Structural Graph Theory, finite bounds and some CSPs (Finitely bounded expansions of graph classes)

Santiago Guzmán Pro

Institut für Algebra, TU Dresden

AGK Seminar

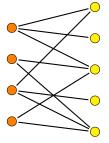
A (10) N (10)

Background and motivation

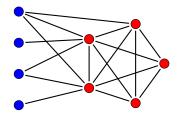
-

• • • • • • • • • • • •

Hereditary classes



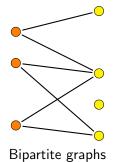
Bipartite graphs

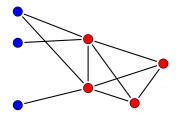


Split graphs

・ロト ・回 ・ ・ 回 ・ ・

Hereditary classes

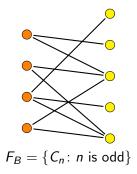


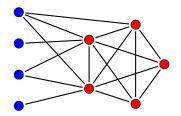


Split graphs

• • • • • • • • • • • •

Minimal obstructions

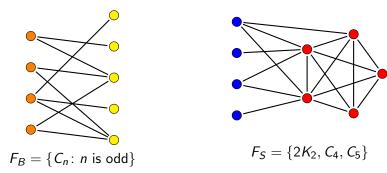




 $F_S = \{2K_2,\,C_4,\,C_5\}$

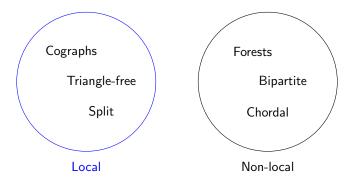
<ロ> (日) (日) (日) (日) (日)

A local class is a hereditary class with a finite set of minimal obstructions



イロト イポト イヨト イヨト

Minimal obstructions



<ロ> (日) (日) (日) (日) (日)

Proposition

For a hereditary class of graphs $\mathcal{C},$ the following statements are equivalent:

- C is a local class,
- there is a positive integer N such that a graph G belongs to C if and only if each H < G with $|V(H)| \le N$ belongs to C, and
- C is an \forall_1 -definable class.

Example

The following statements are equivalent:

- G is a triangle-free graph,
- each H < G with $|V(H)| \le 3$ is triangle-free, and

• $G \models \forall x, y, z(\neg(E(x, y) \land E(y, z) \land E(y, z)))$

• • = • •

Corollary (Roy-Gallai-Hasse-Vitaver Theorem, 1962–1968)

A graph G is bipartite if and only if there is a linear ordering of V(G) such that for every vertex v its neighbourhood is contained in $\{y \in V(G): y \ge x\}$ or in $\{y \in V(G): y \le x\}$.

Exercise

A graph G is a forest if and only if there is a linear ordering of V(G) such that every vertex v has at most one neighbour y such that $x \leq y$.

Theorem (Fulkerson, Gross, 65)

A graph G is a chordal graph if and only if there is a linear ordering of V(G) such that for every vertex v the intersection of $N(v) \cap \{y \in V(G) : x \le y\}$ is a complete graph.

Corollary (Roy-Gallai-Hasse-Vitaver Theorem, 1962–1968)

A graph G is bipartite if and only if there is a linear ordering of V(G) such that for every vertex v its neighbourhood is contained in $\{y \in V(G) : y \ge x\}$ or in $\{y \in V(G) : y \le x\}$.

Exercise

A graph G is a forest if and only if there is a linear ordering of V(G) such that every vertex v has at most one neighbour y such that $x \leq y$.

Theorem (Fulkerson, Gross, 1965)

A graph G is a chordal graph if and only if there is a linear ordering of V(G) such that for every vertex v the intersection of $N(v) \cap \{y \in V(G) : x \le y\}$ is a complete graph.

Corollary (Roy-Gallai-Hasse-Vitaver Theorem, 1962–1968)

A graph G is bipartite if and only if there is a linear ordering of V(G) such that for every vertex v its neighbourhood is contained in $\{y \in V(G) : y \ge x\}$ or in $\{y \in V(G) : y \le x\}$.

Exercise

A graph G is a forest if and only if there is a linear ordering of V(G) such that every vertex v has at most one neighbour y such that $x \leq y$.

Theorem (Fulkerson, Gross, 1965)

A graph G is a chordal graph if and only if there is a linear ordering of V(G) such that for every vertex v the intersection of $N(v) \cap \{y \in V(G) : x \le y\}$ is a complete graph.

Corollary (Roy-Gallai-Hasse-Vitaver Theorem, 1962–1968)

A graph G is bipartite if and only if there is a linear ordering of V(G) such that for every vertex v its neighbourhood is contained in $\{y \in V(G): y \ge x\}$ or in $\{y \in V(G): y \le x\}$.

Equivalently

A graph is bipartite if and only if it admits an F-free linear ordering

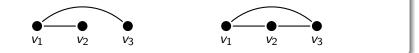
</₽> < ∃ > <

Exercise

A graph G is a forest if and only if there is a linear ordering of V(G) such that every vertex v has at most one neighbour y such that $x \leq y$.

Equivalently

A graph G is a forest if and only if it admits an F-free linear ordering



		2 D
Santia	70 (117	mán Pro

Theorem (Fulkerson, Gross, 1965)

A graph G is a chordal graph if and only if there is a linear ordering of V(G) such that for every vertex v the intersection of $N(v) \cap \{y \in V(G) : x \le y\}$ is a complete graph.

Equivalently

A graph G is a chordal graph if and only if it admits an F-free linear ordering

A class of graphs C is an **expressible by forbidden linear orderings** if there is a finite set F such that C is the class of F-free linearly orderable graphs (**FOSG-classes** according to Damaschke)

(日) (同) (三) (三)

A class of graphs C is an **expressible by forbidden linear orderings** if there is a finite set F such that C is the class of F-free linearly orderable graphs (**FOSG-classes** according to Damaschke)

Examples (Damaschke, 1990)

The following classes are expressible by forbidden linear orderings

- Chordal graphs (F. & G.)
- Forests
- Split graphs
- *k*-colourable graphs (RGHV-Theorem)
- Comparability graphs
- Interval graphs

(日) (同) (三) (三)

Theorem (Duffus, Ginn, Rödl, 1995)

For almost all 2-connected linearly ordered graphs (G, \leq) , it is *NP*-complete to decide if a graph *G* admits an (G, \leq) -free linear ordering.

Theorem (Hell, Mohar and Rafiey, 2014)

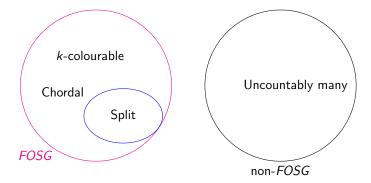
For any set F of linearly ordered graphs on 3 vertices, it is in P to decide if a graph G admits an F-free linear ordering.

Feuilloley and Habib, 2020

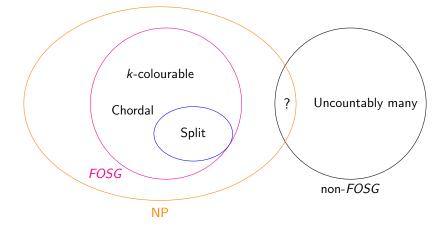
- Characterize all classes of graphs expressible by a set of forbidden linearly ordered graphs on three vertices
- 20 out of these 22 classes can be recognized in linear time
- Forbidden linearly ordered graphs on 4 vertices (2021)

"Fundamental" problem

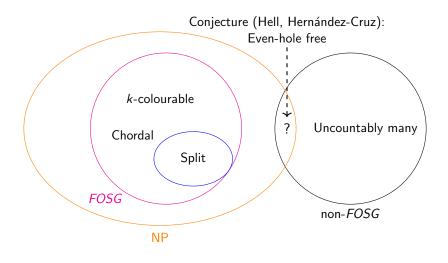
Which properties are (not) expressible by linear orderings?



< ロ > < 同 > < 三 > < 三



(日)



< ロ > < 同 > < 三 > < 三

Santiago Guzmán Pro

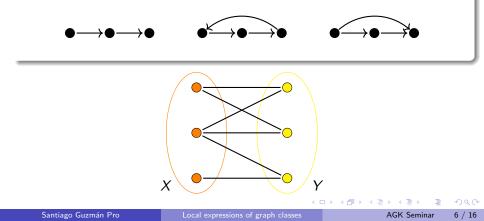
Local expressions of graph classes

▶ < 불 ▶ 불 ∽ < . AGK Seminar 6 / 16

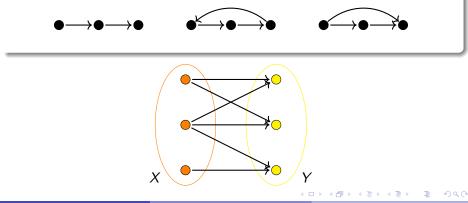
(日) (周) (三) (三)

Example

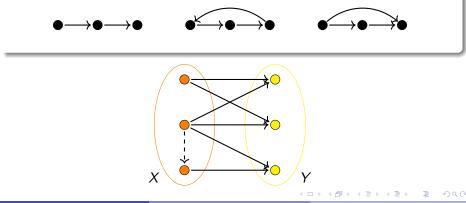
Example



Example



Example



A class of graphs C is an **expressible by forbidden (acyclic) orientations** if there is a finite set F such that C is the class of graphs that admit an F-free (acyclic) orientation — **class of** F-**graphs (**F*-**graphs)** according to Skrien

(日) (同) (日) (日)

A class of graphs C is an **expressible by forbidden (acyclic) orientations** if there is a finite set F such that C is the class of graphs that admit an F-free (acyclic) orientation — **class of** F-**graphs (**F*-**graphs)** according to Skrien

Examples (Skrien, 1980)

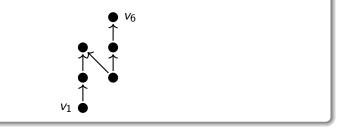
- Bipartite graphs (RGHV-Theorem, 1960)
- Trivially perfect graphs
- Proper circular-arc graphs
- Perfectly orientable graphs

Roy-Gallai-Hasse-Vitaver Theorem, 1962–1968

A graph is k-colourable if and only if it admits an orientation with no directed walk on k + 1 vertices

Proposition

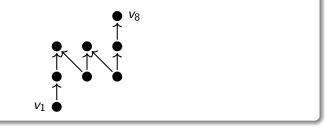
A graph is homomorphic to C_5 if and only if it admits an orientation with no walk,



go Guz	

Proposition

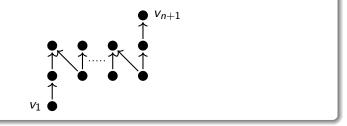
A graph is homomorphic to C_7 if and only if it admits an orientation with no walk:



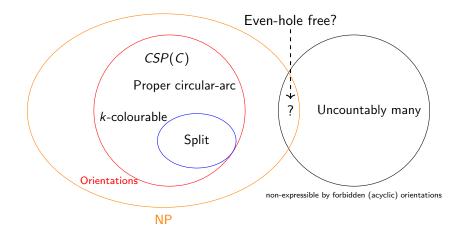
- ∢ ∃ ▶

Theorem (G.P., Hernández-Cruz, 21)

A graph is homomorphic to the odd cycle C_n if and only if it admits an orientation with no walk:



► < ∃ ►</p>



Limitations of expressions by forbidden orientations

Metaproblem

Which classes are not expressible by forbidden orientations?

Which classes, whose minimal obstructions are cycles, are (not) expressible by forbidden orientations?

Theorem (G.P., Hernández-Cruz, 22)

Let \mathcal{P} be a property such that its minimal obstructions are cycles. If \mathcal{P} is expressible by forbidden orientations, then the cycles that belong to \mathcal{P} are:

- a finite set and $\{C_k, C_{k+1}, \dots\}$, or
- a finite set and $\{C_{2m}, C_{2(m+1)}, ...\}$.

Theorem (G.P., Hernández-Cruz, 22)

Let \mathcal{P} be a property such that its minimal obstructions are cycles. If \mathcal{P} is expressible by forbidden orientations, then the cycles that belong to \mathcal{P} are:

- a finite set and $\{C_k, C_{k+1}, \dots\}$, or
- a finite set and $\{C_{2m}, C_{2(m+1)}, \dots\}$.

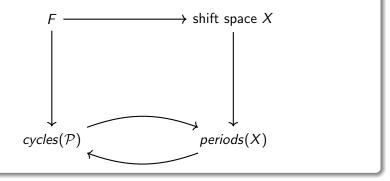
Corollary

The classes of forests, chordal graphs and even-hole free graphs are not expressible by forbidden orientations

・四ト ・ヨト ・ヨ

Original proof idea

Let F be a finite set that expresses \mathcal{P} be forbidden orientations



*ロト *檀ト *注ト *注ト

• Ground set
$$X = \{f : \mathbb{Z} \rightarrow \{0, 1\}\},$$

...101110.0010011...

*ロト *檀ト *注ト *注ト

• Ground set
$$X = \{f : \mathbb{Z} \to \{0, 1\}\},$$

...101110.0010011...

• Metric:

... 101110.[0]010011... ... 101110.[0]011011...

• Ground set
$$X = \{f : \mathbb{Z} \to \{0, 1\}\},$$

...101110.0010011...

Metric:

...10111[0.00]10011... ...10111[0.00]11011...

• Ground set
$$X = \{f : \mathbb{Z} \to \{0, 1\}\},$$

....101110.0010011....

Metric:

 $\ldots 1011[10.001]0011\ldots \\ \ldots 1011[10.001]1011\ldots$

• Ground set
$$X = \{f : \mathbb{Z} \to \{0, 1\}\},$$

....101110.0010011....

Metric:

 $\dots 1011[10.001]0011\dots \\ \dots 1011[10.001]1011\dots$

• Ground set
$$X = \{f : \mathbb{Z} \to \{0, 1\}\},$$

...101110.0010011...

Metric:

...1011[10.001]0011... ...1011[10.001]1011...

Shift:

 $\dots 010101.01010\dots$

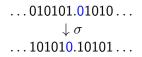
• Ground set
$$X = \{f : \mathbb{Z} \to \{0, 1\}\},$$

....101110.0010011....

Metric:

 $\dots 1011[10.001]0011\dots \\ \dots 1011[10.001]1011\dots$

Shift:



- 4 同 6 4 日 6 4 日 6

...1011[10.001]0011... ...1011[10.001]1011...

Shift:

 $\dots 010101.01010\dots$ $\downarrow \sigma$ $\dots 101010.10101\dots$

• (X, σ) is called the full-shift

< 回 > < 三 > < 三 >

• Ground set
$$X = \{f : \mathbb{Z} \to \{0, 1\}\},$$

... 101110.0010011...
• Metric:

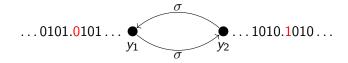
...1011[10.001]0011... ...1011[10.001]1011...

Shift:

$$\begin{array}{c} \dots 010101.01010 \dots \\ \downarrow \sigma \\ \dots 101010.10101 \dots \end{array} \end{array}$$

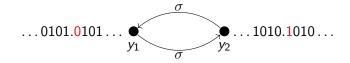
- (X, σ) is called the full-shift
- If $Y \subseteq^* X$, we call (Y, σ) a shift space

Let Y be the set of sequences where all consecutive symbols are different, so (Y, σ) :



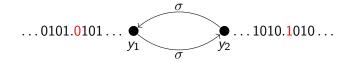
► < ∃ ►</p>

Let Y be the set of sequences where all consecutive symbols are different, so (Y, σ) :



• Y is the set of $\{00, 11\}$ -free sequences

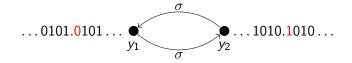
Let Y be the set of sequences where all consecutive symbols are different, so (Y, σ) :



 For every set of words F the collection of F-free sequences is a shift space (X_F, σ),

• • = • •

Let Y be the set of sequences where all consecutive symbols are different, so (Y, σ) :

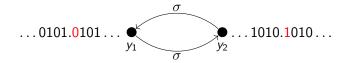


 For every set of words F the collection of F-free sequences is a shift space (X_F, σ),

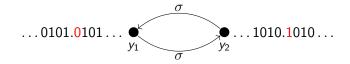
• (X_F, σ) is a Shift of Finite Type (SFT) when F is finite

A (10) F (10)

A point $y \in X_F$ is periodic if $\sigma^n(y) = y$ for some n > 1.



A point $y \in X_F$ is periodic if $\sigma^n(y) = y$ for some n > 1.



- If *n* is a period of X_F , then *rn* is a period of X_F .
- The set of periodic points of a SFT is dense.

・ロン ・四 ・ ・ ヨン ・ ヨン

 \bullet Consider the class ${\cal B}$ of bipartite graphs

• Consider the class \mathcal{B} of bipartite graphs • Let $O = \left\{ \overrightarrow{C}_3, TT_3, \overrightarrow{P}_3 \right\}$ and $O_P = \left\{ \overrightarrow{P}_3 \right\}$

(人間) トイヨト イヨト

- Consider the class $\mathcal B$ of bipartite graphs
- Let $O = \left\{ \overrightarrow{C}_3, TT_3, \overrightarrow{P}_3 \right\}$ and $O_P = \left\{ \overrightarrow{P}_3 \right\}$
- Translate $\rightarrow \rightarrow$ to the words 11 and 00

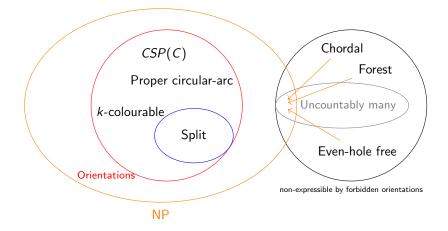
- Consider the class ${\mathcal B}$ of bipartite graphs
- Let $O = \left\{ \overrightarrow{C}_3, TT_3, \overrightarrow{P}_3 \right\}$ and $O_P = \left\{ \overrightarrow{P}_3 \right\}$
- Translate $\rightarrow \rightarrow$ to the words 11 and 00
- Consider the shift X_F where $F = \{00, 11\}$

• Consider the class $\mathcal B$ of bipartite graphs

• Let
$$O = \left\{ \overrightarrow{C}_3, TT_3, \overrightarrow{P}_3 \right\}$$
 and $O_P = \left\{ \overrightarrow{P}_3 \right\}$

- Translate $\rightarrow \rightarrow$ to the words 11 and 00
- Consider the shift X_F where $F = \{00, 11\}$

• For every $n \ge 4$, the cycle $C_n \in \mathcal{B}$ if and only if $n \in per(X_F)$



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Other characterizations by "equipped" graphs?

∃ →

Image: A math a math

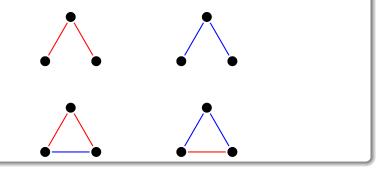
Example 1

A graph G is a complete multipartite graph if and only if there is a T_0 -topology τ in V(G) such that $xy \in E(G)$ if and only if x and y are separable in $(V(G), \tau)$.

A (1) > A (2) > A

Example 2 (B., G.P., H.C., J., 23+)

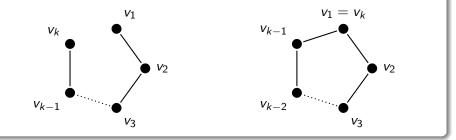
A graph G is the line graph of a bipartite graph if and only if there is a 2-edge colouring of G that avoids



Example 3 (G.P., Hell, Hernández-Cruz, 22)

Santiago

A graph G admits a circular ordering with no circular walk on k + 1vertices if and only if $\chi_c(G) < k$



	•	< ⊡ >	1	≣ ▶.	(目)	- 1		996
o Guzmán Pro	Local expressions of graph classes			AGI	K Semi	nar	1	.1 / 16

Possible unified framework?

イロト イヨト イヨト イヨト

Local expressions of hereditary classes

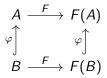
Local expressions

Ingredients from Model Theory

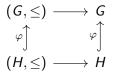
- Finite relational signatures L
- Hereditary classes of L-structures
- Relative local classes of *L*-structures
- Quantifier-free formulas
- Quantifier-free lattice (L, \land, \lor, \neg)

Local expressions

A concrete functor $F \colon C \to D$ (between categories of relational structures) is a functor such that $F(\varphi) = \varphi$ for each embedding φ



Forgetful functors are concrete functors



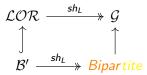
▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Local expressions

Given a surjective functor $F : \mathcal{C} \to \mathcal{D}$ we say that a class $\mathcal{D}' \subseteq \mathcal{D}$ is **locally** expressible by F if there is a local class $\mathcal{C}' \subseteq \mathcal{C}$ such that $F[\mathcal{C}'] = \mathcal{D}'$

Example

A class is locally expressible by sh_L if and only if it is expressible by forbidden linear orderings



Given a surjective functor $F : \mathcal{C} \to \mathcal{D}$ we say that a class $\mathcal{D}' \subseteq \mathcal{D}$ is **locally** expressible by F if there is a local class $\mathcal{C}' \subseteq \mathcal{C}$ such that $F[\mathcal{C}'] = \mathcal{D}'$

Examples

A class is locally expressible by S if and only if it is expressible by forbidden orientations

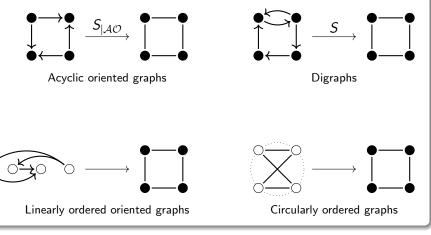
$$\begin{array}{c} \mathcal{OR} \xrightarrow{S_{|\mathcal{OR}}} \mathcal{G} \\ \uparrow & \uparrow \\ \mathcal{CSP}(AC) \xrightarrow{S_{|\mathcal{OR}}} \mathcal{CSP}(C) \end{array}$$

Tree-layouts (Paul, Protopapas, 23+) & Genealogical graphs

A tree-layout consists of a rooted tree together with a bijection such that YYY

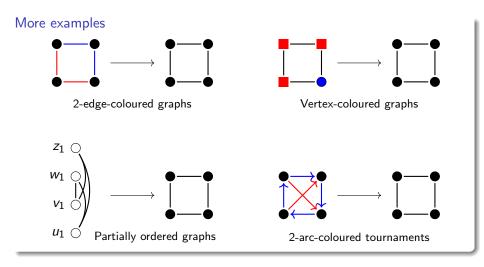
- generalize linear orderings
- induced substructure defined by ancestor relation
- A genealogical graph is a partially ordered graph such that YYY
 - equivalent to tree-layouts
 - induced relational structure

More examples



-

• • • • • • • • • • • •

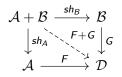


▲ 同 ▶ → 三 ▶

Algebraic constructions and relations

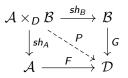
$$\begin{array}{c}
\mathcal{C} \\
\downarrow H & F \\
\# & G & \mathcal{D}
\end{array}$$

If G factors F, then $ex(G) \subseteq ex(F)$

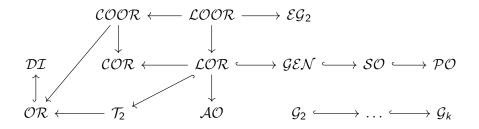


 $ex(F) \cup ex(G) \subseteq ex(F+G)$

If F extends G, then $ex(G) \subseteq ex(F)$



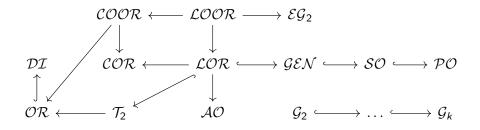
 $\mathcal{P} \in ex(F), \mathcal{Q} \in ex(G) \to \mathcal{P} \cap \mathcal{Q} \in ex(P)$



Which local expressions are worth studying?

- $\bullet~$ By tradition \rightarrow Linear orderings & orientations
- By authority (if Pavol studies it, it is worth it) \rightarrow Linear & circular orderings
- By expressive power $\rightarrow ???$

(日) (同) (三) (三)



Truth is . . .

All of them are!

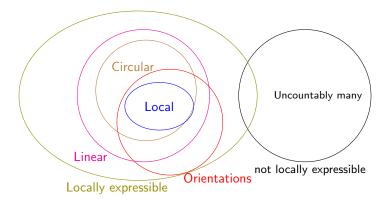
o Guzmár	

Local expressions of graph classes

3

イロト イヨト イヨト

A class \mathcal{D} is a **locally expressible** if it is locally expressible by some functor F. Equivalently, \mathcal{D} is a locally expressible class if there is a local class \mathcal{C} and a surjective functor $F \colon \mathcal{C} \to \mathcal{D}$.



- There are countably many locally expressible classes
- Locally expressible classes are closed under unions and intersections!
- Certificates for locally expressible classes?

Santiago Guzmán Pro

イロト イヨト イヨト イヨト

Theorem (G.P., 23+)

For every concrete functor $F : \mathcal{C} \to \mathcal{D}$, there is an algorithm that constructs F(X) in polynomial-time (with respect to |V(X)|) for each $X \in \mathcal{C}$.

Corollary

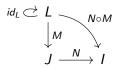
If C is a locally expressible class, then C is in NP.

Given a pair of relational signatures L and J, and **emulation** of L in J is lattice homomorphism $M: (L, \land, \lor, \neg) \rightarrow (J, \land, \lor, \neg)$ such that for every $R \in L$ of arity m, the formula M(R) has exactly m free variables. Every emulation defines a polynomial time computable functor $sh_M: Mod_J \rightarrow Mod_L$.

Example

Consider the emulation $M: (\{E\}, \land, \lor, \neg) \rightarrow (\{E\}, \land, \lor, \neg)$ defined by $M(E) = \neg E(x, y).$

(日) (周) (三) (三)



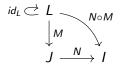
Emulations define a category

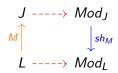
Contravariant functor to category of categories relational structures

Properties of $-- \rightarrow$

- M is injective if and only if sh_M is surjective
- *sh_M* is a polynomial-time computable functor
- Faithful contravariant functor bijective on objects

イロト イヨト イヨト





Emulations define a category

Contravariant functor to category of categories relational structures

Theorem (G.P., 23+)

Consider a pair of relational signature L and J. If $F: Mod_J \rightarrow Mod_L$ is a concrete functor, then there is an emulation $M: L \rightarrow J$ such that $F = sh_M$.

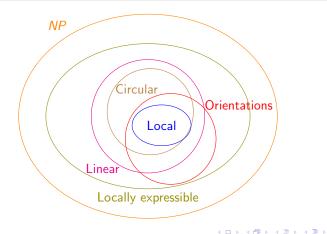
Corollary 1

The categories **Em** and **Mod**^{opp} are isomorphic categories.

イロト イヨト イヨト イヨト

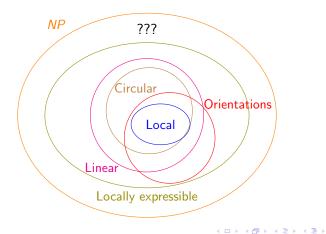
Corollary 2

Local expressions yield polynomial-time certificates for membership problem.



Fundamental problem

What can be certified by local expressions?



э

Future research

イロト イヨト イヨト イヨト

Three generic problems for a functor $F: \mathcal{C} \to \mathcal{G}$

Characterization Problem. Consider a finite set $X \subseteq C$. Characterize the class of graphs G for which there is an X-free structure $A \in C$ such that F(A) = G.

Complexity Problem. Consider a finite set $X \subseteq C$. Determine the complexity of deciding if for some input graph *G* there is an *X*-free structure $A \in C$ such that F(A) = G.

Expressibility Problem. Consider a class of graphs \mathcal{P} . Determine if \mathcal{P} is locally expressible by F.

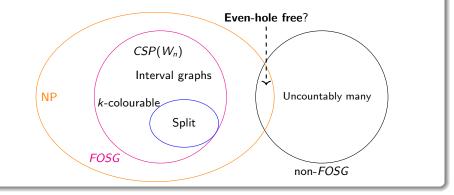
イロト イポト イヨト イヨト 二日

Characterization & Complexity Problems — Oriented graphs

- Find all minimal obstructions of perfectly orientable graphs (Skrien, 82)
- Characterize transitive perfectly orientable
- Complexity of recognizing transitive perfectly orientable

Expressibility Problem — Linear orderings

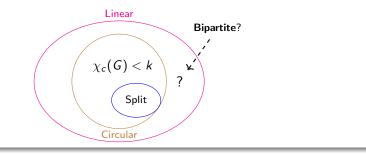
- Exhibit a *well-known* class of graphs that is not an *FOSG*-class (Damaschke, 90)
- Is there a class expressible by forbidden orientations but not by forbidden orderings?
- Is the class of even-hole free graphs an FOSG-class? (Hell, Hernández-Cruz, 16)



A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Expressibility Problems — Circular orderings

- Do forbidden linear orderings have a larger expressive power than forbidden circular orderings?
- Is the class of bipartite graphs expressible by forbidden circular orderings?

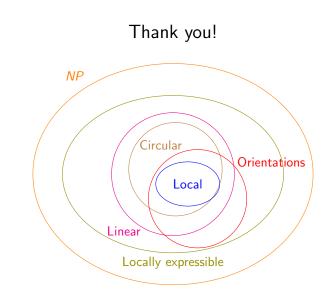


Santiago	Guzmán	Pro	Local	

► < ∃ ►</p>

"Metaquestion"

- What can be certified by local expressions?
- Find an example of a hereditary (graph) class C ∈ NP that is not a locally expressible class equivalently, C ∉ SNP.



Santiago Guzmán Pro

≧ ► ◀ ≧ ► ≧ ∽ ۹.0 AGK Seminar 16 / 16

イロン イヨン イヨン イヨン