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Charles University −→ TU Dresden
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Let A be a structure. A partial function f : A → A is a partial
automorphism of A if f is an isomorphism A|Dom(f ) → A|Range(f ).

If α is an automorphism of A such that f ⊆ α, we say that f
extends to α.

Example

A graph G is vertex-transitive if every partial automorphism f with
|Dom(f )| ≤ 1 extends to an automorphism of G.
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Definition (EPPA, extension property for partial
automorphisms)

Let B be a structure and let A be its induced substructure. B is
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A class C of finite structures has EPPA if for every A ∈ C there is
B ∈ C, which is an EPPA-witness for A.
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Definition (EPPA, extension property for partial
automorphisms)

Let B be a structure and let A be its induced substructure. B is
an EPPA-witness for A if every partial automorphism of A extends
to an automorphism of B.
A class C of finite structures has EPPA if for every A ∈ C there is
B ∈ C, which is an EPPA-witness for A.

Theorem (Hrushovski, 1992)

The class of all finite graphs has EPPA.



“Model theory connection”

Observation
Every class with EPPA has the amalgamation property and
corresponds to a countable homogeneous structure.

Theorem (Kechris–Rosendal, 2007)

If M homogeneous then Aut(M) =
⋃

i Gi with compact
G1 ≤ G2 ≤ · · ·Aut(M) if and only if Age(M) has EPPA.

EPPA is known to hold for graphs, Kn-free graphs, hypergraphs,
metric spaces, free amalgamation classes, two-graphs, finite
groups, . . .



“Model theory connection”

Observation
Every class with EPPA has the amalgamation property and
corresponds to a countable homogeneous structure.

Theorem (Kechris–Rosendal, 2007)

If M homogeneous then Aut(M) =
⋃

i Gi with compact
G1 ≤ G2 ≤ · · ·Aut(M) if and only if Age(M) has EPPA.

EPPA is known to hold for graphs, Kn-free graphs, hypergraphs,
metric spaces, free amalgamation classes, two-graphs, finite
groups, . . .



“Model theory connection”

Observation
Every class with EPPA has the amalgamation property and
corresponds to a countable homogeneous structure.

Theorem (Kechris–Rosendal, 2007)

If M homogeneous then Aut(M) =
⋃

i Gi with compact
G1 ≤ G2 ≤ · · ·Aut(M) if and only if Age(M) has EPPA.

EPPA is known to hold for graphs, Kn-free graphs, hypergraphs,
metric spaces, free amalgamation classes, two-graphs, finite
groups, . . .



“Model theory connection”

Observation
Every class with EPPA has the amalgamation property and
corresponds to a countable homogeneous structure.

Theorem (Kechris–Rosendal, 2007)

If M homogeneous then Aut(M) =
⋃

i Gi with compact
G1 ≤ G2 ≤ · · ·Aut(M) if and only if Age(M) has EPPA.

EPPA is known to hold for graphs, Kn-free graphs, hypergraphs,
metric spaces, free amalgamation classes, two-graphs, finite
groups, . . .



EPPA numbers of graphs

Given graph G, let eppa(G) be the least number of vertices of an
EPPA-witness for G.

Theorem (Hrushovski, 1992)

▶ For every G with n vertices we have that eppa(G) ≤ (2n2n)!.

▶ If G2m is the half-graph on 2m vertices then eppa(G2m) ≥ 2m.

Problem (Hrushovski, 1992)

Improve the bounds.
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Theorem (Herwig–Lascar, 2000)

For every G with n vertices and maximum degree ∆ we have that
eppa(G) ≤

(∆n
∆

)
∈ nO(n).

In particular, bounded degree graphs have polynomial EPPA
numbers.

Theorem (Evans–Hubička–K–Nešeťril, 2021)

For every graph G it holds that eppa(G) ≤ n2n−1.
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Theorem (Herwig, Lascar 2000)

If the maximum degree of G is ∆, then there is an EPPA-witness
on

(∆n
∆

)
vertices.

Proof.

1. Let G = (V ,E ) be a graph. Assume that G is k-regular.

2. Define H so that V (H) =
(E
k

)
and XY ∈ E (H) if X ∩ Y ̸= ∅.

3. Embed ψ : G → H sending v 7→ {e ∈ E : v ∈ e}.
4. A partial automorphism of G gives a partial permutation of E .

5. Extend it to a permutation of E respecting the partial
automorphism.

6. Every permutation of E induces an automorphism of H.

For non-k-regular graphs, add “half-edges” to make them regular.
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An upper bound [Evans, Hubička, K, Nešeťril 2021]

Fix G. Define graph H:

▶ Vertices of H are pairs (v , f ), where
v ∈ G is the projection and
f : G \ {v} → {0, 1} is the opinion,

▶ {(i , f ), (j , f ′)} ∈ E (H), if and only
if i ̸= i ′ and f (j) ̸= f ′(i).

 |V (H)| = n2n−1

▶ Embed G → H sending v 7→ (v , f )
with f having nonzero opinion
about its smaller neighbours.
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Fix G. Define graph H:

▶ Vertices of H are pairs (v , f ), where
v ∈ G is the projection and
f : G \ {v} → {0, 1} is the opinion,

▶ {(i , f ), (j , f ′)} ∈ E (H), if and only
if i ̸= i ′ and f (j) ̸= f ′(i).

 |V (H)| = n2n−1

▶ Embed G → H sending v 7→ (v , f )
with f having nonzero opinion
about its smaller neighbours.

G

v1

v2
v3

00

01

10

11

H



An upper bound [Evans, Hubička, K, Nešeťril 2021]
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For u, v ∈ G , we define a flip Fu,v ((w , f )) = (w , f ′), where

f ′(x) =

{
1− f (x) if {w , x} = {u, v}
f (x) otherwise.
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Fix G. Define graph H:

▶ Vertices of H are pairs (v , f ), where
v ∈ G is the projection and
f : G \ {v} → {0, 1} is the opinion,

▶ {(i , f ), (j , f ′)} ∈ E (H), if and only
if i ̸= i ′ and f (j) ̸= f ′(i).

 |V (H)| = n2n−1

▶ Embed G → H sending v 7→ (v , f )
with f having nonzero opinion
about its smaller neighbours. G

v1

v2
v3

00

01

10

11

H

Remark
This can be straightforwardly generalised to arbitrary relational structures
and less straightforwardly one can also add unary functions.
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▶ We have
√
2
n ≤ max{eppa(G) : |G | = n} ≤ n2n−1. Can this

exponential gap be closed?

▶ The half-graph is an important example in e.g. model theory.
Is there something going on here? (Cf. the Malliaris–Shelah
Regularity Lemma for edge-stable graphs.)

▶ For graphs with maximum degree ∆ we have
eppa(G) ∈ O(n∆), but no lower bound. Can a lower bound
be proved? At least for cycles?

▶ What are the EPPA numbers of G (n, 1/2)? Can one prove
at least a non-linear lower bound?
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Exercise
There is a graph G with eppa(G) ∈ Ω( 2n√

n
).

Corollary

Ω( 2n√
n
) ≤ max{eppa(G) : |G | = n} ≤ O(n2n).

Observation
If G is triangle-free with maximum degree ∆ then

eppa(G) ∈ Ω(n∆).

Corollary

Cycles have quadratic EPPA numbers.



Exercise
There is a graph G with eppa(G) ∈ Ω( 2n√

n
).

Corollary

Ω( 2n√
n
) ≤ max{eppa(G) : |G | = n} ≤ O(n2n).

Observation
If G is triangle-free with maximum degree ∆ then

eppa(G) ∈ Ω(n∆).

Corollary

Cycles have quadratic EPPA numbers.



Exercise
There is a graph G with eppa(G) ∈ Ω( 2n√

n
).

Corollary

Ω( 2n√
n
) ≤ max{eppa(G) : |G | = n} ≤ O(n2n).

Observation
If G is triangle-free with maximum degree ∆ then

eppa(G) ∈ Ω(n∆).

Corollary

Cycles have quadratic EPPA numbers.



Exercise
There is a graph G with eppa(G) ∈ Ω( 2n√

n
).

Corollary

Ω( 2n√
n
) ≤ max{eppa(G) : |G | = n} ≤ O(n2n).

Observation
If G is triangle-free with maximum degree ∆ then

eppa(G) ∈ Ω(n∆).

Corollary

Cycles have quadratic EPPA numbers.



Solution to the exercise

Observation
There is G such that every EPPA-witness for G has at least
Ω(2n/

√
n) vertices.

Proof.

 Every permutation of the left part
is a partial automorphism of G.

▶ Claim: In every EPPA-witness,
for every S ∈

( [n]
n/2

)
, there is a

vertex connected to S and not to
[n] \ S .

▶ Pick arbitrary S ∈
( [n]
n/2

)
.

▶ eppa(G) ≥
( n
n/2

)
∈ Ω(2n/

√
n).
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[n] \ S .

▶ Pick arbitrary S ∈
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.
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)
∈ Ω(2n/
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If G is a cycle then eppa(G) ∈ Θ(n2).
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Observation
Whp eppa(G (n, 1/2)) ≫ n.

Proof.

1. Find an independent set I of size 2 log2(n).

2. There is a vertex connected to about half of I .

3. So eppa(G (n, 1/2)) ≳
(2 log2(n)
log2(n)

)
∈ Ω(n2/

√
log(n)).

Problem
Prove (or disprove) that eppa(G (n, 1/2)) is superexponential.
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Conclusion, but for real

Problem
We have 2n√

n
≤ max{eppa(G) : |G | = n} ≤ n2n−1. Close this gap.

Problem
Improve the bounds for G (n, 1/2), or other non-bounded-degree
graphs.

Question
Find c such that eppa(Cn) = cn2 + o(n2)

Question [Herwig–Lascar, 2000]

Does the class of all finite tournaments have EPPA?

Thank you!

(Answers?)
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A lower bound

Observation (Hrushovski, 1992)

There is G with n = |V (H)| such that every EPPA-witness for G
has at least Ω(2n/2) vertices.

Proof.

▶ G is bipartite, with
V (G) = [2m] = {0, . . . , 2m − 1}
and u ∼ v iff u +m ≥ v .

 Every permutation of [m] is a
partial automorphism of G.

▶ Pick any EPPA-witness and any
S ⊆ [m].

There is a vertex v
connected to S and not
connected to [m] \ S .

▶ Hence every EPPA-witness for G
has at least Ω(2m) vertices.
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