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Overview

Open problems in model theory:

1 Thomas’ finitely may closed supergroups conjecture

2 Reconstruction of topology

3 The finite Ramsey expansion conjecture
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CSPs: Logic Perspective

τ: a finite relational signature.
B = (B;R1, . . . ,Rl): a τ-structure.

CSP(B)

Input: A primitive positive sentence φ, i.e., a formula of the form

∃x1, . . . , xn (ψ1 ∧ · · ·∧ψm)

where ψi is of the form xi = xj or R(xi1 , . . . , xik ) for R ∈ τ.
Question: B |= Φ?

Example: 3-colorability is CSP(K3) where K3 := ({0,1,2}; 6=):
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CSPs as Homomorphism Problems

Let τ be a finite relational signature.
Let B = (B;R1, . . . ,Rl) be a τ-structure.

CSP(B)

Input: A finite τ-structure A.

Question: Is there a homomorphism from A to B?
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More Examples of CSPs

Famous CSPs:

CSP(Z; +, ∗,1):

Hilbert’s 10th problem
Undecidable (Davis+Matiyasevich+Putnam+Robinson’71)

CSP(R; +, ∗,1): decidable (Tarski-Seidenberg).

CSP(Q; +, ∗,1): decidability unknown.

CSP(R; +,1, {(x , y) | y ≥ x2):
not known to be in P,
harder than sums-of-square-roots problem (computational geometry).

CSP(Q; {(x , y) | x = y + 1}, {(x , y) | x = 2y }, {(x , y , z) | x ≥ min(y , z)}):
not known to be in P,
at least as hard as solving mean payoff games (verification)

Theorem. B.+Grohe’08: Every decision problem is equivalent to a CSP
(under polynomial-time Turing reductions)
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domain 
CSPs

`Tame’ infinite-domain CSPs
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Polymorphisms

Def. An operation f : Dk → D preserves R ⊆ Dm if for all a1, . . . ,ak ∈ R(
f (a1

1, . . . ,a
k
1), . . . , f (a

1
m, . . . ,a

k
m)
)
∈ R.

Example: (x , y) 7→ (x + y)/2 preserves all convex relations R ⊆ Rm

f is a polymorphism of B if f preserves all relations of B.

Pol(B): set of all polymorphisms of B.

Pol(B) contains Aut(B), the automorphisms of B.

Pol(B) is a clone: contains projections and closed under composition.
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Universal-Algebraic Dichotomy

Let B be a finite structure.

Theorem (Bulatov+Jeavons+Krokhin’03).

If Pol(A) = Pol(B) then CSP(A) and CSP(B) are P-time equivalent.

If Pol(A) 'Pol(B) then CSP(A) and CSP(B) are P-time equivalent.

If C is homomorphically equivalent to B of minimal size,
and Pol(C, c1, . . . , cn) has a homomorphism to Pol(K3),
then CSP(B) is NP-hard.

Theorem (Bulatov’17, Zhuk’17). If Pol(C, c1, . . . , cn) does does not have a
homomorphism to CSP(K3), then CSP(B) is in P.
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Model Theory
Looking for a class C of infinite structures such that

(A) The universal-algebraic approach also applies to structures from C.
(B) CSPs for structures from C are interesting in Logic, Math and CS.

Definition
A structure B is called ω-categorical if all countable structures that satisfy the
same first-order sentences as B are isomorphic.

Examples.

(Q;<) is ω-categorical: Cantor’1895:
all countable dense unbounded linear orders are isomorphic.

Every finite structure.

Every homogeneous structure with a finite relational signature
(every isomorphism between finite substructures
can be extended to an automorphism).

Reducts of ω-categorical structures are ω-categorical.
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Complexity Classification

Theorem (B.+Nešetřil’03). If A and B are ω-categorical and Pol(A) = Pol(B),
then CSP(A) and CSP(B) are polynomial-time equivalent.

Theorem (B.+Kara 2007). B: a structure of the form (Q;R1, . . . ,Rl)

whose relations are first-order definable over (Q;<).
Then CSP(B) is either in P or NP-complete.

Examples.

CSP
(
Q; {(x , y , z) | x > y ∨ x > z}

)
is in P.

CSP
(
Q; {(x , y , z) | x = y < z ∨ y = z < x ∨ z = x < y }

)
is in P.
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Thomas’ Conjecture

B: first-order definable in (Q;<).

To classify complexity of CSP(Q;<), use result of Cameron’76:
Aut(B) equals one of the following.

Sym(Q)

Aut(Q;<)

Aut
(
Q; {(x , y , z) | x < y < z ∨ z < y < x}

)
Two more cases.

(1) Conjecture (S. Thomas).
Let C be a homogeneous structure with finite relational signature.
Then there are finitely many structures with a first-order definition in C

up to first-order interdefinability.

Equivalently:
Then there are finitely many closed supergroups of Aut(C).
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Topology

Equip B with the discrete topology.
O

(k)
B := {f : Bk → B} equipped with topology of pointwise convergence.

OB :=
⋃

k∈N O
(k)
B equipped with sum topology.

Observations.

C ⊆ OB closed iff there exists a structure B such that C = Pol(B).

Pol(B) is a topological clone: composition in Pol(B) is continuous.

ξ : Pol(A) → Pol(B) is called a (clone) homomorphism if

it maps operations of arity k to operations of arity k ,

it maps the i-th projection of arity k in Pol(A) to the i-th projection of arity
k in Pol(B),

it preserves composition: for all g, f1, . . . , fn ∈ Pol(A)

ξ(g(f1, . . . , fn)) = ξ(g)(ξ(f1), . . . , ξ(fn))
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Topological Clones

Pol(B) 't Pol(A):

there is a bijective homomorphism ξ : Pol(B) → Pol(A) such that

ξ−1 is a homomorphism as well, and

ξ is a homeomorphism.

Theorem (B.+Pinsker’15).

Let A and B be ω-categorical. Then Pol(A) 't Pol(B) if and only if
A and B are primitively positively bi-interpretable.
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Finite Model Theory

Examples of CSPs for ω-categorical structures B?

Systematic source of examples:
Monadic Second-Order Logic (MSO):
extension of first-order logic by (universal and existential) quantification over
subsets of the domain.

Example 1: 3-colorability of a graph (V ;E) can be expressed by

∃R,G,B. ∀x , y :
(
R(x)∨ G(x)∨ B(x)

)
∧
(
E(x , y) ⇒ ¬

(
R(x)∧R(y)

∨ G(x)∧G(y)

∨ B(x)∧B(y)
))

Example 2: Acyclicity of a digraph (V ;E) can be expressed by

∀X 6= ∅ ∃x ∈ X ∀y ∈ X : ¬E(x , y).

×
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Countably Categorical Structures for MSO sentences

Theorem (B.+Knäuer+Rudolph’21).

Let B be such that CSP(B) is in MSO. Then there exists an ω-categorical
structure C such that CSP(B) = CSP(C).

Remarks

If CSP(B) is even in FO (first-order logic), this was already known
(combining Rossmann’08 and Cherlin+Shelah+Shi’99)

Result can be generalised to GSO (guarded second-order logic, see
Grädel+Hirsch+Otto’02)
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MSNP

Monadic Strict NP (MSNP): restriction of MSO

where

1 Only existential quantification over sets

2 Only universal first-order quantifiers

Motivation for the name: NP = existential second-order logic (Fagin’74).

Example 1:

∃R,B,G. ∀x , y :
(
R(x)∨ B(x)∨ G(x)

)
∧
(
E(x , y) ⇒ ¬

(
R(x)∧R(y)∨ B(x)∧B(y)∨ G(x)∧G(y)

))
Example 2:

∀x , y , z
(
¬E(x , y)∨ ¬E(y , z)∨ ¬E(z, x)

)

Model-theoretic Challenges Manuel Bodirsky 16



MSNP

Monadic Strict NP (MSNP): restriction of MSO where

1 Only existential quantification over sets

2 Only universal first-order quantifiers

Motivation for the name: NP = existential second-order logic (Fagin’74).

Example 1:

∃R,B,G. ∀x , y :
(
R(x)∨ B(x)∨ G(x)

)
∧
(
E(x , y) ⇒ ¬

(
R(x)∧R(y)∨ B(x)∧B(y)∨ G(x)∧G(y)

))
Example 2:

∀x , y , z
(
¬E(x , y)∨ ¬E(y , z)∨ ¬E(z, x)

)

Model-theoretic Challenges Manuel Bodirsky 16



MSNP

Monadic Strict NP (MSNP): restriction of MSO where

1 Only existential quantification over sets

2 Only universal first-order quantifiers

Motivation for the name: NP = existential second-order logic (Fagin’74).

Example 1:

∃R,B,G. ∀x , y :
(
R(x)∨ B(x)∨ G(x)

)
∧
(
E(x , y) ⇒ ¬

(
R(x)∧R(y)∨ B(x)∧B(y)∨ G(x)∧G(y)

))
Example 2:

∀x , y , z
(
¬E(x , y)∨ ¬E(y , z)∨ ¬E(z, x)

)

Model-theoretic Challenges Manuel Bodirsky 16



MSNP

Monadic Strict NP (MSNP): restriction of MSO where

1 Only existential quantification over sets

2 Only universal first-order quantifiers

Motivation for the name: NP = existential second-order logic (Fagin’74).

Example 1:

∃R,B,G. ∀x , y :
(
R(x)∨ B(x)∨ G(x)

)
∧
(
E(x , y) ⇒ ¬

(
R(x)∧R(y)∨ B(x)∧B(y)∨ G(x)∧G(y)

))
Example 2:

∀x , y , z
(
¬E(x , y)∨ ¬E(y , z)∨ ¬E(z, x)

)

Model-theoretic Challenges Manuel Bodirsky 16



MSNP

Monadic Strict NP (MSNP): restriction of MSO where

1 Only existential quantification over sets

2 Only universal first-order quantifiers

Motivation for the name: NP = existential second-order logic (Fagin’74).

Example 1:

∃R,B,G. ∀x , y :
(
R(x)∨ B(x)∨ G(x)

)
∧
(
E(x , y) ⇒ ¬

(
R(x)∧R(y)∨ B(x)∧B(y)∨ G(x)∧G(y)

))

Example 2:
∀x , y , z

(
¬E(x , y)∨ ¬E(y , z)∨ ¬E(z, x)

)

Model-theoretic Challenges Manuel Bodirsky 16



MSNP

Monadic Strict NP (MSNP): restriction of MSO where

1 Only existential quantification over sets

2 Only universal first-order quantifiers

Motivation for the name: NP = existential second-order logic (Fagin’74).

Example 1:

∃R,B,G. ∀x , y :
(
R(x)∨ B(x)∨ G(x)

)
∧
(
E(x , y) ⇒ ¬

(
R(x)∧R(y)∨ B(x)∧B(y)∨ G(x)∧G(y)

))
Example 2:

∀x , y , z
(
¬E(x , y)∨ ¬E(y , z)∨ ¬E(z, x)

)

Model-theoretic Challenges Manuel Bodirsky 16



Dichotomy for MSNP

Theorem (B.+Mottet’18).

Every CSP in MSNP can be formulated as CSP(C), for some countably
infinite ω-categorical structure C, such that

there are constants c1, . . . , cn such that Pol(C, c1, . . . , cn) has a
continuous homomorphism to Pol(K3),
and CSP(B) is NP-complete, or

CSP(B) is in P.

Remarks

The P vs NP-complete dichotomy for CSPs in MSNP was already known
(Feder+Vardi’96, Kun’13)

Proof uses structural Ramsey theory
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Proof: Ramsey Theory

For structures L and S, write
(
L
S

)
for the set of all embeddings of S ↪→ L.

Definition .
Write

L → (M)Sc

iff for all χ :
(
L
S

)→ [c] there exists an e ∈
(
L
M

)
such that |χ(e ◦

(
M
S

)
)| ≤ 1.

S

S

L

M

S

S

S

S

S

S

S S
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The Ramsey Property

Definition [Nešetřil].
A structure B is Ramsey if
B → (M)Sc for all finite S,M ↪→ B

and for every c ∈ N.

Example. (Q;<) is Ramsey.
Reformulation of Ramsey’s theorem!

Theorem (Kechris, Pestov, Todorcevic’05).

A homogeneous structure B is Ramsey
if and only if Aut(B) is extremely amenable,
i.e., every continuous action on a compact
Hausdorff space has a fixed point.

Model-theoretic Challenges Manuel Bodirsky 19



The Ramsey Property

Definition [Nešetřil].
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The Theorem of Hubička+Nešetřil

Theorem (consequence of Hubička+Nešetřil’16).

For every CSP described by an MSNP sentence Φ
there exists a structure B and a linear order < on B so that

CSP(B) = {A finite | A |= Φ};

(B, <) is Ramsey and ω-categorical.

Remarks.

Uses partite method from structural Ramsey theory (Nešetřil-Rödl).

Thus: Aut(B, <) is extremely amenable.

(3) Ramsey Expansion Conjecture. Every homogeneous structure
with finite relational signature has a finite homogeneous Ramsey expansion.
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Thus: Aut(B, <) is extremely amenable.

(3) Ramsey Expansion Conjecture. Every homogeneous structure
with finite relational signature has a finite homogeneous Ramsey expansion.

Model-theoretic Challenges Manuel Bodirsky 20



The Theorem of Hubička+Nešetřil
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Theorem (consequence of Hubička+Nešetřil’16).
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For every CSP described by an MSNP sentence Φ
there exists a structure B and a linear order < on B so that

CSP(B) = {A finite | A |= Φ};

(B, <) is Ramsey and ω-categorical.

Remarks.

Uses partite method from structural Ramsey theory (Nešetřil-Rödl).
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Thus: Aut(B, <) is extremely amenable.

(3) Ramsey Expansion Conjecture. Every homogeneous structure
with finite relational signature has a finite homogeneous Ramsey expansion.

Model-theoretic Challenges Manuel Bodirsky 20



The Theorem of Hubička+Nešetřil
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Model-theoretic Challenges in Constraint Satisfaction

B: reduct of homogeneous structure C with finite relational signature.

1 (Thomas) Does Aut(B) always have finitely many closed supergroups?

2 (Reconstruction of Topology)
Aut(B) ' Aut(B ′) ⇒ Aut(B) 't Aut(B ′)?

3 (Ramsey Expansion) Does B always have a finite homogeneous
expansion with the Ramsey property?

How to attack?

Additionally assume that C is NIP (‘not the independence property’).

Additionally assume that C is NIP and has binary signature.

Model-theoretic Challenges Manuel Bodirsky 21
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