ Matchings with isolated vertices

▶ Empty graphs and K2

▶ Bipartite graphs

▶ Complete bipartite graphs

▶ Complete 3-partite graphs

▶ K2,3-free complete multipartite
graphs

▶ Complete multipartite graphs

▶ All graphs
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Oriented expressions of graph classes

Polynomial time recognition cases:

▶ Perfectly orientable graphs

▶ Comparability graphs

▶ Odd closed strip hom.-free graphs

▶ Proper circular-arc graphs

▶ Trivially perfect graphs

▶ Transitive-perfectly orientable
graphs?
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▶ 3-colourable comparability graphs
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Parallel research lines

Linear orderings: Damaschke (1990); Duffus, Ginn, and Rödl (1995); Hell,
Mohar, and Rafiey (2014); Feuilloley and Habib (2021 –2023).

Circular orderings: Tucker (1972); G.P., Hell, and Hernández-Cruz (2023).

Tree-layouts: Paul and Protopapas (2023).

Vertex/edge colourings: Feder and Vardi (1999), Bodirsky, Madelaine, and
Mottet (2021), Barsukov (2023), Bok, G.P., Hernández-Cruz, Jedličková
(2024).
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Three generic problems

Characterization Problem
Given a finite set of oriented graphs F characterize the class of graphs
that admit an F-free orientation (e.g., list their minimal obstructions).

▶ Orientations of P3 (Skrien 1982).

▶ Perfectly orientable graphs (Hartinger and Milanic 2016, 2017).

▶ Oriented graphs on 3 vertices (G.P. and Hernández-Cruz 2021).

▶ Open cases: F = {B1} and F = {B1,
−→
C 3}.

B1
−→
C 3
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Three generic problems

Characterization Problem
Given a hereditary class of graphs C, determine if there is a finite set of
oriented graphs F such that, a graph G admits an F-free orientation if
and only if G ∈ C.

Positive results:

▶ Roy-Gallai-Hasse-Vitaver Theorem (1960 – 1968)

▶ C2n+1-colourable graphs (G.P. and Hernández-Cruz 2021)

▶ C2n+1-colourable graphs (Gujgiczer and G.P. 2023+)

▶ Orientations might be good at distinguishing H-colourings
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Three generic problems

Characterization Problem
Given a hereditary class of graphs C, determine if there is a finite set of
oriented graphs F such that, a graph G admits an F-free orientation if
and only if G ∈ C.

Negative results:

▶ Forests

▶ Chordal graphs

▶ Even-hole free graphs

▶ Orientations are bad at distinguishing cycles (G.P. and Hernández-Cruz 22)
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Three generic problems

Complexity Problem
Given a finite set of oriented graphs F , determine the complexity of
deciding if an input graph G admits an F-free orientation

▶ In P when F is a set of oriented graphs on 3 vertices (Urrutia and

Gavril 1992, Bang-Jensen and Gutin 2007, G.P. and Hernández-Cruz 2021).

▶ Open case: F = {B1,
−→
C 3}.

B1
−→
C 3
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Three generic problems

Complexity Problem (completion version)
Given a finite set of oriented graphs F , determine the complexity of
deciding if an input partially oriented graph G can be completed to an
F-free oriented graph?

▶ Orientations of P3 always in P (Bang-Jensen, Huang, Zhu, 2017).

▶ T3-free orientation completion problem in P.

▶ (Bang-Jensen, Huang, Zhu) NP-complete for:
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Three generic problems

Task for today
Given a finite set of tournaments F :

1. Understand the complexity of the F-free orientation problem.

2. Understand the complexity of the F-free orientation completion
problem.
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Computational complexity
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Computational complexity

Boolean satisfiability problem
Input: (x11 ∨ x12 ∨ · · · ∨ x1i1) ∧ · · · ∧ (xn1 ∨ xn2 ∨ · · · ∨ xnin)
Question: Is the instance satisfiable?

First known problem to be NP-complete (Cook 1969, Levin 1970)

k-SAT
Input: (x11 ∨ x12 ∨ · · · ∨ x1k ) ∧ · · · ∧ (xn1 ∨ xn2 ∨ · · · ∨ xnk )
Question: Is the instance satisfiable?

In P if k ≤ 2, and otherwise NP-complete.
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Computational complexity

Ladner’s Theorem (1975)
If P ̸= NP, then there are NP-intermediate problems, i.e., problems in NP
which are not solvable in polynomial-time nor NP-complete.

Candidate for NPI: Graph isomorphism problem.
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Computational complexity

NAE 3-SAT
Input: (x1 ∨ y1 ∨ z1) ∧ · · · ∧ (xn ∨ yn ∨ zn)
Question: Is there a solution such that (xi , yi , zi ) ̸∈ {(0, 0, 0), (1, 1, 1)}?

Horn-SAT
Input: (¬x11 ∨ x12 ∨ · · · ∨ x1k ) ∧ · · · ∧ (¬xn1 ∨ xn2 ∨ · · · ∨ xnk )
Question: Is the instance satisfiable?

1-in-3 SAT
Input: (x1 ∨ y1 ∨ z1) ∧ · · · ∧ (xn ∨ yn ∨ zn)
Question: Is there a solution such that
(xi , yi , zi ) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}?
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Computational complexity

Linear equations (mod 2)
Input: (x1 ∨ y1 ∨ z1) ∧ · · · ∧ (xn ∨ yn ∨ zn)
Question: Is there a solution such that (xi , yi , zi ) ∈ {(0, 0, 0), (1, 1, 0),
(1, 0, 1), (0, 1, 1)}? (i.e., solutions to the system xi + yi + zi = 0)

Scheafer’s dichotomy theorem (moral version)
Every Boolean satisfaction problem CSP(B) is either in P or NP-complete.
Moreover, if it is not NP-complete, then CSP(B) is equivalent to one of the
following cases:

▶ trivial-SAT

▶ Horn-SAT

▶ 2-SAT

▶ linear equations modulo 2
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Classifications in graph theory

Folk: The k-colouring problem is in P if k ≤ 2, and otherwise it is
NP-complete

Hell-Nešeťril (1990): If H is a finite graph, then the H-colouring
problem is in P if H is bipartite, otherwise it is NP-complete.

Barto, Kozik, Niven (2009): If D is a (core) digraph with no sources nor
sinks, then CSP(D) if in P if every component of D is a directed cycle,
and NP-complete otherwise (conjectured by Bang-Jensen and Hell 1990).

CSP dichotomy (Bulatov 2017, Zhuk 2017): If D is a finite digraph,
then CSP(D) is either polynomial-time solvable or NP-complete
(conjectured by Feder and Vardi 1999).
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Classifications in graph theory

Example 1: For every k there is a countable graph Hk such a finite
graph is an induced subgraph of Hk if and only if G is Kk -free. In
particular, G → Hk if and only if G is Kk -free.

Example 2: Consider the digraph (Q, <), i.e., V = Q and (p, q) ∈ E if
and only if p < q. Then, D → (Q, <) if and only if D has no directed
cycle.

Tractability conjecture (Bodirsky-Pinsker 2011): If D is a countable

digraph and , then

CSP(D) is either polynomial-time solvable or NP-complete.
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Classifications in graph theory

Fact (Fräıssé’s theorem): For every finite set of tournaments F there is
an infinite graph DF such that an oriented graph G ′ is F-free if and only
if it is an induced oriented subgraph of DF .

Observation: If HF is the underlying graph of DF and G is a finite
graph, then G admits an F-free orientation if and only if G → HF .

Task of today: Is there dichotomy for CSP(HF )?
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The F -free orientation problem

Example 1: Every tournament in F has a directed cycle

1

2

3

F = {
−→
C 3}

Remark: F-free orientation problem is trivial

But: Orientation completion not necessarily trivial.
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The F -free orientation problem

Example 2: T3-free orientation (completion) problem.

1

2

3

F = {T3}

1 2

3 4

G

Code orientations of G as solutions to the
sys. lin. eq. over Z2

xij + xji = 0 for ij ∈ E
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The F -free orientation problem

Example 2: T3-free orientation (completion) problem.

1

2

3

F = {T3}

1 2

3 4

G ′

x12 = 1, x13 = 1, x23 = 1, x24 = 1, x34 = 1
x21 = 0, x31 = 0, x32 = 0, x42 = 0, x43 = 0
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The F -free orientation problem

1

2

3
−→
C 3

1

2

3

T3

For each triangle i , j , k the following
equality holds:

xij + xjk = 0.

There exists a triangle i , j , k such that the
following equality holds:

xij + xjk = 1 for instance x23 + x31 = 1.
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The F -free orientation problem

1

2

3
−→
C 3

1 2

3 4

G

For each triangle i , j , k the following
equality holds:

xij + xjk = 0.

Code T3-free orientation of G as solutions
to

xij + xji = 0 for ij ∈ E

xij + xjk = 0 for ijk ∈ T
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The F -free orientation problem

1

2

3
−→
C 3

1 2

3 4

G

For each triangle i , j , k the following
equality holds:

xij + xjk = 0.

Code T3-free orientation completions of G
as solutions to

xij + xji = 0 for ij ∈ E

xij + xjk = 0 for ijk ∈ T

xij = 1 for ij ∈ A
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The F -free orientation problem

1 2

3 4
T4

1 2

3 4
TC4

1 2

3 4
C−
3

1 2

3 4
C+
3

For each i , j , k , l in C−3 and in C+
3

xij + xjk + xkl + xli = 1.

x12 + x24 + x43 + x31 = 0 in T4

x12 + x24 + x43 + x31 = 0 in TC4
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The F -free orientation problem

Example 3: The {T4,TC4}-free orientation (completion) problem is in P

Question: For which finite sets of tournaments F the F-free does this
method work?
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Example 3: The {T4,TC4}-free orientation (completion) problem is in P
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method work?
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The F -free orientation problem

1

2

3

T3

1

2

3

T3

1

2

3

T3

1

2

3

minority

▶ −→
C 3-free tournaments are not preserved by the minority operation.

▶ T3-free tournaments are preserved by the minority operation.
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The F -free orientation problem

1

2

3

T3

1

2

3

T3

1

2

3

T3

1

2

3

minority

▶ −→
C 3-free tournaments are not preserved by the minority operation.

▶ T3-free tournaments are preserved by the minority operation.
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The F -free orientation problem

1

2

3

−→
C 3

1

2

3

−→
C 3

1

2

3

−→
C 3

1

2

3

minority

▶ −→
C 3-free tournaments are not preserved by the minority operation.

▶ T3-free tournaments are preserved by the minority operation.
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The F -free orientation problem

1

2

3

−→
C 3

1

2

3

−→
C 3

1

2

3

−→
C 3

1

2

3

minority

▶ −→
C 3-free tournaments are not preserved by the minority operation.

▶ T3-free tournaments are preserved by the minority operation.
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The F -free orientation problem

1

2

3

−→
C 3

1

2

3

−→
C 3

1

2

3

−→
C 3

1

2

3

minority

Lemma
Let F be a finite set of tournaments. The F-free orientations of a graph
G correspond to the solution space of some system of linear equations if
and only if the F-free tournaments are preserved by the minority
operation.
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The F -free orientation problem

Example 4: The
−→
C 3-free orientation completion problem is NP-complete

Reduction from NAE 3-SAT with Input: (x ∨ y ∨ z) ∧ . . .

x0 x1

z0

z1 y0

y1
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The F -free orientation problem

Example 4: The
−→
C 3-free orientation completion problem is NP-complete

Reduction from NAE 3-SAT with Input: (x ∨ y ∨ z) ∧ . . .

x0 x1

z0

z1 y0

y1
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The F -free orientation problem

Is that all?
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The F -free orientation problem

Theorem (Bodirsky, G.P., 23+)
For every finite set of finite tournaments F one of the following cases
holds.

1. Ff is preserved by the minority operation. In this case, the F-free
orientation completions of a partially oriented graph G correspond
to the solution space of a system of linear equations over Z2.

2. Otherwise, F-free orientation completion problem is NP-complete.

In the first case, the F-free orientation completion problem is in P.
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The F -free orientation problem

Corollary
If every tournament in F contains a directed cycle, then the F-free
orientation completion problem is NP-complete.

(Particular instance previously considered by Bang-Jensen, Huang, and Zhu).
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The F -free orientation problem

Theorem (Bodirsky, G.P., 23+)
For every finite set of finite tournaments F one of the following cases
holds.

1. F contains no transitive tournament. In this case, every graph
admits an F-free orientation.

2. Ff is preserved by the minority operation. In this case, the F-free
orientations of a graph G correspond to the solution space of a
system of linear equations over Z2.

3. Otherwise, F-free orientation problem is NP-complete.

In cases 1 and 2, the F-free orientation problem is in P.
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The F -free orientation problem

Corollary

The Tk -free orientation problem is NP-complete for each k ≥ 4.

1

2

3

4

TC4

1

2

3

4

TC4

1

2

3

4

TC4

1

2

3

4

T4

If the F-free orientaion problem is NP-hard, then it is still NP-hard for
Kf -free graphs.
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Proof overview

F DFBF

or. comp. problem CSP(DF ,U)CSP(BF , 0, 1)

CSP(DF ,U,S4)
S4:(x1→x2∧x3→x4)
∨(x1←x2∧x3←x4)

Fraissé-limit of F-free
oriented graphs

Code F-free tournament on [k]

as
(
k
2

)
boolean relation

U:x1→x2
∨x1←x2

≈
pol-time
reduction

pp-interpretation of (BF , 0, 1) ∗
in (DF ,U, S4)

pp-definition of S4 in (DF ,U)

∗via homogeneity of DF

Santiago G.P. Forbidden Tournaments and the Orientation Problem



Proof overview

DF

CSP(DF ,U)

CSP(DF ,U,S4)
S4:(x1→x2∧x3→x4)
∨(x1←x2∧x3←x4)

U:x1→x2
∨x1←x2

pp-definition of S4 in (DF ,U)

Essentially combinatorial

x1 x2

x3 x4

pp-definition of S4 when F = {
−→
C 3}
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Proof overview

F DFBF

or. problem CSP(HF )CSP(BF )

CSP(HF ,S4)
S4:(x1→x2∧x3→x4)
∨(x1←x2∧x3←x4)

Fraissé-limit of F-free
oriented graphs

Code F-free tournament on [k]

as
(
k
2

)
boolean relation

Underlying graph

≈pol-time reduction

pp-interpretation of BF ∗
in (HF , S4)

pp-definition of S4 in HF

∗via homogeneity of DF
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Proof overview

DF

CSP(HF )

CSP(HF ,S4)

Underlying graph

pp-definition of S4 in HF

Aut(H)

⟨Aut(DF ),sw,−⟩

⟨Aut(DF ),−⟩⟨Aut(DF ),sw⟩

Aut(DF )

Classification of Aut(HF )
(Agarwal and Kompatscher, 2018)

From general principles ∗

∗orbits of k-tuples are pp-definable in
ω-categorical model complete cores
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