EPPA numbers of graphs

Matěj Konečný

Charles University \longrightarrow TU Dresden

G² OAT Monday seminar 2023

David Bradley-Williams, Peter J. Cameron, Jan Hubička, and MK:

EPPA numbers of graphs (arXiv:2311.07995)

Funded by the European Union (project POCOCOP, ERC Synergy grant No. 101071674). Views and opinions expressed are however those of the author only and do not necessarily reflect those of the European
Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Funded by the European Union

Let \mathbf{A} be a structure. A partial function $f: A \rightarrow A$ is a partial automorphism of \mathbf{A} if f is an isomorphism $\left.\left.\mathbf{A}\right|_{\operatorname{Dom}(f)} \rightarrow \mathbf{A}\right|_{\text {Range }(f)}$.

Let \mathbf{A} be a structure. A partial function $f: A \rightarrow A$ is a partial automorphism of \mathbf{A} if f is an isomorphism $\left.\left.\mathbf{A}\right|_{\operatorname{Dom}(f)} \rightarrow \mathbf{A}\right|_{\text {Range }(f)}$. If α is an automorphism of \mathbf{A} such that $f \subseteq \alpha$, we say that f extends to α.

Let \mathbf{A} be a structure. A partial function $f: A \rightarrow A$ is a partial automorphism of \mathbf{A} if f is an isomorphism $\left.\left.\mathbf{A}\right|_{\operatorname{Dom}(f)} \rightarrow \mathbf{A}\right|_{\text {Range }(f)}$. If α is an automorphism of \mathbf{A} such that $f \subseteq \alpha$, we say that f extends to α.

Example
A graph \mathbf{G} is vertex-transitive if every partial automorphism f with $|\operatorname{Dom}(f)| \leq 1$ extends to an automorphism of \mathbf{G}.

Definition (EPPA, extension property for partial automorphisms)
Let \mathbf{B} be a structure and let \mathbf{A} be its induced substructure. \mathbf{B} is an EPPA-witness for \mathbf{A} if every partial automorphism of \mathbf{A} extends to an automorphism of \mathbf{B}.

Definition (EPPA, extension property for partial automorphisms)
Let \mathbf{B} be a structure and let \mathbf{A} be its induced substructure. \mathbf{B} is an EPPA-witness for \mathbf{A} if every partial automorphism of \mathbf{A} extends to an automorphism of \mathbf{B}.
A class \mathcal{C} of finite structures has EPPA if for every $\mathbf{A} \in \mathcal{C}$ there is $\mathbf{B} \in \mathcal{C}$, which is an EPPA-witness for \mathbf{A}.

Definition (EPPA, extension property for partial automorphisms)
Let \mathbf{B} be a structure and let \mathbf{A} be its induced substructure. \mathbf{B} is an EPPA-witness for \mathbf{A} if every partial automorphism of \mathbf{A} extends to an automorphism of \mathbf{B}.
A class \mathcal{C} of finite structures has EPPA if for every $\mathbf{A} \in \mathcal{C}$ there is $\mathbf{B} \in \mathcal{C}$, which is an EPPA-witness for \mathbf{A}.

Definition (EPPA, extension property for partial automorphisms)
Let \mathbf{B} be a structure and let \mathbf{A} be its induced substructure. \mathbf{B} is an EPPA-witness for \mathbf{A} if every partial automorphism of \mathbf{A} extends to an automorphism of \mathbf{B}.
A class \mathcal{C} of finite structures has EPPA if for every $\mathbf{A} \in \mathcal{C}$ there is $\mathbf{B} \in \mathcal{C}$, which is an EPPA-witness for \mathbf{A}.

Definition (EPPA, extension property for partial automorphisms)
Let \mathbf{B} be a structure and let \mathbf{A} be its induced substructure. \mathbf{B} is an EPPA-witness for \mathbf{A} if every partial automorphism of \mathbf{A} extends to an automorphism of \mathbf{B}.
A class \mathcal{C} of finite structures has EPPA if for every $\mathbf{A} \in \mathcal{C}$ there is $\mathbf{B} \in \mathcal{C}$, which is an EPPA-witness for \mathbf{A}.

Definition (EPPA, extension property for partial automorphisms)
Let \mathbf{B} be a structure and let \mathbf{A} be its induced substructure. \mathbf{B} is an EPPA-witness for \mathbf{A} if every partial automorphism of \mathbf{A} extends to an automorphism of \mathbf{B}.
A class \mathcal{C} of finite structures has EPPA if for every $\mathbf{A} \in \mathcal{C}$ there is $\mathbf{B} \in \mathcal{C}$, which is an EPPA-witness for \mathbf{A}.

Definition (EPPA, extension property for partial automorphisms)
Let \mathbf{B} be a structure and let \mathbf{A} be its induced substructure. \mathbf{B} is an EPPA-witness for \mathbf{A} if every partial automorphism of \mathbf{A} extends to an automorphism of \mathbf{B}.
A class \mathcal{C} of finite structures has EPPA if for every $\mathbf{A} \in \mathcal{C}$ there is $\mathbf{B} \in \mathcal{C}$, which is an EPPA-witness for \mathbf{A}.

Theorem (Hrushovski, 1992)
The class of all finite graphs has EPPA.

A connection to model theory

Suppose that a class of graphs \mathcal{C} has EPPA and JEP.

A connection to model theory

Suppose that a class of graphs \mathcal{C} has EPPA and JEff. Pick $\mathbf{A}_{0} \in \mathcal{C}$.

A connection to model theory

Suppose that a class of graphs \mathcal{C} has EPPA and JEp. Pick $\mathbf{A}_{0} \in \mathcal{C}$.

A connection to model theory

Suppose that a class of graphs \mathcal{C} has EPPA and JEp. Pick $\mathbf{A}_{0} \in \mathcal{C}$.

A connection to model theory

Suppose that a class of graphs \mathcal{C} has EPPA and JEp. Pick $\mathbf{A}_{0} \in \mathcal{C}$.

A connection to model theory

Suppose that a class of graphs \mathcal{C} has EPPA and JEp. Pick $\mathbf{A}_{0} \in \mathcal{C}$.

A connection to model theory

Suppose that a class of graphs \mathcal{C} has EPPA and Jep. Pick $\mathbf{A}_{0} \in \mathcal{C}$.

Let \mathbf{M} be the union of the chain. Every partial automorphism of \mathbf{M} with finite domain extends to an automorphism of \mathbf{M} (i.e. \mathbf{M} is homogeneous).

A connection to model theory

Suppose that a class of graphs \mathcal{C} has EPPA and Jep. Pick $\mathbf{A}_{0} \in \mathcal{C}$.

Let \mathbf{M} be the union of the chain. Every partial automorphism of \mathbf{M} with finite domain extends to an automorphism of \mathbf{M} (i.e. \mathbf{M} is homogeneous).

Theorem [Kechris, Rosendal, 2007]: The class of all finite substructures of a homogeneous structure \mathbf{M} has EPPA if and only if $\operatorname{Aut}(\mathrm{M})$ can be written as the closure of a chain of compact subgroups.

Classification programme of homogeneous structures

Classification programme of homogeneous structures

Using the [Lachlan, Woodrow, 1980] classification of homogeneous graphs, we know all EPPA classes of graphs:

Classification programme of homogeneous structures

Using the [Lachlan, Woodrow, 1980] classification of homogeneous graphs, we know all EPPA classes of graphs:

- Class of all graphs [Hrushovski, 1992],

Classification programme of homogeneous structures

Using the [Lachlan, Woodrow, 1980] classification of homogeneous graphs, we know all EPPA classes of graphs:

- Class of all graphs [Hrushovski, 1992],
- classes of all K_{n}-free graphs, $n \geq 2$ [Herwig, 1998]

Classification programme of homogeneous structures

Using the [Lachlan, Woodrow, 1980] classification of homogeneous graphs, we know all EPPA classes of graphs:

- Class of all graphs [Hrushovski, 1992],
- classes of all K_{n}-free graphs, $n \geq 2$ [Herwig, 1998]
- various classes of disjoint unions of cliques [easy],

Classification programme of homogeneous structures

Using the [Lachlan, Woodrow, 1980] classification of homogeneous graphs, we know all EPPA classes of graphs:

- Class of all graphs [Hrushovski, 1992],
- classes of all K_{n}-free graphs, $n \geq 2$ [Herwig, 1998]
- various classes of disjoint unions of cliques [easy],
- complements thereof,

Classification programme of homogeneous structures

Using the [Lachlan, Woodrow, 1980] classification of homogeneous graphs, we know all EPPA classes of graphs:

- Class of all graphs [Hrushovski, 1992],
- classes of all K_{n}-free graphs, $n \geq 2$ [Herwig, 1998]
- various classes of disjoint unions of cliques [easy],
- complements thereof,
- subgraphs of the finite homogeneous graphs [Gardiner, 1976].

Examples

- Graphs [Hrushovski, 1992], K_{n}-free graphs [Herwig, 1998]
- Relational structures (with forbidden cliques) [Herwig, 1995], [Hodkinson, Otto, 2003]
- Metric spaces [Solecki, 2005; Vershik, 2008], also [Conant, 2019]
- Two-graphs [Evans, Hubička, K, Nešeť̌il, 2018]
- Metrically homogeneous graphs [AB-WHKKKP, 2017], [K, 2019]
- Generalised metric spaces [Hubička, K, Nešetřil, 2019+]
- n-partite and semigeneric tournaments [Hubička, Jahel, K, Sabok, 2019+]
- Groups [Siniora, 2017]

Question (Herwig, Lascar, 2000)
Do finite tournaments have EPPA?

EPPA numbers of graphs

Given a graph G, let eppa (\mathbf{G}) be the least number of vertices of an EPPA-witness for \mathbf{G}. Put $\operatorname{eppa}(n)=\max \{\operatorname{eppa}(\mathbf{G}):|\mathbf{G}|=n\}$.

EPPA numbers of graphs

Given a graph \mathbf{G}, let eppa (\mathbf{G}) be the least number of vertices of an EPPA-witness for \mathbf{G}. Put $\operatorname{eppa}(n)=\max \{\operatorname{eppa}(\mathbf{G}):|\mathbf{G}|=n\}$.
Theorem (Hrushovski, 1992)

- eppa $(n) \leq\left(2 n 2^{n}\right)!$.
- $\operatorname{eppa}(n) \geq 2^{n / 2}$.

EPPA numbers of graphs

Given a graph \mathbf{G}, let eppa (\mathbf{G}) be the least number of vertices of an EPPA-witness for \mathbf{G}. Put $\operatorname{eppa}(n)=\max \{\operatorname{eppa}(\mathbf{G}):|\mathbf{G}|=n\}$.
Theorem (Hrushovski, 1992)

- eppa $(n) \leq\left(2 n 2^{n}\right)!$.
$-\operatorname{eppa}(n) \geq 2^{n / 2}$.
Problem (Hrushovski, 1992)
Improve the bounds.

Theorem (Herwig, Lascar, 2000)
For every \mathbf{G} with n vertices and maximum degree Δ we have that $\operatorname{eppa}(\mathbf{G}) \leq\binom{\Delta n}{\Delta} \in n^{\mathcal{O}(n)}$.
In particular, bounded degree graphs have polynomial EPPA numbers.

Theorem (Herwig, Lascar, 2000)
For every \mathbf{G} with n vertices and maximum degree Δ we have that $\operatorname{eppa}(\mathbf{G}) \leq\binom{\Delta n}{\Delta} \in n^{\mathcal{O}(n)}$.
In particular, bounded degree graphs have polynomial EPPA numbers.

Theorem (Evans, Hubička, K, Nešetřil, 2021)

$$
\operatorname{eppa}(n) \leq n 2^{n-1}
$$

Theorem (Herwig, Lascar, 2000)
If the maximum degree of \mathbf{G} is Δ, then it has an EPPA-witness on at most $\binom{\Delta n}{\Delta}$ vertices.

Theorem (Herwig, Lascar, 2000)

If the maximum degree of \mathbf{G} is Δ, then it has an EPPA-witness on at most $\binom{\Delta n}{\Delta}$ vertices.

Proof.

1. Let $\mathbf{G}=(V, E)$ be a graph. Assume that \mathbf{G} is Δ-regular.
2. Define \mathbf{H} so that $V(\mathbf{H})=\binom{E}{\Delta}$ and $X Y \in E(\mathbf{H})$ if $X \cap Y \neq \emptyset$.
3. Embed $\psi: \mathbf{G} \rightarrow \mathbf{H}$ sending $v \mapsto\{e \in E: v \in e\}$.
4. A partial automorphism of \mathbf{G} gives a partial permutation of E.
5. Extend it to a permutation of E respecting the partial automorphism.
6. Every permutation of E induces an automorphism of \mathbf{H}.

Theorem (Herwig, Lascar, 2000)

If the maximum degree of \mathbf{G} is Δ, then it has an EPPA-witness on at most $\binom{\Delta n}{\Delta}$ vertices.

Proof.

1. Let $\mathbf{G}=(V, E)$ be a graph. Assume that \mathbf{G} is Δ-regular.
2. Define \mathbf{H} so that $V(\mathbf{H})=\binom{E}{\Delta}$ and $X Y \in E(\mathbf{H})$ if $X \cap Y \neq \emptyset$.
3. Embed $\psi: \mathbf{G} \rightarrow \mathbf{H}$ sending $v \mapsto\{e \in E: v \in e\}$.
4. A partial automorphism of \mathbf{G} gives a partial permutation of E.
5. Extend it to a permutation of E respecting the partial automorphism.
6. Every permutation of E induces an automorphism of \mathbf{H}.

For non-regular graphs, add "half-edges" to make them regular.

An upper bound [Evans, Hubička, K, Nešetřil, 2021]

Fix G. Define graph H:

An upper bound [Evans, Hubička, K, Nešetřil, 2021]

Fix G. Define graph H:

An upper bound [Evans, Hubička, K, Nešetřil, 2021]

Fix G. Define graph H:

- Vertices of \mathbf{H} are pairs (v, f), where $v \in G$ is the projection and $f: G \backslash\{v\} \rightarrow\{0,1\}$ is the opinion,

An upper bound [Evans, Hubička, K, Nešetřil, 2021]

Fix G. Define graph H:

- Vertices of \mathbf{H} are pairs (v, f), where $v \in G$ is the projection and $f: G \backslash\{v\} \rightarrow\{0,1\}$ is the opinion,

An upper bound [Evans, Hubička, K, Nešetřil, 2021]

Fix G. Define graph H:

- Vertices of \mathbf{H} are pairs (v, f), where $v \in G$ is the projection and $f: G \backslash\{v\} \rightarrow\{0,1\}$ is the opinion,

An upper bound [Evans, Hubička, K, Nešetřil, 2021]

Fix G. Define graph H:

- Vertices of \mathbf{H} are pairs (v, f), where $v \in G$ is the projection and $f: G \backslash\{v\} \rightarrow\{0,1\}$ is the opinion,
- $\left\{(i, f),\left(i^{\prime}, f^{\prime}\right)\right\} \in E(\mathbf{H})$, if and only if $i \neq i^{\prime}$ and $f\left(i^{\prime}\right) \neq f^{\prime}(i)$.

An upper bound [Evans, Hubička, K, Nešetřil, 2021]

Fix G. Define graph H:

- Vertices of \mathbf{H} are pairs (v, f), where $v \in G$ is the projection and $f: G \backslash\{v\} \rightarrow\{0,1\}$ is the opinion,
- $\left\{(i, f),\left(i^{\prime}, f^{\prime}\right)\right\} \in E(\mathbf{H})$, if and only if $i \neq i^{\prime}$ and $f\left(i^{\prime}\right) \neq f^{\prime}(i)$.

An upper bound [Evans, Hubička, K, Nešetřil, 2021]

Fix G. Define graph H:

- Vertices of \mathbf{H} are pairs (v, f), where $v \in G$ is the projection and $f: G \backslash\{v\} \rightarrow\{0,1\}$ is the opinion,
- $\left\{(i, f),\left(i^{\prime}, f^{\prime}\right)\right\} \in E(\mathbf{H})$, if and only if $i \neq i^{\prime}$ and $f\left(i^{\prime}\right) \neq f^{\prime}(i)$.

An upper bound [Evans, Hubička, K, Nešetřil, 2021]

Fix G. Define graph H:

- Vertices of \mathbf{H} are pairs (v, f), where $v \in G$ is the projection and
$f: G \backslash\{v\} \rightarrow\{0,1\}$ is the opinion,
- $\left\{(i, f),\left(i^{\prime}, f^{\prime}\right)\right\} \in E(\mathbf{H})$, if and only if $i \neq i^{\prime}$ and $f\left(i^{\prime}\right) \neq f^{\prime}(i)$.
- $|V(\mathbf{H})|=n 2^{n-1}$

An upper bound [Evans, Hubička, K, Nešetril, 2021]

Fix G. Define graph H:

- Vertices of \mathbf{H} are pairs (v, f), where $v \in G$ is the projection and $f: G \backslash\{v\} \rightarrow\{0,1\}$ is the opinion,
- $\left\{(i, f),\left(i^{\prime}, f^{\prime}\right)\right\} \in E(\mathbf{H})$, if and only if $i \neq i^{\prime}$ and $f\left(i^{\prime}\right) \neq f^{\prime}(i)$.
- $|V(\mathbf{H})|=n 2^{n-1}$
- Embed $\mathbf{G} \rightarrow \mathbf{H}$ sending $v \mapsto(v, f)$ with f having nonzero opinion about its smaller neighbours.

An upper bound [Evans, Hubička, K, Nešetril, 2021]

Fix G. Define graph H:

- Vertices of \mathbf{H} are pairs (v, f), where $v \in G$ is the projection and $f: G \backslash\{v\} \rightarrow\{0,1\}$ is the opinion,
- $\left\{(i, f),\left(i^{\prime}, f^{\prime}\right)\right\} \in E(\mathbf{H})$, if and only if $i \neq i^{\prime}$ and $f\left(i^{\prime}\right) \neq f^{\prime}(i)$.
- $|V(\mathbf{H})|=n 2^{n-1}$
- Embed $\mathbf{G} \rightarrow \mathbf{H}$ sending $v \mapsto(v, f)$ with f having nonzero opinion about its smaller neighbours.

An upper bound [Evans, Hubička, K, Nešetril, 2021]

Fix G. Define graph H:

- Vertices of \mathbf{H} are pairs (v, f), where $v \in G$ is the projection and $f: G \backslash\{v\} \rightarrow\{0,1\}$ is the opinion,
- $\left\{(i, f),\left(i^{\prime}, f^{\prime}\right)\right\} \in E(\mathbf{H})$, if and only if $i \neq i^{\prime}$ and $f\left(i^{\prime}\right) \neq f^{\prime}(i)$.
- $|V(\mathbf{H})|=n 2^{n-1}$
- Embed $\mathbf{G} \rightarrow \mathbf{H}$ sending $v \mapsto(v, f)$ with f having nonzero opinion about its smaller neighbours.

An upper bound [Evans, Hubička, K, Nešetril, 2021]

Fix G. Define graph H:

- Vertices of \mathbf{H} are pairs (v, f), where $v \in G$ is the projection and $f: G \backslash\{v\} \rightarrow\{0,1\}$ is the opinion,
- $\left\{(i, f),\left(i^{\prime}, f^{\prime}\right)\right\} \in E(\mathbf{H})$, if and only if $i \neq i^{\prime}$ and $f\left(i^{\prime}\right) \neq f^{\prime}(i)$.
- $|V(\mathbf{H})|=n 2^{n-1}$
- Embed $\mathbf{G} \rightarrow \mathbf{H}$ sending $v \mapsto(v, f)$ with f having nonzero opinion about its smaller neighbours.

An upper bound [Evans, Hubička, K, Nešetril, 2021]

Fix G. Define graph H:

- Vertices of \mathbf{H} are pairs (v, f), where $v \in G$ is the projection and $f: G \backslash\{v\} \rightarrow\{0,1\}$ is the opinion,
- $\left\{(i, f),\left(i^{\prime}, f^{\prime}\right)\right\} \in E(\mathbf{H})$, if and only if $i \neq i^{\prime}$ and $f\left(i^{\prime}\right) \neq f^{\prime}(i)$.
- $|V(\mathbf{H})|=n 2^{n-1}$
- Embed $\mathbf{G} \rightarrow \mathbf{H}$ sending $v \mapsto(v, f)$ with f having nonzero opinion about its smaller neighbours.

An upper bound [Evans, Hubička, K, Nešetril, 2021]

Fix G. Define graph H:

- Vertices of \mathbf{H} are pairs (v, f), where $v \in G$ is the projection and $f: G \backslash\{v\} \rightarrow\{0,1\}$ is the opinion,
- $\left\{(i, f),\left(i^{\prime}, f^{\prime}\right)\right\} \in E(\mathbf{H})$, if and only if $i \neq i^{\prime}$ and $f\left(i^{\prime}\right) \neq f^{\prime}(i)$.
- $|V(\mathbf{H})|=n 2^{n-1}$
- Embed $\mathbf{G} \rightarrow \mathbf{H}$ sending $v \mapsto(v, f)$ with f having nonzero opinion about its smaller neighbours.

An upper bound [Evans, Hubička, K, Nešetril, 2021]

Fix G. Define graph H:

- Vertices of \mathbf{H} are pairs (v, f), where $v \in G$ is the projection and

For $u, v \in G$, we define a flip $F_{u, v}((w, f))=\left(w, f^{\prime}\right)$, where

$$
f^{\prime}(x)= \begin{cases}1-f(x) & \text { if }\{w, x\}=\{u, v\} \\ f(x) & \text { otherwise }\end{cases}
$$

An upper bound [Evans, Hubička, K, Nešetřil, 2021]

Fix G. Define graph H:

- Vertices of \mathbf{H} are pairs (v, f), where $v \in G$ is the projection and

Remark

This can be straightforwardly generalised to hypergraphs and arbitrary relational structures, and one can also add unary functions.

Summary of upper bounds

Summary of upper bounds

1. Finite homogeneous graphs $\left(C_{5}, L\left(K_{3,3}\right), m K_{n}, \overline{m K_{n}}\right)$.

Summary of upper bounds

1. Finite homogeneous graphs $\left(C_{5}, L\left(K_{3,3}\right), m K_{n}, \overline{m K_{n}}\right)$.
2. Complements of Kneser graphs $\left(\binom{\Delta n}{\Delta}, \mathcal{O}\left(n^{\Delta}\right)\right.$ for constant $\left.\Delta\right)$.

Summary of upper bounds

1. Finite homogeneous graphs $\left(C_{5}, L\left(K_{3,3}\right), m K_{n}, \overline{m K_{n}}\right)$.
2. Complements of Kneser graphs $\left(\binom{\Delta n}{\Delta}, \mathcal{O}\left(n^{\Delta}\right)\right.$ for constant $\left.\Delta\right)$.
3. Valuation graphs $\left(n 2^{n-1}\right)$.

A lower bound

Observation (Bradley-Williams, Cameron, Hubička, Konečný, 2023)

There is \mathbf{G} such that every EPPA-witness for \mathbf{G} has at least $\Omega\left(2^{n} / \sqrt{n}\right)$ vertices. Consequently, eppa $(n) \geq \Omega\left(2^{n} / \sqrt{n}\right)$.

A lower bound

Observation (Bradley-Williams, Cameron, Hubička, Konečný, 2023)

There is \mathbf{G} such that every EPPA-witness for \mathbf{G} has at least $\Omega\left(2^{n} / \sqrt{n}\right)$ vertices. Consequently, eppa $(n) \geq \Omega\left(2^{n} / \sqrt{n}\right)$.

Proof (basically Hrushovski'92).

A lower bound

Observation (Bradley-Williams, Cameron, Hubička, Konečný, 2023)

There is \mathbf{G} such that every EPPA-witness for \mathbf{G} has at least $\Omega\left(2^{n} / \sqrt{n}\right)$ vertices. Consequently, eppa $(n) \geq \Omega\left(2^{n} / \sqrt{n}\right)$.

Proof (basically Hrushovski'92).

A lower bound

Observation (Bradley-Williams, Cameron, Hubička, Konečný, 2023)

There is \mathbf{G} such that every EPPA-witness for \mathbf{G} has at least $\Omega\left(2^{n} / \sqrt{n}\right)$ vertices. Consequently, eppa $(n) \geq \Omega\left(2^{n} / \sqrt{n}\right)$.

Proof (basically Hrushovski'92).
(-) Every permutation of the left part is a partial automorphism of \mathbf{G}.

A lower bound

Observation (Bradley-Williams, Cameron, Hubička, Konečný, 2023)

There is \mathbf{G} such that every EPPA-witness for \mathbf{G} has at least $\Omega\left(2^{n} / \sqrt{n}\right)$ vertices. Consequently, eppa $(n) \geq \Omega\left(2^{n} / \sqrt{n}\right)$.

Proof (basically Hrushovski'92).

- Every permutation of the left part is a partial automorphism of \mathbf{G}.
- Claim: In every EPPA-witness, for every $S \in\binom{[n]}{n / 2}$, there is a vertex connected to S and not to $[n] \backslash S$.

n

A lower bound

Observation (Bradley-Williams, Cameron, Hubička, Konečný, 2023)

There is \mathbf{G} such that every EPPA-witness for \mathbf{G} has at least $\Omega\left(2^{n} / \sqrt{n}\right)$ vertices. Consequently, eppa $(n) \geq \Omega\left(2^{n} / \sqrt{n}\right)$.

Proof (basically Hrushovski'92).
(-) Every permutation of the left part is a partial automorphism of \mathbf{G}.

- Claim: In every EPPA-witness, for every $S \in\binom{[n]}{n / 2}$, there is a vertex connected to S and not to $[n] \backslash S$.
- Pick arbitrary $S \in\left(\begin{array}{c}{\left[\begin{array}{l}{[n]} \\ n / 2\end{array}\right) \text {. } . \text {. } \text {. }}\end{array}\right.$

A lower bound

Observation (Bradley-Williams, Cameron, Hubička, Konečný, 2023)

There is \mathbf{G} such that every EPPA-witness for \mathbf{G} has at least $\Omega\left(2^{n} / \sqrt{n}\right)$ vertices. Consequently, eppa $(n) \geq \Omega\left(2^{n} / \sqrt{n}\right)$.

Proof (basically Hrushovski'92).
(-) Every permutation of the left part is a partial automorphism of \mathbf{G}.

- Claim: In every EPPA-witness, for every $S \in\binom{[n]}{n / 2}$, there is a vertex connected to S and not to $[n] \backslash S$.
- Pick arbitrary $S \in\binom{[n]}{n / 2}$.

A lower bound

Observation (Bradley-Williams, Cameron, Hubička, Konečný, 2023)

There is \mathbf{G} such that every EPPA-witness for \mathbf{G} has at least $\Omega\left(2^{n} / \sqrt{n}\right)$ vertices. Consequently, eppa $(n) \geq \Omega\left(2^{n} / \sqrt{n}\right)$.

Proof (basically Hrushovski'92).
(-) Every permutation of the left part is a partial automorphism of \mathbf{G}.

- Claim: In every EPPA-witness, for every $S \in\binom{[n]}{n / 2}$, there is a vertex connected to S and not to $[n] \backslash S$.
- Pick arbitrary $S \in\binom{[n]}{n / 2}$.

A lower bound

Observation (Bradley-Williams, Cameron, Hubička, Konečný, 2023)

There is \mathbf{G} such that every EPPA-witness for \mathbf{G} has at least $\Omega\left(2^{n} / \sqrt{n}\right)$ vertices. Consequently, eppa $(n) \geq \Omega\left(2^{n} / \sqrt{n}\right)$.

Proof (basically Hrushovski'92).
(-) Every permutation of the left part is a partial automorphism of \mathbf{G}.

- Claim: In every EPPA-witness, for every $S \in\binom{[n]}{n / 2}$, there is a vertex connected to S and not to $[n] \backslash S$.
- Pick arbitrary $S \in\binom{[n]}{n / 2}$.

A lower bound

Observation (Bradley-Williams, Cameron, Hubička, Konečný, 2023)

There is \mathbf{G} such that every EPPA-witness for \mathbf{G} has at least $\Omega\left(2^{n} / \sqrt{n}\right)$ vertices. Consequently, eppa $(n) \geq \Omega\left(2^{n} / \sqrt{n}\right)$.

Proof (basically Hrushovski'92).

- Every permutation of the left part is a partial automorphism of \mathbf{G}.
- Claim: In every EPPA-witness, for every $S \in\binom{[n]}{n / 2}$, there is a vertex connected to S and not to $[n] \backslash S$.
- Pick arbitrary $S \in\binom{[n]}{n / 2}$.

$-\operatorname{eppa}(\mathbf{G}) \geq\binom{ n}{n / 2} \in \Omega\left(2^{n} / \sqrt{n}\right)$.

Observation (B-WCHK, 2023)
If \mathbf{G} is triangle-free with maximum degree Δ then

$$
\operatorname{eppa}(\mathbf{G}) \in \Omega\left(n^{\Delta}\right)
$$

Observation (B-WCHK, 2023)
If \mathbf{G} is triangle-free with maximum degree Δ then

$$
\operatorname{eppa}(\mathbf{G}) \in \Omega\left(n^{\Delta}\right)
$$

Corollary
Cycles have quadratic EPPA numbers.

Observation (B-WCHK, 2023)
If \mathbf{G} is triangle-free with maximum degree Δ then

$$
\operatorname{eppa}(\mathbf{G}) \in \Omega\left(n^{\Delta}\right)
$$

Corollary

Cycles have quadratic EPPA numbers.

Observation (B-WCHK, 2023)
If \mathbf{G} is triangle-free with maximum degree Δ then

$$
\operatorname{eppa}(\mathbf{G}) \in \Omega\left(n^{\Delta}\right)
$$

Corollary

Cycles have quadratic EPPA numbers.

Observation (B-WCHK, 2023)
If \mathbf{G} is triangle-free with maximum degree Δ then

$$
\operatorname{eppa}(\mathbf{G}) \in \Omega\left(n^{\Delta}\right)
$$

Corollary

Cycles have quadratic EPPA numbers.

Observation (B-WCHK, 2023)
Asymptotically almost surely eppa $(G(n, 1 / 2)) \gg n$.

Observation (B-WCHK, 2023)
Asymptotically almost surely eppa $(G(n, 1 / 2)) \gg n$.
Proof (sketch).

1. Find an independent set I of size $2 \log _{2}(n)$.

Observation (B-WCHK, 2023)
Asymptotically almost surely eppa $(G(n, 1 / 2)) \gg n$.
Proof (sketch).

1. Find an independent set I of size $2 \log _{2}(n)$.
2. There is a vertex connected to about half of I.

Observation (B-WCHK, 2023)

Asymptotically almost surely eppa $(G(n, 1 / 2)) \gg n$.
Proof (sketch).

1. Find an independent set I of size $2 \log _{2}(n)$.
2. There is a vertex connected to about half of I.
3. So eppa $(G(n, 1 / 2)) \gtrsim\binom{2 \log _{2}(n)}{\log _{2}(n)} \in \Omega\left(n^{2} / \sqrt{\log (n)}\right)$.

Observation (B-WCHK, 2023)

Asymptotically almost surely eppa $(G(n, 1 / 2)) \gg n$.
Proof (sketch).

1. Find an independent set I of size $2 \log _{2}(n)$.
2. There is a vertex connected to about half of I.
3. So eppa $(G(n, 1 / 2)) \gtrsim\binom{2 \log _{2}(n)}{\log _{2}(n)} \in \Omega\left(n^{2} / \sqrt{\log (n)}\right)$.

Conjecture
$\operatorname{eppa}(G(n, 1 / 2))$ is superpolynomial.

Observation (B-WCHK, 2023)
Asymptotically almost surely eppa $(G(n, 1 / 2)) \gg n$.
Proof (sketch).

1. Find an independent set I of size $2 \log _{2}(n)$.
2. There is a vertex connected to about half of I.
3. So eppa $(G(n, 1 / 2)) \gtrsim\binom{2 \log _{2}(n)}{\log _{2}(n)} \in \Omega\left(n^{2} / \sqrt{\log (n)}\right)$.

Conjecture

$\operatorname{eppa}(G(n, 1 / 2))$ is superpolynomial.
Observation (B-WCHK, 2023)
For every c, d, a.a.s. $\operatorname{eppa}(G(n, c / n)) \gg n^{d}$.

Observation (B-WCHK, 2023)
Asymptotically almost surely eppa $(G(n, 1 / 2)) \gg n$.
Proof (sketch).

1. Find an independent set I of size $2 \log _{2}(n)$.
2. There is a vertex connected to about half of I.
3. So eppa $(G(n, 1 / 2)) \gtrsim\binom{2 \log _{2}(n)}{\log _{2}(n)} \in \Omega\left(n^{2} / \sqrt{\log (n)}\right)$.

Conjecture

$\operatorname{eppa}(G(n, 1 / 2))$ is superpolynomial.
Observation (B-WCHK, 2023)
For every c, d, a.a.s. $\operatorname{eppa}(G(n, c / n)) \gg n^{d}$.
Proof (sketch).

1. Find an independent set $/$ of size $c^{\prime} n$.

Observation (B-WCHK, 2023)
Asymptotically almost surely eppa $(G(n, 1 / 2)) \gg n$.
Proof (sketch).

1. Find an independent set I of size $2 \log _{2}(n)$.
2. There is a vertex connected to about half of I.
3. So eppa $(G(n, 1 / 2)) \gtrsim\binom{2 \log _{2}(n)}{\log _{2}(n)} \in \Omega\left(n^{2} / \sqrt{\log (n)}\right)$.

Conjecture

$\operatorname{eppa}(G(n, 1 / 2))$ is superpolynomial.
Observation (B-WCHK, 2023)
For every c, d, a.a.s. $\operatorname{eppa}(G(n, c / n)) \gg n^{d}$.
Proof (sketch).

1. Find an independent set I of size $c^{\prime} n$.
2. There is a vertex connected to exactly d members of I.

Summary of lower bounds

Summary of lower bounds

1. $\operatorname{eppa}(n) \geq \Omega\left(2^{n} / \sqrt{n}\right)$.

Summary of lower bounds

1. $\operatorname{eppa}(n) \geq \Omega\left(2^{n} / \sqrt{n}\right)$.
2. If \mathbf{G} is not sub-homogeneous (a subgraph of a homogeneous graph) then eppa($\mathbf{G}) \geq \frac{5}{4} n$.

Summary of lower bounds

1. $\operatorname{eppa}(n) \geq \Omega\left(2^{n} / \sqrt{n}\right)$.
2. If \mathbf{G} is not sub-homogeneous (a subgraph of a homogeneous graph) then eppa($\mathbf{G}) \geq \frac{5}{4} n$.
3. If \mathbf{G} is triangle-free bounded-degree then $\operatorname{eppa}(\mathbf{G}) \in \Theta\left(n^{\Delta}\right)$.

Summary of lower bounds

1. $\operatorname{eppa}(n) \geq \Omega\left(2^{n} / \sqrt{n}\right)$.
2. If \mathbf{G} is not sub-homogeneous (a subgraph of a homogeneous graph) then $\operatorname{eppa}(\mathbf{G}) \geq \frac{5}{4} n$.
3. If \mathbf{G} is triangle-free bounded-degree then $\operatorname{eppa}(\mathbf{G}) \in \Theta\left(n^{\Delta}\right)$.
4. $\operatorname{eppa}(G(n, 1 / 2)) \gg n^{2-\epsilon}$.

Summary of lower bounds

1. $\operatorname{eppa}(n) \geq \Omega\left(2^{n} / \sqrt{n}\right)$.
2. If \mathbf{G} is not sub-homogeneous (a subgraph of a homogeneous graph) then eppa($\mathbf{G}) \geq \frac{5}{4} n$.
3. If \mathbf{G} is triangle-free bounded-degree then $\operatorname{eppa}(\mathbf{G}) \in \Theta\left(n^{\Delta}\right)$.
4. $\operatorname{eppa}(G(n, 1 / 2)) \gg n^{2-\epsilon}$.
5. eppa($G(n, c / n))$ is superpolynomial.

Summary of lower bounds

1. $\operatorname{eppa}(n) \geq \Omega\left(2^{n} / \sqrt{n}\right)$.
2. If \mathbf{G} is not sub-homogeneous (a subgraph of a homogeneous graph) then eppa($\mathbf{G}) \geq \frac{5}{4} n$.
3. If \mathbf{G} is triangle-free bounded-degree then $\operatorname{eppa}(\mathbf{G}) \in \Theta\left(n^{\Delta}\right)$.
4. $\operatorname{eppa}(G(n, 1 / 2)) \gg n^{2-\epsilon}$.
5. eppa($G(n, c / n))$ is superpolynomial.
6. If \mathbf{G} is bounded-degree non-sub-homogeneous then $\operatorname{eppa}(\mathbf{G}) \in \Omega\left(n^{2}\right)$.

Hypergraphs

Hypergraphs

Theorem (Hubička, Konečný, Nešetřil, 2022)
For every $k \geq 2, \operatorname{eppa}_{k}(n) \leq n 2^{\binom{n-1}{k-1}}$.

Hypergraphs

Theorem (Hubička, Konečný, Nešetřil, 2022)
For every $k \geq 2, \operatorname{eppa}_{k}(n) \leq n 2\binom{n-1}{k-1}$.
Observation (B-WCHK, 2023)
For every m, there is a 3 -uniform hypergraph \mathbf{G} on $n=2^{m}+m+1$ vertices with $\operatorname{eppa}_{3}(\mathbf{G}) \geq m!\in 2^{\Omega(n \log n)}$.

Proof

Proof
$2^{m}-1 \bullet$

G

Proof

$$
2^{m}-1 \bullet
$$

\[

\]

$$
0 \bullet
$$

G

- $a b$ is a hyperedge \Longleftrightarrow the b-th bit of a is 1 .

G

- $a b$ is a hyperedge \Longleftrightarrow the b-th bit of a is 1 .
- If \mathbf{H} is an EPPA-witness for $\mathbf{G}, v \in H$ and $a \in G$, put $f_{v}(a)=\sum_{b \in G: a b v \in E(\mathbf{H})} 2^{b} .\left(f_{=1}=\mathrm{id}\right)$

G

- $a b$ is a hyperedge \Longleftrightarrow the b-th bit of a is 1 .
- If \mathbf{H} is an EPPA-witness for $\mathbf{G}, v \in H$ and $a \in G$, put $f_{v}(a)=\sum_{b \in G: a b v \in E(\mathbf{H})} 2^{b} .(f=i d)$
- Claim: For every permutation f of $\left\{0, \ldots, 2^{m}-1\right\}$ there is $v \in \mathbf{H}$ such that $f_{v}=f$.

Proof

G

- $a b$ is a hyperedge \Longleftrightarrow the b-th bit of a is 1 .
- If \mathbf{H} is an EPPA-witness for $\mathbf{G}, v \in H$ and $a \in G$, put $f_{v}(a)=\sum_{b \in G: a b v \in E(H)} 2^{b} .(f=i d)$
- Claim: For every permutation f of $\left\{0, \ldots, 2^{m}-1\right\}$ there is $v \in \mathbf{H}$ such that $f_{v}=f$.
- Permute the blue vertices of \mathbf{G} according to f and fix the red vertices. Let $g \in \operatorname{Aut}(\mathbf{H})$ be an extension. Then $f_{g(-)}=f$.

Proof

G

- $a b$ is a hyperedge \Longleftrightarrow the b-th bit of a is 1 .
- If \mathbf{H} is an EPPA-witness for $\mathbf{G}, v \in H$ and $a \in G$, put $f_{v}(a)=\sum_{b \in G: a b v \in E(H)} 2^{b} .\left(f_{=i d}=\mathrm{id}\right)$
- Claim: For every permutation f of $\left\{0, \ldots, 2^{m}-1\right\}$ there is $v \in \mathbf{H}$ such that $f_{v}=f$.
- Permute the blue vertices of \mathbf{G} according to f and fix the red vertices. Let $g \in \operatorname{Aut}(\mathbf{H})$ be an extension. Then $f_{g(-)}=f$.
- Consequently, $|H| \geq m!\in 2^{\Omega(n \log n)}$.

Proof

G

- $a b$ is a hyperedge \Longleftrightarrow the b-th bit of a is 1 .
- If \mathbf{H} is an EPPA-witness for $\mathbf{G}, v \in H$ and $a \in G$, put $f_{v}(a)=\sum_{b \in G: a b v \in E(\mathbf{H})} 2^{b} .(f=i d)$
- Claim: For every permutation f of $\left\{0, \ldots, 2^{m}-1\right\}$ there is $v \in \mathbf{H}$ such that $f_{v}=f$.
- Permute the blue vertices of \mathbf{G} according to f and fix the red vertices. Let $g \in \operatorname{Aut}(\mathbf{H})$ be an extension. Then $f_{g(-)}=f$.
- Consequently, $|H| \geq m!\in 2^{\Omega(n \log n)}$.
- Note that there are only $2^{\mathcal{O}(n \log n)}$ partial permutations.

Conclusion

Conclusion

Problem
Close the gap $\Omega\left(2^{n} / \sqrt{n}\right) \leq \operatorname{eppa}(n) \leq n 2^{n-1}$. (I doubt the lower bound is tight.)

Conclusion

Problem
Close the gap $\Omega\left(2^{n} / \sqrt{n}\right) \leq \operatorname{eppa}(n) \leq n 2^{n-1}$. (I doubt the lower bound is tight.)

Conjecture
If \mathbf{G} is not sub-homogeneous then eppa $(\mathbf{G}) \in \Omega\left(n^{2}\right)$. (Even $\omega(n)$ would be nice.)

Conclusion

Problem
Close the gap $\Omega\left(2^{n} / \sqrt{n}\right) \leq \operatorname{eppa}(n) \leq n 2^{n-1}$. (I doubt the lower bound is tight.)

Conjecture

If \mathbf{G} is not sub-homogeneous then eppa $(\mathbf{G}) \in \Omega\left(n^{2}\right)$. (Even $\omega(n)$ would be nice.)

Question
Are bounded-(co)degree graphs and sub-homogeneous graphs the only ones with polynomial EPPA numbers?

Conclusion

Problem
Close the gap $\Omega\left(2^{n} / \sqrt{n}\right) \leq \operatorname{eppa}(n) \leq n 2^{n-1}$. (I doubt the lower bound is tight.)

Conjecture

If \mathbf{G} is not sub-homogeneous then eppa $(\mathbf{G}) \in \Omega\left(n^{2}\right)$. (Even $\omega(n)$ would be nice.)

Question
Are bounded-(co)degree graphs and sub-homogeneous graphs the only ones with polynomial EPPA numbers?

Problem

Improve the bounds for $G(n, 1 / 2)$ (or other random graphs).

Conclusion

Problem
Close the gap $\Omega\left(2^{n} / \sqrt{n}\right) \leq \operatorname{eppa}(n) \leq n 2^{n-1}$. (I doubt the lower bound is tight.)

Conjecture

If \mathbf{G} is not sub-homogeneous then eppa $(\mathbf{G}) \in \Omega\left(n^{2}\right)$. (Even $\omega(n)$ would be nice.)

Question

Are bounded-(co)degree graphs and sub-homogeneous graphs the only ones with polynomial EPPA numbers?

Problem

Improve the bounds for $G(n, 1 / 2)$ (or other random graphs).

Problem

Improve bounds for (dense) planar graphs.

Conclusion II

Problem
Compute the exact EPPA numbers of cycles.

Conclusion II

Problem
Compute the exact EPPA numbers of cycles. (Dibs!)

Conclusion II

Problem
Compute the exact EPPA numbers of cycles. (Dibs!)
Problem
Compute the exact EPPA numbers of other graphs.

Conclusion II

Problem
Compute the exact EPPA numbers of cycles. (Dibs!)
Problem
Compute the exact EPPA numbers of other graphs.

Problem

Study EPPA numbers of directed graphs. ($n 4^{n-1}$ resp. $n 3^{n-1}$ upper bounds, many lower bounds persist)

Conclusion II

Problem
Compute the exact EPPA numbers of cycles. (Dibs!)

Problem

Compute the exact EPPA numbers of other graphs.

Problem

Study EPPA numbers of directed graphs. ($n 4^{n-1}$ resp. $n 3^{n-1}$ upper bounds, many lower bounds persist)

Problem

Improve the bounds $2^{\Omega(n \log (n))} \leq \operatorname{eppa}_{k}(n) \leq n 2^{\binom{n-1}{k-1}}$.

Conclusion II

Problem

Compute the exact EPPA numbers of cycles. (Dibs!)

Problem

Compute the exact EPPA numbers of other graphs.

Problem

Study EPPA numbers of directed graphs. ($n 4^{n-1}$ resp. $n 3^{n-1}$ upper bounds, many lower bounds persist)

Problem

Improve the bounds $2^{\Omega(n \log (n))} \leq \operatorname{eppa}_{k}(n) \leq n 2^{\binom{n-1}{k-1}}$.

Problem

If \mathbf{G} is K_{m}-free, what can we say about its K_{m}-free EPPA-witnesses? (There is one of size $2^{2^{\mathcal{O}(n)}}$ if m is constant.)

Conclusion II

Problem

Compute the exact EPPA numbers of cycles. (Dibs!)

Problem

Compute the exact EPPA numbers of other graphs.

Problem

Study EPPA numbers of directed graphs. ($n 4^{n-1}$ resp. $n 3^{n-1}$ upper bounds, many lower bounds persist)

Problem

Improve the bounds $2^{\Omega(n \log (n))} \leq \operatorname{eppa}_{k}(n) \leq n 2^{\binom{n-1}{k-1}}$.

Problem

If \mathbf{G} is K_{m}-free, what can we say about its K_{m}-free EPPA-witnesses? (There is one of size $2^{2^{\mathcal{O}(n)}}$ if m is constant.)

Question (Herwig, Lascar, 2000)
Do finite tournaments have EPPA?

Conclusion II

Problem

Compute the exact EPPA numbers of cycles. (Dibs!)

Problem

Compute the exact EPPA numbers of other graphs.
Problem
Study EPPA numbers of directed graphs. ($n 4^{n-1}$ resp. $n 3^{n-1}$ upper bounds, many lower bounds persist)

Problem

Improve the bounds $2^{\Omega(n \log (n))} \leq \operatorname{eppa}_{k}(n) \leq n 2^{\binom{n-1}{k-1}}$.

Problem

If \mathbf{G} is K_{m}-free, what can we say about its K_{m}-free EPPA-witnesses? (There is one of size $2^{2^{\mathcal{O}(n)}}$ if m is constant.)

Question (Herwig, Lascar, 2000)
Do finite tournaments have EPPA?

Conclusion II

Problem

Compute the exact EPPA numbers of cycles. (Dibs!)

Problem

Compute the exact EPPA numbers of other graphs.
Problem
Study EPPA numbers of directed graphs. ($n 4^{n-1}$ resp. $n 3^{n-1}$ upper bounds, many lower bounds persist)

Problem (Answers?) Improve the bounds $2^{\Omega(n \log (n))} \leq \operatorname{eppa}_{k}(n) \leq n 2^{\binom{n-1}{k-1}}$.

Problem

If \mathbf{G} is K_{m}-free, what can we say about its K_{m}-free EPPA-witnesses? (There is one of size $2^{2^{\mathcal{O}(n)}}$ if m is constant.)

Question (Herwig, Lascar, 2000)
Do finite tournaments have EPPA?

