Model-theoretic Challenges in Constraint Satisfaction

Manuel Bodirsky

Institut für Algebra, TU Dresden
28.9.2023

Logic Section, DMV Jahrestagung IImenau

Established by the European Commission

ERC Synergy Grant POCOCOP (GA 101071674).

Overview

Open problems in model theory:

Overview

Open problems in model theory:
1 Thomas' finitely may closed supergroups conjecture

Overview

Open problems in model theory:
1 Thomas' finitely may closed supergroups conjecture
2 Reconstruction of topology

Overview

Open problems in model theory:
1 Thomas' finitely may closed supergroups conjecture
2 Reconstruction of topology
3 The finite Ramsey expansion conjecture

CSPs: Logic Perspective

CSPs: Logic Perspective

τ : a finite relational signature.

CSPs: Logic Perspective

τ : a finite relational signature.
$\mathfrak{B}=\left(B ; R_{1}, \ldots, R_{l}\right):$ a τ-structure.

CSPs: Logic Perspective

τ : a finite relational signature.
$\mathfrak{B}=\left(B ; R_{1}, \ldots, R_{l}\right):$ a τ-structure.
$\operatorname{CSP}(\mathfrak{B})$
Input: A primitive positive sentence ϕ, i.e., a formula of the form

$$
\exists x_{1}, \ldots, x_{n}\left(\psi_{1} \wedge \ldots \wedge \psi_{m}\right)
$$

where ψ_{i} is of the form $x_{i}=x_{j}$ or $R\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ for $R \in \tau$.

CSPs: Logic Perspective

τ : a finite relational signature.
$\mathfrak{B}=\left(B ; R_{1}, \ldots, R_{l}\right):$ a τ-structure.
$\operatorname{CSP}(\mathfrak{B})$
Input: A primitive positive sentence ϕ, i.e., a formula of the form

$$
\exists x_{1}, \ldots, x_{n}\left(\psi_{1} \wedge \ldots \wedge \psi_{m}\right)
$$

where ψ_{i} is of the form $x_{i}=x_{j}$ or $R\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ for $R \in \tau$.
Question: $\mathfrak{B} \models \Phi$?

CSPs: Logic Perspective

τ : a finite relational signature.
$\mathfrak{B}=\left(B ; R_{1}, \ldots, R_{l}\right):$ a τ-structure.
$\operatorname{CSP}(\mathfrak{B})$
Input: A primitive positive sentence ϕ, i.e., a formula of the form

$$
\exists x_{1}, \ldots, x_{n}\left(\psi_{1} \wedge \ldots \wedge \psi_{m}\right)
$$

where ψ_{i} is of the form $x_{i}=x_{j}$ or $R\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ for $R \in \tau$.
Question: $\mathfrak{B} \models \Phi$?
Example: 3-colorability is $\operatorname{CSP}\left(K_{3}\right)$ where $K_{3}:=(\{0,1,2\} ; \neq)$:

CSPs: Logic Perspective

τ : a finite relational signature.
$\mathfrak{B}=\left(B ; R_{1}, \ldots, R_{l}\right)$: a τ-structure.
$\operatorname{CSP}(\mathfrak{B})$
Input: A primitive positive sentence ϕ, i.e., a formula of the form

$$
\exists x_{1}, \ldots, x_{n}\left(\psi_{1} \wedge \ldots \wedge \psi_{m}\right)
$$

where ψ_{i} is of the form $x_{i}=x_{j}$ or $R\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ for $R \in \tau$.
Question: $\mathfrak{B} \models \Phi$?
Example: 3-colorability is $\operatorname{CSP}\left(K_{3}\right)$ where $K_{3}:=(\{0,1,2\} ; \neq)$:

CSPs as Homomorphism Problems

CSPs as Homomorphism Problems

Let τ be a finite relational signature.
Let $\mathfrak{B}=\left(B ; R_{1}, \ldots, R_{l}\right)$ be a τ-structure.

CSPs as Homomorphism Problems

Let τ be a finite relational signature.
Let $\mathfrak{B}=\left(B ; R_{1}, \ldots, R_{l}\right)$ be a τ-structure.
$\operatorname{CSP}(\mathfrak{B})$
Input: A finite τ-structure \mathfrak{A}.

CSPs as Homomorphism Problems

Let τ be a finite relational signature.
Let $\mathfrak{B}=\left(B ; R_{1}, \ldots, R_{l}\right)$ be a τ-structure.
$\operatorname{CSP}(\mathfrak{B})$
Input: A finite τ-structure \mathfrak{A}.
Question: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ?

CSPs as Homomorphism Problems

Let τ be a finite relational signature.
Let $\mathfrak{B}=\left(B ; R_{1}, \ldots, R_{l}\right)$ be a τ-structure.
$\operatorname{CSP}(\mathfrak{B})$
Input: A finite τ-structure \mathfrak{A}.
Question: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ?

CSPs as Homomorphism Problems

Let τ be a finite relational signature.
Let $\mathfrak{B}=\left(B ; R_{1}, \ldots, R_{l}\right)$ be a τ-structure.
$\operatorname{CSP}(\mathfrak{B})$
Input: A finite τ-structure \mathfrak{A}.
Question: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ?

More Examples of CSPs

Famous CSPs:
■ $\operatorname{CSP}(\mathbb{Z} ;+, *, 1)$:

More Examples of CSPs

Famous CSPs:
■ $\operatorname{CSP}(\mathbb{Z} ;+, *, 1)$: Hilbert's 10th problem

More Examples of CSPs

Famous CSPs:
■ CSP $(\mathbb{Z} ;+, *, 1)$: Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)

More Examples of CSPs

Famous CSPs:
■ CSP $(\mathbb{Z} ;+, *, 1)$: Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
■ $\operatorname{CSP}(\mathbb{R} ;+, *, 1)$:

More Examples of CSPs

Famous CSPs:
■ $\operatorname{CSP}(\mathbb{Z} ;+, *, 1)$: Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
■ $\operatorname{CSP}(\mathbb{R} ;+, *, 1)$: decidable (Tarski-Seidenberg).

More Examples of CSPs

Famous CSPs:
■ $\operatorname{CSP}(\mathbb{Z} ;+, *, 1)$: Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
■ $\operatorname{CSP}(\mathbb{R} ;+, *, 1)$: decidable (Tarski-Seidenberg).
■ $\operatorname{CSP}(\mathbb{Q} ;+, *, 1)$:

More Examples of CSPs

Famous CSPs:
■ $\operatorname{CSP}(\mathbb{Z} ;+, *, 1)$: Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
■ $\operatorname{CSP}(\mathbb{R} ;+, *, 1)$: decidable (Tarski-Seidenberg).
■ $\operatorname{CSP}(\mathbb{Q} ;+, *, 1)$: decidability unknown.

More Examples of CSPs

Famous CSPs:
■ $\operatorname{CSP}(\mathbb{Z} ;+, *, 1)$: Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
■ $\operatorname{CSP}(\mathbb{R} ;+, *, 1)$: decidable (Tarski-Seidenberg).
■ $\operatorname{CSP}(\mathbb{Q} ;+, *, 1)$: decidability unknown.
■ $\operatorname{CSP}\left(\mathbb{R} ;+, 1,\left\{(x, y) \mid y \geq x^{2}\right)\right.$:

More Examples of CSPs

Famous CSPs:
■ $\operatorname{CSP}(\mathbb{Z} ;+, *, 1)$: Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
■ $\operatorname{CSP}(\mathbb{R} ;+, *, 1)$: decidable (Tarski-Seidenberg).
■ $\operatorname{CSP}(\mathbb{Q} ;+, *, 1)$: decidability unknown.
■ $\operatorname{CSP}\left(\mathbb{R} ;+, 1,\left\{(x, y) \mid y \geq x^{2}\right)\right.$: not known to be in P ,

More Examples of CSPs

Famous CSPs:
■ $\operatorname{CSP}(\mathbb{Z} ;+, *, 1)$: Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
■ $\operatorname{CSP}(\mathbb{R} ;+, *, 1)$: decidable (Tarski-Seidenberg).
■ $\operatorname{CSP}(\mathbb{Q} ;+, *, 1)$: decidability unknown.
■ $\operatorname{CSP}\left(\mathbb{R} ;+, 1,\left\{(x, y) \mid y \geq x^{2}\right)\right.$: not known to be in P , harder than sums-of-square-roots problem (computational geometry).

More Examples of CSPs

Famous CSPs:
■ $\operatorname{CSP}(\mathbb{Z} ;+, *, 1)$: Hilbert's 10th problem
Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
■ $\operatorname{CSP}(\mathbb{R} ;+, *, 1)$: decidable (Tarski-Seidenberg).
■ $\operatorname{CSP}(\mathbb{Q} ;+, *, 1)$: decidability unknown.
■ $\operatorname{CSP}\left(\mathbb{R} ;+, 1,\left\{(x, y) \mid y \geq x^{2}\right)\right.$: not known to be in P , harder than sums-of-square-roots problem (computational geometry).
$■ \operatorname{CSP}(\mathbb{Q} ;\{(x, y) \mid x=y+1\},\{(x, y) \mid x=2 y\},\{(x, y, z) \mid x \geq \min (y, z)\}):$

More Examples of CSPs

Famous CSPs:
■ $\operatorname{CSP}(\mathbb{Z} ;+, *, 1)$: Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
■ $\operatorname{CSP}(\mathbb{R} ;+, *, 1)$: decidable (Tarski-Seidenberg).
■ $\operatorname{CSP}(\mathbb{Q} ;+, *, 1)$: decidability unknown.
■ $\operatorname{CSP}\left(\mathbb{R} ;+, 1,\left\{(x, y) \mid y \geq x^{2}\right)\right.$: not known to be in P , harder than sums-of-square-roots problem (computational geometry).
■ $\operatorname{CSP}(\mathbb{Q} ;\{(x, y) \mid x=y+1\},\{(x, y) \mid x=2 y\},\{(x, y, z) \mid x \geq \min (y, z)\}):$ not known to be in P ,

More Examples of CSPs

Famous CSPs:
■ $\operatorname{CSP}(\mathbb{Z} ;+, *, 1)$: Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
■ $\operatorname{CSP}(\mathbb{R} ;+, *, 1)$: decidable (Tarski-Seidenberg).
■ $\operatorname{CSP}(\mathbb{Q} ;+, *, 1)$: decidability unknown.
■ $\operatorname{CSP}\left(\mathbb{R} ;+, 1,\left\{(x, y) \mid y \geq x^{2}\right)\right.$: not known to be in P , harder than sums-of-square-roots problem (computational geometry).
$■ \operatorname{CSP}(\mathbb{Q} ;\{(x, y) \mid x=y+1\},\{(x, y) \mid x=2 y\},\{(x, y, z) \mid x \geq \min (y, z)\}):$ not known to be in P, at least as hard as solving mean payoff games (verification)

More Examples of CSPs

Famous CSPs:
■ $\operatorname{CSP}(\mathbb{Z} ;+, *, 1)$: Hilbert's 10th problem Undecidable (Davis+Matiyasevich+Putnam+Robinson'71)
■ $\operatorname{CSP}(\mathbb{R} ;+, *, 1)$: decidable (Tarski-Seidenberg).
■ $\operatorname{CSP}(\mathbb{Q} ;+, *, 1)$: decidability unknown.
■ $\operatorname{CSP}\left(\mathbb{R} ;+, 1,\left\{(x, y) \mid y \geq x^{2}\right)\right.$:
not known to be in P ,
harder than sums-of-square-roots problem (computational geometry).
■ $\operatorname{CSP}(\mathbb{Q} ;\{(x, y) \mid x=y+1\},\{(x, y) \mid x=2 y\},\{(x, y, z) \mid x \geq \min (y, z)\}):$ not known to be in P,
at least as hard as solving mean payoff games (verification)
Theorem. B.+Grohe'08: Every decision problem is equivalent to a CSP (under polynomial-time Turing reductions)

CSPs

CSPs

Polymorphisms

Polymorphisms

Def. An operation $f: D^{k} \rightarrow D$ preserves $R \subseteq D^{m}$ if for all $a^{1}, \ldots, a^{k} \in R$

$$
\left(f\left(a_{1}^{1}, \ldots, a_{1}^{k}\right), \ldots, f\left(a_{m}^{1}, \ldots, a_{m}^{k}\right)\right) \in R
$$

Polymorphisms

Def. An operation $f: D^{k} \rightarrow D$ preserves $R \subseteq D^{m}$ if for all $a^{1}, \ldots, a^{k} \in R$

$$
\left(f\left(a_{1}^{1}, \ldots, a_{1}^{k}\right), \ldots, f\left(a_{m}^{1}, \ldots, a_{m}^{k}\right)\right) \in R
$$

Example: $(x, y) \mapsto(x+y) / 2$ preserves all convex relations $R \subseteq \mathbb{R}^{m}$

Polymorphisms

Def. An operation $f: D^{k} \rightarrow D$ preserves $R \subseteq D^{m}$ if for all $a^{1}, \ldots, a^{k} \in R$

$$
\left(f\left(a_{1}^{1}, \ldots, a_{1}^{k}\right), \ldots, f\left(a_{m}^{1}, \ldots, a_{m}^{k}\right)\right) \in R
$$

Example: $(x, y) \mapsto(x+y) / 2$ preserves all convex relations $R \subseteq \mathbb{R}^{m}$

Polymorphisms

Def. An operation $f: D^{k} \rightarrow D$ preserves $R \subseteq D^{m}$ if for all $a^{1}, \ldots, a^{k} \in R$

$$
\left(f\left(a_{1}^{1}, \ldots, a_{1}^{k}\right), \ldots, f\left(a_{m}^{1}, \ldots, a_{m}^{k}\right)\right) \in R
$$

Example: $(x, y) \mapsto(x+y) / 2$ preserves all convex relations $R \subseteq \mathbb{R}^{m}$

■ f is a polymorphism of \mathfrak{B} if f preserves all relations of \mathfrak{B}.

Polymorphisms

Def. An operation $f: D^{k} \rightarrow D$ preserves $R \subseteq D^{m}$ if for all $a^{1}, \ldots, a^{k} \in R$

$$
\left(f\left(a_{1}^{1}, \ldots, a_{1}^{k}\right), \ldots, f\left(a_{m}^{1}, \ldots, a_{m}^{k}\right)\right) \in R
$$

Example: $(x, y) \mapsto(x+y) / 2$ preserves all convex relations $R \subseteq \mathbb{R}^{m}$

■ f is a polymorphism of \mathfrak{B} if f preserves all relations of \mathfrak{B}.

- $\operatorname{Pol}(\mathfrak{B})$: set of all polymorphisms of \mathfrak{B}.

Polymorphisms

Def. An operation $f: D^{k} \rightarrow D$ preserves $R \subseteq D^{m}$ if for all $a^{1}, \ldots, a^{k} \in R$

$$
\left(f\left(a_{1}^{1}, \ldots, a_{1}^{k}\right), \ldots, f\left(a_{m}^{1}, \ldots, a_{m}^{k}\right)\right) \in R
$$

Example: $(x, y) \mapsto(x+y) / 2$ preserves all convex relations $R \subseteq \mathbb{R}^{m}$

■ f is a polymorphism of \mathfrak{B} if f preserves all relations of \mathfrak{B}.
■ $\operatorname{Pol}(\mathfrak{B})$: set of all polymorphisms of \mathfrak{B}.
■ $\operatorname{Pol}(\mathfrak{B})$ contains $\operatorname{Aut}(\mathfrak{B})$, the automorphisms of \mathfrak{B}.

Polymorphisms

Def. An operation $f: D^{k} \rightarrow D$ preserves $R \subseteq D^{m}$ if for all $a^{1}, \ldots, a^{k} \in R$

$$
\left(f\left(a_{1}^{1}, \ldots, a_{1}^{k}\right), \ldots, f\left(a_{m}^{1}, \ldots, a_{m}^{k}\right)\right) \in R
$$

Example: $(x, y) \mapsto(x+y) / 2$ preserves all convex relations $R \subseteq \mathbb{R}^{m}$

■ f is a polymorphism of \mathfrak{B} if f preserves all relations of \mathfrak{B}.

- $\operatorname{Pol}(\mathfrak{B})$: set of all polymorphisms of \mathfrak{B}.

■ $\operatorname{Pol}(\mathfrak{B})$ contains $\operatorname{Aut}(\mathfrak{B})$, the automorphisms of \mathfrak{B}.
■ $\operatorname{Pol}(\mathfrak{B})$ is a clone: contains projections and closed under composition.

Universal-Algebraic Dichotomy

Let \mathfrak{B} be a finite structure.

Universal-Algebraic Dichotomy

Let \mathfrak{B} be a finite structure.
Theorem (Bulatov+Jeavons+Krokhin'03).
$■$ If $\operatorname{Pol}(\mathfrak{A})=\operatorname{Pol}(\mathfrak{B})$ then $\operatorname{CSP}(\mathfrak{A})$ and $\operatorname{CSP}(\mathfrak{B})$ are P -time equivalent.

Universal-Algebraic Dichotomy

Let \mathfrak{B} be a finite structure.
Theorem (Bulatov+Jeavons+Krokhin'03).

- If $\operatorname{Pol}(\mathfrak{A})=\operatorname{Pol}(\mathfrak{B})$ then $\operatorname{CSP}(\mathfrak{A})$ and $\operatorname{CSP}(\mathfrak{B})$ are P -time equivalent.

■ If $\operatorname{Pol}(\mathfrak{A}) \simeq \operatorname{Pol}(\mathfrak{B})$ then $\operatorname{CSP}(\mathfrak{A})$ and $\operatorname{CSP}(\mathfrak{B})$ are P -time equivalent.

Universal-Algebraic Dichotomy

Let \mathfrak{B} be a finite structure.
Theorem (Bulatov+Jeavons+Krokhin'03).
■ If $\operatorname{Pol}(\mathfrak{A})=\operatorname{Pol}(\mathfrak{B})$ then $\operatorname{CSP}(\mathfrak{A})$ and $\operatorname{CSP}(\mathfrak{B})$ are $\operatorname{P-time}$ equivalent.

- If $\operatorname{Pol}(\mathfrak{A}) \simeq \operatorname{Pol}(\mathfrak{B})$ then $\operatorname{CSP}(\mathfrak{A})$ and $\operatorname{CSP}(\mathfrak{B})$ are $\operatorname{P-time}$ equivalent.

■ If \mathfrak{C} is homomorphically equivalent to \mathfrak{B} of minimal size, and $\operatorname{Pol}\left(\mathfrak{C}, c_{1}, \ldots, c_{n}\right)$ has a homomorphism to $\operatorname{Pol}\left(K_{3}\right)$, then $\operatorname{CSP}(\mathfrak{B})$ is NP-hard.

Universal-Algebraic Dichotomy

Let \mathfrak{B} be a finite structure.
Theorem (Bulatov+Jeavons+Krokhin'03).
■ If $\operatorname{Pol}(\mathfrak{A})=\operatorname{Pol}(\mathfrak{B})$ then $\operatorname{CSP}(\mathfrak{A})$ and $\operatorname{CSP}(\mathfrak{B})$ are $\operatorname{P-time}$ equivalent.
■ If $\operatorname{Pol}(\mathfrak{A}) \simeq \operatorname{Pol}(\mathfrak{B})$ then $\operatorname{CSP}(\mathfrak{A})$ and $\operatorname{CSP}(\mathfrak{B})$ are $\operatorname{P-time}$ equivalent.
■ If \mathfrak{C} is homomorphically equivalent to \mathfrak{B} of minimal size, and $\operatorname{Pol}\left(\mathfrak{C}, c_{1}, \ldots, c_{n}\right)$ has a homomorphism to $\operatorname{Pol}\left(K_{3}\right)$, then $\operatorname{CSP}(\mathfrak{B})$ is NP-hard.

Theorem (Bulatov'17, Zhuk'17). If Pol $\left(\mathfrak{C}, c_{1}, \ldots, c_{n}\right)$ does does not have a homomorphism to $\operatorname{CSP}\left(K_{3}\right)$, then $\operatorname{CSP}(\mathfrak{B})$ is in P .

Model Theory

Looking for a class \mathcal{C} of infinite structures such that

Model Theory

Looking for a class \mathcal{C} of infinite structures such that
(A) The universal-algebraic approach also applies to structures from \mathcal{C}.

Model Theory

Looking for a class \mathcal{C} of infinite structures such that
(A) The universal-algebraic approach also applies to structures from \mathcal{C}.
(B) CSPs for structures from \mathcal{C} are interesting in Logic, Math and CS.

Model Theory

Looking for a class \mathcal{C} of infinite structures such that
(A) The universal-algebraic approach also applies to structures from \mathcal{C}.
(B) CSPs for structures from \mathcal{C} are interesting in Logic, Math and CS.

Definition

A structure \mathfrak{B} is called ω-categorical if all countable structures that satisfy the same first-order sentences as \mathfrak{B} are isomorphic.

Model Theory

Looking for a class \mathcal{C} of infinite structures such that
(A) The universal-algebraic approach also applies to structures from \mathcal{C}.
(B) CSPs for structures from \mathcal{C} are interesting in Logic, Math and CS.

Definition

A structure \mathfrak{B} is called ω-categorical if all countable structures that satisfy the same first-order sentences as \mathfrak{B} are isomorphic.

Examples.

■ ($\mathbb{Q} ;<$) is ω-categorical:

Model Theory

Looking for a class \mathcal{C} of infinite structures such that
(A) The universal-algebraic approach also applies to structures from \mathcal{C}.
(B) CSPs for structures from \mathcal{C} are interesting in Logic, Math and CS.

Definition

A structure \mathfrak{B} is called ω-categorical if all countable structures that satisfy the same first-order sentences as \mathfrak{B} are isomorphic.

Examples.

■ $(\mathbb{Q} ;<)$ is ω-categorical: Cantor'1895: all countable dense unbounded linear orders are isomorphic.

Model Theory

Looking for a class \mathcal{C} of infinite structures such that
(A) The universal-algebraic approach also applies to structures from \mathcal{C}.
(B) CSPs for structures from \mathcal{C} are interesting in Logic, Math and CS.

Definition

A structure \mathfrak{B} is called ω-categorical if all countable structures that satisfy the same first-order sentences as \mathfrak{B} are isomorphic.

Examples.

■ $(\mathbb{Q} ;<)$ is ω-categorical: Cantor'1895: all countable dense unbounded linear orders are isomorphic.
■ Every finite structure.

Model Theory

Looking for a class \mathcal{C} of infinite structures such that
(A) The universal-algebraic approach also applies to structures from \mathcal{C}.
(B) CSPs for structures from \mathcal{C} are interesting in Logic, Math and CS.

Definition

A structure \mathfrak{B} is called ω-categorical if all countable structures that satisfy the same first-order sentences as \mathfrak{B} are isomorphic.

Examples.

■ $(\mathbb{Q} ;<)$ is ω-categorical: Cantor'1895: all countable dense unbounded linear orders are isomorphic.
■ Every finite structure.

- Every homogeneous structure with a finite relational signature (every isomorphism between finite substructures can be extended to an automorphism).

Model Theory

Looking for a class \mathcal{C} of infinite structures such that
(A) The universal-algebraic approach also applies to structures from \mathcal{C}.
(B) CSPs for structures from \mathcal{C} are interesting in Logic, Math and CS.

Definition

A structure \mathfrak{B} is called ω-categorical if all countable structures that satisfy the same first-order sentences as \mathfrak{B} are isomorphic.

Examples.

■ $(\mathbb{Q} ;<)$ is ω-categorical: Cantor'1895: all countable dense unbounded linear orders are isomorphic.
■ Every finite structure.
■ Every homogeneous structure with a finite relational signature (every isomorphism between finite substructures can be extended to an automorphism).
■ Reducts of ω-categorical structures are ω-categorical.

Complexity Classification

Complexity Classification

Theorem (B.+Nešetřil'03). If \mathfrak{A} and \mathfrak{B} are ω-categorical and $\operatorname{Pol}(\mathfrak{A})=\operatorname{Pol}(\mathfrak{B})$, then $\operatorname{CSP}(\mathfrak{A})$ and $\operatorname{CSP}(\mathfrak{B})$ are polynomial-time equivalent.

Complexity Classification

Theorem (B.+Nešetřil'03). If \mathfrak{A} and \mathfrak{B} are ω-categorical and $\operatorname{Pol}(\mathfrak{A})=\operatorname{Pol}(\mathfrak{B})$, then $\operatorname{CSP}(\mathfrak{A})$ and $\operatorname{CSP}(\mathfrak{B})$ are polynomial-time equivalent.

Theorem (B.+Kara 2007). \mathfrak{B} : a structure of the form $\left(\mathbb{Q} ; R_{1}, \ldots, R_{l}\right)$ whose relations are first-order definable over $(\mathbb{Q} ;<)$.
Then $\operatorname{CSP}(\mathfrak{B})$ is either in P or NP-complete.

Complexity Classification

Theorem (B.+Nešetřil'03). If \mathfrak{A} and \mathfrak{B} are ω-categorical and $\operatorname{Pol}(\mathfrak{A})=\operatorname{Pol}(\mathfrak{B})$, then $\operatorname{CSP}(\mathfrak{A})$ and $\operatorname{CSP}(\mathfrak{B})$ are polynomial-time equivalent.

Theorem (B.+Kara 2007). \mathfrak{B} : a structure of the form $\left(\mathbb{Q} ; R_{1}, \ldots, R_{l}\right)$ whose relations are first-order definable over $(\mathbb{Q} ;<)$.
Then $\operatorname{CSP}(\mathfrak{B})$ is either in P or NP-complete.

Examples.

Complexity Classification

Theorem (B.+Nešetřil'03). If \mathfrak{A} and \mathfrak{B} are ω-categorical and $\operatorname{Pol}(\mathfrak{A})=\operatorname{Pol}(\mathfrak{B})$, then $\operatorname{CSP}(\mathfrak{A})$ and $\operatorname{CSP}(\mathfrak{B})$ are polynomial-time equivalent.

Theorem (B.+Kara 2007). \mathfrak{B} : a structure of the form $\left(\mathbb{Q} ; R_{1}, \ldots, R_{l}\right)$ whose relations are first-order definable over $(\mathbb{Q} ;<)$.
Then $\operatorname{CSP}(\mathfrak{B})$ is either in P or NP-complete.

Examples.

■ $\operatorname{CSP}(\mathbb{Q} ;\{(x, y, z) \mid x>y \vee x>z\})$ is in P.

Complexity Classification

Theorem (B.+Nešetřil'03). If \mathfrak{A} and \mathfrak{B} are ω-categorical and $\operatorname{Pol}(\mathfrak{A})=\operatorname{Pol}(\mathfrak{B})$, then $\operatorname{CSP}(\mathfrak{A})$ and $\operatorname{CSP}(\mathfrak{B})$ are polynomial-time equivalent.

Theorem (B.+Kara 2007). \mathfrak{B} : a structure of the form $\left(\mathbb{Q} ; R_{1}, \ldots, R_{l}\right)$ whose relations are first-order definable over $(\mathbb{Q} ;<)$.
Then $\operatorname{CSP}(\mathfrak{B})$ is either in P or NP-complete.

Examples.

■ $\operatorname{CSP}(\mathbb{Q} ;\{(x, y, z) \mid x>y \vee x>z\})$ is in P .
$■ \operatorname{CSP}(\mathbb{Q} ;\{(x, y, z) \mid x=y<z \vee y=z<x \vee z=x<y\})$ is in P .

Thomas' Conjecture

\mathfrak{B} : first-order definable in $(\mathbb{Q} ;<)$.

Thomas' Conjecture

\mathfrak{B} : first-order definable in $(\mathbb{Q} ;<)$.
To classify complexity of $\operatorname{CSP}(\mathbb{Q} ;<)$, use result of Cameron'76: $\operatorname{Aut}(\mathfrak{B})$ equals one of the following.

Thomas' Conjecture

\mathfrak{B} : first-order definable in $(\mathbb{Q} ;<)$.
To classify complexity of $\operatorname{CSP}(\mathbb{Q} ;<)$, use result of Cameron'76:
$\operatorname{Aut}(\mathfrak{B})$ equals one of the following.
■ $\operatorname{Sym}(\mathbb{Q})$

Thomas' Conjecture

\mathfrak{B} : first-order definable in $(\mathbb{Q} ;<)$.
To classify complexity of $\operatorname{CSP}(\mathbb{Q} ;<)$, use result of Cameron'76:
$\operatorname{Aut}(\mathfrak{B})$ equals one of the following.
■ $\operatorname{Sym}(\mathbb{Q})$

- Aut $(\mathbb{Q} ;<)$

Thomas' Conjecture

\mathfrak{B} : first-order definable in $(\mathbb{Q} ;<)$.
To classify complexity of $\operatorname{CSP}(\mathbb{Q} ;<)$, use result of Cameron'76:
Aut (\mathfrak{B}) equals one of the following.
■ $\operatorname{Sym}(\mathbb{Q})$

- $\operatorname{Aut}(\mathbb{Q} ;<)$
$■ \operatorname{Aut}(\mathbb{Q} ;\{(x, y, z) \mid x<y<z \vee z<y<x\})$

Thomas' Conjecture

\mathfrak{B} : first-order definable in $(\mathbb{Q} ;<)$.
To classify complexity of $\operatorname{CSP}(\mathbb{Q} ;<)$, use result of Cameron'76:
$\operatorname{Aut}(\mathfrak{B})$ equals one of the following.
■ $\operatorname{Sym}(\mathbb{Q})$

- $\operatorname{Aut}(\mathbb{Q} ;<)$
$\square \operatorname{Aut}(\mathbb{Q} ;\{(x, y, z) \mid x<y<z \vee z<y<x\})$
- Two more cases.

Thomas' Conjecture

\mathfrak{B} : first-order definable in $(\mathbb{Q} ;<)$.
To classify complexity of $\operatorname{CSP}(\mathbb{Q} ;<)$, use result of Cameron'76:
$\operatorname{Aut}(\mathfrak{B})$ equals one of the following.
■ $\operatorname{Sym}(\mathbb{Q})$

- Aut $(\mathbb{Q} ;<)$
$\square \operatorname{Aut}(\mathbb{Q} ;\{(x, y, z) \mid x<y<z \vee z<y<x\})$
■ Two more cases.
(1) Conjecture (S. Thomas).

Thomas' Conjecture

\mathfrak{B} : first-order definable in $(\mathbb{Q} ;<)$.
To classify complexity of $\operatorname{CSP}(\mathbb{Q} ;<)$, use result of Cameron'76:
$\operatorname{Aut}(\mathfrak{B})$ equals one of the following.
■ $\operatorname{Sym}(\mathbb{Q})$

- Aut $(\mathbb{Q} ;<)$
$■$ Aut $(\mathbb{Q} ;\{(x, y, z) \mid x<y<z \vee z<y<x\})$
- Two more cases.
(1) Conjecture (S. Thomas).

Let \mathfrak{C} be a homogeneous structure with finite relational signature.

Thomas' Conjecture

\mathfrak{B} : first-order definable in $(\mathbb{Q} ;<)$.
To classify complexity of $\operatorname{CSP}(\mathbb{Q} ;<)$, use result of Cameron'76:
Aut (\mathfrak{B}) equals one of the following.
■ $\operatorname{Sym}(\mathbb{Q})$

- $\operatorname{Aut}(\mathbb{Q} ;<)$

■ Aut $(\mathbb{Q} ;\{(x, y, z) \mid x<y<z \vee z<y<x\})$

- Two more cases.
(1) Conjecture (S. Thomas).

Let \mathfrak{C} be a homogeneous structure with finite relational signature.
Then there are finitely many structures with a first-order definition in \mathfrak{C} up to first-order interdefinability.

Thomas' Conjecture

\mathfrak{B} : first-order definable in $(\mathbb{Q} ;<)$.
To classify complexity of $\operatorname{CSP}(\mathbb{Q} ;<)$, use result of Cameron'76:
Aut (\mathfrak{B}) equals one of the following.
■ $\operatorname{Sym}(\mathbb{Q})$

- $\operatorname{Aut}(\mathbb{Q} ;<)$
$\square \operatorname{Aut}(\mathbb{Q} ;\{(x, y, z) \mid x<y<z \vee z<y<x\})$
- Two more cases.
(1) Conjecture (S. Thomas).

Let \mathfrak{C} be a homogeneous structure with finite relational signature.
Then there are finitely many structures with a first-order definition in \mathfrak{C} up to first-order interdefinability.

Equivalently:

Then there are finitely many closed supergroups of $\operatorname{Aut}(\mathfrak{C})$.

Topology

Topology

Equip B with the discrete topology.

Topology

Equip B with the discrete topology.
$\mathcal{O}_{B}^{(k)}:=\left\{f: B^{k} \rightarrow B\right\}$ equipped with topology of pointwise convergence.

Topology

Equip B with the discrete topology.
$\mathcal{O}_{B}^{(k)}:=\left\{f: B^{k} \rightarrow B\right\}$ equipped with topology of pointwise convergence. $\mathcal{O}_{B}:=\bigcup_{k \in \mathbb{N}} \mathcal{O}_{B}^{(k)}$ equipped with sum topology.

Topology

Equip B with the discrete topology.
$\mathcal{O}_{B}^{(k)}:=\left\{f: B^{k} \rightarrow B\right\}$ equipped with topology of pointwise convergence.
$\mathcal{O}_{B}:=\bigcup_{k \in \mathbb{N}} \mathcal{O}_{B}^{(k)}$ equipped with sum topology.
Observations.
$■ \mathcal{C} \subseteq \mathcal{O}_{B}$ closed iff there exists a structure \mathfrak{B} such that $\mathcal{C}=\operatorname{Pol}(\mathfrak{B})$.

Topology

Equip B with the discrete topology.
$\mathcal{O}_{B}^{(k)}:=\left\{f: B^{k} \rightarrow B\right\}$ equipped with topology of pointwise convergence.
$\mathcal{O}_{B}:=\bigcup_{k \in \mathbb{N}} \mathcal{O}_{B}^{(k)}$ equipped with sum topology.
Observations.
■ $\mathcal{C} \subseteq \mathcal{O}_{B}$ closed iff there exists a structure \mathfrak{B} such that $\mathcal{C}=\operatorname{Pol}(\mathfrak{B})$.
■ $\operatorname{Pol}(\mathfrak{B})$ is a topological clone: composition in $\operatorname{Pol}(\mathfrak{B})$ is continuous.

Topology

Equip B with the discrete topology.
$\mathcal{O}_{B}^{(k)}:=\left\{f: B^{k} \rightarrow B\right\}$ equipped with topology of pointwise convergence.
$\mathcal{O}_{B}:=\bigcup_{k \in \mathbb{N}} \mathcal{O}_{B}^{(k)}$ equipped with sum topology.
Observations.
■ $\mathcal{C} \subseteq \mathcal{O}_{B}$ closed iff there exists a structure \mathfrak{B} such that $\mathcal{C}=\operatorname{Pol}(\mathfrak{B})$.
■ $\operatorname{Pol}(\mathfrak{B})$ is a topological clone: composition in $\operatorname{Pol}(\mathfrak{B})$ is continuous.
$\xi: \operatorname{Pol}(\mathfrak{A}) \rightarrow \operatorname{Pol}(\mathfrak{B})$ is called a (clone) homomorphism if

Topology

Equip B with the discrete topology.
$\mathcal{O}_{B}^{(k)}:=\left\{f: B^{k} \rightarrow B\right\}$ equipped with topology of pointwise convergence.
$\mathcal{O}_{B}:=\bigcup_{k \in \mathbb{N}} \mathcal{O}_{B}^{(k)}$ equipped with sum topology.
Observations.
$■ \mathcal{C} \subseteq \mathcal{O}_{B}$ closed iff there exists a structure \mathfrak{B} such that $\mathcal{C}=\operatorname{Pol}(\mathfrak{B})$.
■ $\operatorname{Pol}(\mathfrak{B})$ is a topological clone: composition in $\operatorname{Pol}(\mathfrak{B})$ is continuous.
$\xi: \operatorname{Pol}(\mathfrak{A}) \rightarrow \operatorname{Pol}(\mathfrak{B})$ is called a (clone) homomorphism if
■ it maps operations of arity k to operations of arity k,

Topology

Equip B with the discrete topology.
$\mathcal{O}_{B}^{(k)}:=\left\{f: B^{k} \rightarrow B\right\}$ equipped with topology of pointwise convergence.
$\mathcal{O}_{B}:=\bigcup_{k \in \mathbb{N}} \mathcal{O}_{B}^{(k)}$ equipped with sum topology.
Observations.
$■ \mathcal{C} \subseteq \mathcal{O}_{B}$ closed iff there exists a structure \mathfrak{B} such that $\mathcal{C}=\operatorname{Pol}(\mathfrak{B})$.
■ $\operatorname{Pol}(\mathfrak{B})$ is a topological clone: composition in $\operatorname{Pol}(\mathfrak{B})$ is continuous.
$\xi: \operatorname{Pol}(\mathfrak{A}) \rightarrow \operatorname{Pol}(\mathfrak{B})$ is called a (clone) homomorphism if
■ it maps operations of arity k to operations of arity k,
■ it maps the i-th projection of arity k in $\operatorname{Pol}(\mathfrak{A})$ to the i-th projection of arity k in $\operatorname{Pol}(\mathfrak{B})$,

Topology

Equip B with the discrete topology.
$\mathcal{O}_{B}^{(k)}:=\left\{f: B^{k} \rightarrow B\right\}$ equipped with topology of pointwise convergence.
$\mathcal{O}_{B}:=\bigcup_{k \in \mathbb{N}} \mathcal{O}_{B}^{(k)}$ equipped with sum topology.
Observations.
■ $\mathcal{C} \subseteq \mathcal{O}_{B}$ closed iff there exists a structure \mathfrak{B} such that $\mathcal{C}=\operatorname{Pol}(\mathfrak{B})$.

- $\operatorname{Pol}(\mathfrak{B})$ is a topological clone: composition in $\operatorname{Pol}(\mathfrak{B})$ is continuous.
$\xi: \operatorname{Pol}(\mathfrak{A}) \rightarrow \operatorname{Pol}(\mathfrak{B})$ is called a (clone) homomorphism if
- it maps operations of arity k to operations of arity k,
- it maps the i-th projection of arity k in $\operatorname{Pol}(\mathfrak{A})$ to the i-th projection of arity k in $\operatorname{Pol}(\mathfrak{B})$,
■ it preserves composition: for all $g, f_{1}, \ldots, f_{n} \in \operatorname{Pol}(\mathfrak{A})$

$$
\xi\left(g\left(f_{1}, \ldots, f_{n}\right)\right)=\xi(g)\left(\xi\left(f_{1}\right), \ldots, \xi\left(f_{n}\right)\right)
$$

Topological Clones

$\operatorname{Pol}(\mathfrak{B}) \simeq_{t} \operatorname{Pol}(\mathfrak{A}):$

Topological Clones

$\operatorname{Pol}(\mathfrak{B}) \simeq_{t} \operatorname{Pol}(\mathfrak{A}):$
there is a bijective homomorphism $\xi: \operatorname{Pol}(\mathfrak{B}) \rightarrow \operatorname{Pol}(\mathfrak{A})$ such that

Topological Clones

$\operatorname{Pol}(\mathfrak{B}) \simeq_{t} \operatorname{Pol}(\mathfrak{A}):$
there is a bijective homomorphism $\xi: \operatorname{Pol}(\mathfrak{B}) \rightarrow \operatorname{Pol}(\mathfrak{A})$ such that
■ ξ^{-1} is a homomorphism as well, and

Topological Clones

$\operatorname{Pol}(\mathfrak{B}) \simeq_{t} \operatorname{Pol}(\mathfrak{A}):$
there is a bijective homomorphism $\xi: \operatorname{Pol}(\mathfrak{B}) \rightarrow \operatorname{Pol}(\mathfrak{A})$ such that
■ ξ^{-1} is a homomorphism as well, and
$■ \xi$ is a homeomorphism.

Topological Clones

$\operatorname{Pol}(\mathfrak{B}) \simeq_{t} \operatorname{Pol}(\mathfrak{A}):$
there is a bijective homomorphism $\xi: \operatorname{Pol}(\mathfrak{B}) \rightarrow \operatorname{Pol}(\mathfrak{A})$ such that
■ ξ^{-1} is a homomorphism as well, and
$■ \xi$ is a homeomorphism.
Theorem (B.+Pinsker'15).
Let \mathfrak{A} and \mathfrak{B} be ω-categorical. Then $\operatorname{Pol}(\mathfrak{A}) \simeq_{t} \operatorname{Pol}(\mathfrak{B})$ if and only if

Topological Clones

$\operatorname{Pol}(\mathfrak{B}) \simeq_{t} \operatorname{Pol}(\mathfrak{A}):$
there is a bijective homomorphism $\xi: \operatorname{Pol}(\mathfrak{B}) \rightarrow \operatorname{Pol}(\mathfrak{A})$ such that
■ ξ^{-1} is a homomorphism as well, and
$■ \xi$ is a homeomorphism.

Theorem (B.+Pinsker'15).

Let \mathfrak{A} and \mathfrak{B} be ω-categorical. Then $\operatorname{Pol}(\mathfrak{A}) \simeq_{t} \operatorname{Pol}(\mathfrak{B})$ if and only if \mathfrak{A} and \mathfrak{B} are primitively positively bi-interpretable.

Topological Clones

$\operatorname{Pol}(\mathfrak{B}) \simeq_{t} \operatorname{Pol}(\mathfrak{A}):$
there is a bijective homomorphism $\xi: \operatorname{Pol}(\mathfrak{B}) \rightarrow \operatorname{Pol}(\mathfrak{A})$ such that
■ ξ^{-1} is a homomorphism as well, and
$■ \xi$ is a homeomorphism.

Theorem (B.+Pinsker'15).

Let \mathfrak{A} and \mathfrak{B} be ω-categorical. Then $\operatorname{Pol}(\mathfrak{A}) \simeq_{t} \operatorname{Pol}(\mathfrak{B})$ if and only if \mathfrak{A} and \mathfrak{B} are primitively positively bi-interpretable.
In this case, $\operatorname{CSP}(\mathfrak{A})$ and $\operatorname{CSP}(\mathfrak{B})$ are P-time equivalent.

Topological Clones

$\operatorname{Pol}(\mathfrak{B}) \simeq_{t} \operatorname{Pol}(\mathfrak{A}):$
there is a bijective homomorphism $\xi: \operatorname{Pol}(\mathfrak{B}) \rightarrow \operatorname{Pol}(\mathfrak{A})$ such that
■ ξ^{-1} is a homomorphism as well, and
$■ \xi$ is a homeomorphism.

Theorem (B.+Pinsker'15).

Let \mathfrak{A} and \mathfrak{B} be ω-categorical. Then $\operatorname{Pol}(\mathfrak{A}) \simeq_{t} \operatorname{Pol}(\mathfrak{B})$ if and only if \mathfrak{A} and \mathfrak{B} are primitively positively bi-interpretable. In this case, $\operatorname{CSP}(\mathfrak{A})$ and $\operatorname{CSP}(\mathfrak{B})$ are P-time equivalent.
(2) Reconstruction Conjecture. Let \mathfrak{A} and \mathfrak{B} be reducts of structures that are homogeneous with finite relational signature. Then

- $\operatorname{Pol}(\mathfrak{A}) \simeq \operatorname{Pol}(\mathfrak{B}) \Rightarrow \operatorname{Pol}(\mathfrak{A}) \simeq_{t} \operatorname{Pol}(\mathfrak{B})$
- $\operatorname{Aut}(\mathfrak{A}) \simeq \operatorname{Aut}(\mathfrak{B}) \Rightarrow \operatorname{Aut}(\mathfrak{A}) \simeq_{t} \operatorname{Aut}(\mathfrak{B})$.

Finite Model Theory

Finite Model Theory

Examples of CSPs for ω-categorical structures \mathfrak{B} ?

Finite Model Theory

Examples of CSPs for ω-categorical structures \mathfrak{B} ?

Systematic source of examples:
Monadic Second-Order Logic (MSO):

Finite Model Theory

Examples of CSPs for ω-categorical structures \mathfrak{B} ?
Systematic source of examples: Monadic Second-Order Logic (MSO):
extension of first-order logic by (universal and existential) quantification over subsets of the domain.

Finite Model Theory

Examples of CSPs for ω-categorical structures \mathfrak{B} ?
Systematic source of examples: Monadic Second-Order Logic (MSO):
extension of first-order logic by (universal and existential) quantification over subsets of the domain.

Example 1: 3-colorability of a graph ($V ; E$) can be expressed by

Finite Model Theory

Examples of CSPs for ω-categorical structures \mathfrak{B} ?
Systematic source of examples:
Monadic Second-Order Logic (MSO):
extension of first-order logic by (universal and existential) quantification over subsets of the domain.
Example 1: 3-colorability of a graph $(V ; E)$ can be expressed by

$$
\begin{aligned}
\exists R, G, B . \forall x, y & :(R(x) \vee G(x) \vee B(x)) \\
& \wedge \\
& (E(x, y) \Rightarrow \neg(R(x) \wedge R(y) \\
& \vee G(x) \wedge G(y) \\
& \vee B(x) \wedge B(y)))
\end{aligned}
$$

Finite Model Theory

Examples of CSPs for ω-categorical structures \mathfrak{B} ?
Systematic source of examples: Monadic Second-Order Logic (MSO):
extension of first-order logic by (universal and existential) quantification over subsets of the domain.

Example 1: 3-colorability of a graph $(V ; E)$ can be expressed by

$$
\begin{aligned}
\exists R, G, B . \forall x, y: & (R(x) \vee G(x) \vee B(x)) \\
& \wedge \\
& (E(x, y) \Rightarrow \neg(R(x) \wedge R(y) \\
& \vee G(x) \wedge G(y) \\
& \vee B(x) \wedge B(y)))
\end{aligned}
$$

Example 2: Acyclicity of a digraph $(V ; E)$ can be expressed by

Finite Model Theory

Examples of CSPs for ω-categorical structures \mathfrak{B} ?
Systematic source of examples:
Monadic Second-Order Logic (MSO):
extension of first-order logic by (universal and existential) quantification over subsets of the domain.
Example 1: 3-colorability of a graph $(V ; E)$ can be expressed by

$$
\begin{aligned}
\exists R, G, B . \forall x, y: & (R(x) \vee G(x) \vee B(x)) \\
& \wedge \\
& (E(x, y) \Rightarrow \neg(R(x) \wedge R(y) \\
& \vee G(x) \wedge G(y) \\
& \vee B(x) \wedge B(y)))
\end{aligned}
$$

Example 2: Acyclicity of a digraph $(V ; E)$ can be expressed by

$$
\forall X \neq \emptyset \exists x \in X \forall y \in X: \neg E(x, y)
$$

Countably Categorical Structures for MSO sentences

Theorem (B.+Knäuer+Rudolph'21).

Let \mathfrak{B} be such that $\operatorname{CSP}(\mathfrak{B})$ is in MSO. Then there exists an ω-categorical structure \mathfrak{C} such that $\operatorname{CSP}(\mathfrak{B})=\operatorname{CSP}(\mathfrak{C})$.

Countably Categorical Structures for MSO sentences

Theorem (B.+Knäuer+Rudolph'21).

Let \mathfrak{B} be such that $\operatorname{CSP}(\mathfrak{B})$ is in MSO. Then there exists an ω-categorical structure \mathfrak{C} such that $\operatorname{CSP}(\mathfrak{B})=\operatorname{CSP}(\mathfrak{C})$.

Remarks

■ If $\operatorname{CSP}(\mathfrak{B})$ is even in FO (first-order logic), this was already known (combining Rossmann'08 and Cherlin+Shelah+Shi'99)

Countably Categorical Structures for MSO sentences

Theorem (B.+Knäuer+Rudolph'21).

Let \mathfrak{B} be such that $\operatorname{CSP}(\mathfrak{B})$ is in MSO. Then there exists an ω-categorical structure \mathfrak{C} such that $\operatorname{CSP}(\mathfrak{B})=\operatorname{CSP}(\mathfrak{C})$.

Remarks

■ If $\operatorname{CSP}(\mathfrak{B})$ is even in FO (first-order logic), this was already known (combining Rossmann'08 and Cherlin+Shelah+Shi'99)
■ Result can be generalised to GSO (guarded second-order logic, see Grädel+Hirsch+Otto'02)

MSNP

Monadic Strict NP (MSNP): restriction of MSO

MSNP

Monadic Strict NP (MSNP): restriction of MSO where

1 Only existential quantification over sets

MSNP

Monadic Strict NP (MSNP): restriction of MSO where

1 Only existential quantification over sets
2 Only universal first-order quantifiers

MSNP

Monadic Strict NP (MSNP): restriction of MSO where
1 Only existential quantification over sets
2 Only universal first-order quantifiers
Motivation for the name: NP = existential second-order logic (Fagin'74).

MSNP

Monadic Strict NP (MSNP): restriction of MSO where
1 Only existential quantification over sets
2 Only universal first-order quantifiers
Motivation for the name: NP = existential second-order logic (Fagin'74).

Example 1:

$$
\begin{aligned}
\exists R, B, G . \forall x, y & :(R(x) \vee B(x) \vee G(x)) \\
& \wedge(E(x, y) \Rightarrow \neg(R(x) \wedge R(y) \vee B(x) \wedge B(y) \vee G(x) \wedge G(y)))
\end{aligned}
$$

MSNP

Monadic Strict NP (MSNP): restriction of MSO where
1 Only existential quantification over sets
2 Only universal first-order quantifiers
Motivation for the name: NP = existential second-order logic (Fagin'74).

Example 1:

$$
\begin{aligned}
\exists R, B, G . \forall x, y & :(R(x) \vee B(x) \vee G(x)) \\
& \wedge(E(x, y) \Rightarrow \neg(R(x) \wedge R(y) \vee B(x) \wedge B(y) \vee G(x) \wedge G(y)))
\end{aligned}
$$

Example 2:

$$
\forall x, y, z(\neg E(x, y) \vee \neg E(y, z) \vee \neg E(z, x))
$$

Dichotomy for MSNP

Dichotomy for MSNP

Theorem (B.+Mottet'18).

Every CSP in MSNP can be formulated as $\operatorname{CSP}(\mathfrak{C})$, for some countably infinite ω-categorical structure \mathfrak{C},

Dichotomy for MSNP

Theorem (B.+Mottet'18).

Every CSP in MSNP can be formulated as $\operatorname{CSP}(\mathfrak{C})$, for some countably infinite ω-categorical structure \mathfrak{C}, such that
$■$ there are constants c_{1}, \ldots, c_{n} such that $\operatorname{Pol}\left(\mathfrak{C}, c_{1}, \ldots, c_{n}\right)$ has a continuous homomorphism to $\operatorname{Pol}\left(K_{3}\right)$,

Dichotomy for MSNP

Theorem (B.+Mottet'18).

Every CSP in MSNP can be formulated as $\operatorname{CSP}(\mathfrak{C})$, for some countably infinite ω-categorical structure \mathfrak{C}, such that
$■$ there are constants c_{1}, \ldots, c_{n} such that $\operatorname{Pol}\left(\mathfrak{C}, c_{1}, \ldots, c_{n}\right)$ has a continuous homomorphism to $\operatorname{Pol}\left(K_{3}\right)$, and $\operatorname{CSP}(\mathfrak{B})$ is NP-complete, or

Dichotomy for MSNP

Theorem (B.+Mottet'18).

Every CSP in MSNP can be formulated as $\operatorname{CSP}(\mathfrak{C})$, for some countably infinite ω-categorical structure \mathfrak{C}, such that
$■$ there are constants c_{1}, \ldots, c_{n} such that $\operatorname{Pol}\left(\mathfrak{C}, c_{1}, \ldots, c_{n}\right)$ has a continuous homomorphism to $\operatorname{Pol}\left(K_{3}\right)$, and $\operatorname{CSP}(\mathfrak{B})$ is NP-complete, or

- $\operatorname{CSP}(\mathfrak{B})$ is in P .

Dichotomy for MSNP

Theorem (B.+Mottet'18).

Every CSP in MSNP can be formulated as $\operatorname{CSP}(\mathfrak{C})$, for some countably infinite ω-categorical structure \mathfrak{C}, such that
\square there are constants c_{1}, \ldots, c_{n} such that $\operatorname{Pol}\left(\mathbb{C}, c_{1}, \ldots, c_{n}\right)$ has a continuous homomorphism to $\operatorname{Pol}\left(K_{3}\right)$, and $\operatorname{CSP}(\mathfrak{B})$ is NP-complete, or

- $\operatorname{CSP}(\mathfrak{B})$ is in P .

Remarks

■ The P vs NP-complete dichotomy for CSPs in MSNP was already known (Feder+Vardi'96, Kun'13)

Dichotomy for MSNP

Theorem (B.+Mottet'18).

Every CSP in MSNP can be formulated as $\operatorname{CSP}(\mathfrak{C})$, for some countably infinite ω-categorical structure \mathfrak{C}, such that
\square there are constants c_{1}, \ldots, c_{n} such that $\operatorname{Pol}\left(\mathbb{C}, c_{1}, \ldots, c_{n}\right)$ has a continuous homomorphism to $\operatorname{Pol}\left(K_{3}\right)$, and $\operatorname{CSP}(\mathfrak{B})$ is NP-complete, or

- $\operatorname{CSP}(\mathfrak{B})$ is in P .

Remarks

■ The P vs NP-complete dichotomy for CSPs in MSNP was already known (Feder+Vardi'96, Kun'13)
■ Proof uses structural Ramsey theory

Proof: Ramsey Theory

Proof: Ramsey Theory

For structures \mathfrak{L} and \mathfrak{S}, write $(\underset{\mathfrak{S}}{\mathfrak{L}})$ for the set of all embeddings of $\mathfrak{S} \hookrightarrow \mathfrak{L}$.

Proof: Ramsey Theory

For structures \mathfrak{L} and \mathfrak{S}, write $\binom{\mathfrak{L}}{\mathfrak{S}}$ for the set of all embeddings of $\mathfrak{S} \hookrightarrow \mathfrak{L}$.

Definition.

Write

$$
\mathfrak{L} \rightarrow(\mathfrak{M})_{c}^{\mathfrak{S}}
$$

iff for all $\chi:\binom{\mathfrak{L}}{\mathfrak{S}} \rightarrow[c]$ there exists an $e \in\binom{\mathfrak{L}}{\mathfrak{M}}$ such that $\left|\chi\left(e \circ\binom{\mathfrak{M}}{\mathfrak{S}}\right)\right| \leq 1$.

Proof: Ramsey Theory

For structures \mathfrak{L} and \mathfrak{S}, write $\binom{\mathfrak{L}}{\mathfrak{S}}$ for the set of all embeddings of $\mathfrak{S} \hookrightarrow \mathfrak{L}$.

Definition.

Write

$$
\mathfrak{L} \rightarrow(\mathfrak{M})_{{ }_{C}^{S}}^{\mathfrak{S}}
$$

iff for all $\chi:\binom{\mathfrak{L}}{\mathfrak{S}} \rightarrow[c]$ there exists an $e \in\binom{\mathfrak{L}}{\mathfrak{M}}$ such that $\left|\chi\left(e \circ\binom{\mathfrak{M}}{\mathfrak{S}}\right)\right| \leq 1$.

The Ramsey Property

The Ramsey Property

Definition [Nešetřil].
A structure \mathfrak{B} is Ramsey if $\mathfrak{B} \rightarrow(\mathfrak{M})_{c}^{\mathscr{G}}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$ and for every $c \in \mathbb{N}$.

The Ramsey Property

Definition [Nešetřil].
A structure \mathfrak{B} is Ramsey if $\mathfrak{B} \rightarrow(\mathfrak{M})_{c}^{\mathscr{G}}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$ and for every $c \in \mathbb{N}$.

Example. $(\mathbb{Q} ;<)$ is Ramsey.

The Ramsey Property

Definition [Nešetřil].
A structure \mathfrak{B} is Ramsey if
$\mathfrak{B} \rightarrow(\mathfrak{M})_{c}^{\mathscr{G}}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$
and for every $c \in \mathbb{N}$.

Example. $(\mathbb{Q} ;<)$ is Ramsey.
Reformulation of Ramsey's theorem!

The Ramsey Property

Definition [Nešetřil].
A structure \mathfrak{B} is Ramsey if $\mathfrak{B} \rightarrow(\mathfrak{M})_{c}^{\mathscr{G}}$ for all finite $\mathfrak{S}, \mathfrak{M} \hookrightarrow \mathfrak{B}$ and for every $c \in \mathbb{N}$.

Example. $(\mathbb{Q} ;<)$ is Ramsey.
Reformulation of Ramsey's theorem!

Theorem (Kechris, Pestov, Todorcevic'05).

A homogeneous structure \mathfrak{B} is Ramsey if and only if $\operatorname{Aut}(\mathfrak{B})$ is extremely amenable, i.e., every continuous action on a compact Hausdorff space has a fixed point.

The Theorem of Hubička+Nešetřil

The Theorem of Hubička+Nešetřil

Theorem (consequence of Hubička+Nešeť̌il'16).

The Theorem of Hubička+Nešetřil

Theorem (consequence of Hubička+Nešeť̌il'16).
For every CSP described by an MSNP sentence Φ

The Theorem of Hubička+Nešetřil

Theorem (consequence of Hubička+Nešeť̌il'16).
For every CSP described by an MSNP sentence Φ there exists a structure \mathfrak{B} and a linear order $<$ on B so that

The Theorem of Hubička+Nešetřil

Theorem (consequence of Hubička+Nešetřil'16).

For every CSP described by an MSNP sentence Φ there exists a structure \mathfrak{B} and a linear order $<$ on B so that
■ $\operatorname{CSP}(\mathfrak{B})=\{\mathfrak{A}$ finite $\mid \mathfrak{A} \models \Phi\}$;

The Theorem of Hubička+Nešetřil

Theorem (consequence of Hubička+Nešetřil'16).

For every CSP described by an MSNP sentence Φ there exists a structure \mathfrak{B} and a linear order $<$ on B so that

- $\operatorname{CSP}(\mathfrak{B})=\{\mathfrak{A}$ finite $\mid \mathfrak{A} \models \Phi\}$;

■ ($\mathfrak{B},<$) is Ramsey and ω-categorical.

The Theorem of Hubička+Nešetřil

Theorem (consequence of Hubička+Nešetřil'16).

For every CSP described by an MSNP sentence Φ there exists a structure \mathfrak{B} and a linear order $<$ on B so that

- $\operatorname{CSP}(\mathfrak{B})=\{\mathfrak{A}$ finite $\mid \mathfrak{A} \models \Phi\}$;

■ ($\mathfrak{B},<$) is Ramsey and ω-categorical.

Remarks.

■ Uses partite method from structural Ramsey theory (Nešetřil-Rödl).

The Theorem of Hubička+Nešetřil

Theorem (consequence of Hubička+Nešetřil'16).

For every CSP described by an MSNP sentence Φ there exists a structure \mathfrak{B} and a linear order $<$ on B so that

- $\operatorname{CSP}(\mathfrak{B})=\{\mathfrak{A}$ finite $\mid \mathfrak{A} \models \Phi\}$;

■ $(\mathfrak{B},<)$ is Ramsey and ω-categorical.

Remarks.

■ Uses partite method from structural Ramsey theory (Nešetrill-Rödl).
■ Thus: $\operatorname{Aut}(\mathfrak{B},<)$ is extremely amenable.

The Theorem of Hubička+Nešetřil

Theorem (consequence of Hubička+Nešetřil'16).

For every CSP described by an MSNP sentence Φ there exists a structure \mathfrak{B} and a linear order $<$ on B so that

- $\operatorname{CSP}(\mathfrak{B})=\{\mathfrak{A}$ finite $\mid \mathfrak{A} \models \Phi\}$;

■ $(\mathfrak{B},<)$ is Ramsey and ω-categorical.

Remarks.

■ Uses partite method from structural Ramsey theory (Nešetrill-Rödl).
■ Thus: $\operatorname{Aut}(\mathfrak{B},<)$ is extremely amenable.
(3) Ramsey Expansion Conjecture.

The Theorem of Hubička+Nešetřil

Theorem (consequence of Hubička+Nešetřil'16).

For every CSP described by an MSNP sentence Φ there exists a structure \mathfrak{B} and a linear order $<$ on B so that

- $\operatorname{CSP}(\mathfrak{B})=\{\mathfrak{A}$ finite $\mid \mathfrak{A} \models \Phi\}$;

■ $(\mathfrak{B},<)$ is Ramsey and ω-categorical.

Remarks.

■ Uses partite method from structural Ramsey theory (Nešetřil-Rödl).
■ Thus: $\operatorname{Aut}(\mathfrak{B},<)$ is extremely amenable.
(3) Ramsey Expansion Conjecture. Every homogeneous structure with finite relational signature has a finite homogeneous Ramsey expansion.

Model-theoretic Challenges in Constraint Satisfaction

\mathfrak{B} : reduct of homogeneous structure \mathfrak{C} with finite relational signature.

Model-theoretic Challenges in Constraint Satisfaction

\mathfrak{B} : reduct of homogeneous structure \mathfrak{C} with finite relational signature.
1 (Thomas) Does Aut(\mathfrak{B}) always have finitely many closed supergroups?

Model-theoretic Challenges in Constraint Satisfaction

\mathfrak{B} : reduct of homogeneous structure \mathfrak{C} with finite relational signature.
1 (Thomas) Does Aut(\mathfrak{B}) always have finitely many closed supergroups?
2 (Reconstruction of Topology)
$\operatorname{Aut}(\mathfrak{B}) \simeq \operatorname{Aut}\left(\mathfrak{B}^{\prime}\right) \Rightarrow \operatorname{Aut}(\mathfrak{B}) \simeq_{t} \operatorname{Aut}\left(\mathfrak{B}^{\prime}\right)$?

Model-theoretic Challenges in Constraint Satisfaction

\mathfrak{B} : reduct of homogeneous structure \mathfrak{C} with finite relational signature.
1 (Thomas) Does Aut(\mathfrak{B}) always have finitely many closed supergroups?
2 (Reconstruction of Topology)
$\operatorname{Aut}(\mathfrak{B}) \simeq \operatorname{Aut}\left(\mathfrak{B}^{\prime}\right) \Rightarrow \operatorname{Aut}(\mathfrak{B}) \simeq_{t} \operatorname{Aut}\left(\mathfrak{B}^{\prime}\right)$?
3 (Ramsey Expansion) Does \mathfrak{B} always have a finite homogeneous expansion with the Ramsey property?

Model-theoretic Challenges in Constraint Satisfaction

\mathfrak{B} : reduct of homogeneous structure \mathfrak{C} with finite relational signature.
1 (Thomas) Does Aut(\mathfrak{B}) always have finitely many closed supergroups?
2 (Reconstruction of Topology)
$\operatorname{Aut}(\mathfrak{B}) \simeq \operatorname{Aut}\left(\mathfrak{B}^{\prime}\right) \Rightarrow \operatorname{Aut}(\mathfrak{B}) \simeq_{t} \operatorname{Aut}\left(\mathfrak{B}^{\prime}\right)$?
3 (Ramsey Expansion) Does \mathfrak{B} always have a finite homogeneous expansion with the Ramsey property?

How to attack?

Model-theoretic Challenges in Constraint Satisfaction

\mathfrak{B} : reduct of homogeneous structure \mathfrak{C} with finite relational signature.
1 (Thomas) Does Aut(\mathfrak{B}) always have finitely many closed supergroups?
2 (Reconstruction of Topology)
$\operatorname{Aut}(\mathfrak{B}) \simeq \operatorname{Aut}\left(\mathfrak{B}^{\prime}\right) \Rightarrow \operatorname{Aut}(\mathfrak{B}) \simeq_{t} \operatorname{Aut}\left(\mathfrak{B}^{\prime}\right)$?
3 (Ramsey Expansion) Does \mathfrak{B} always have a finite homogeneous expansion with the Ramsey property?

How to attack?
■ Additionally assume that \mathfrak{C} is NIP ('not the independence property').

Model-theoretic Challenges in Constraint Satisfaction

\mathfrak{B} : reduct of homogeneous structure \mathfrak{C} with finite relational signature.
1 (Thomas) Does Aut(\mathfrak{B}) always have finitely many closed supergroups?
2 (Reconstruction of Topology)
$\operatorname{Aut}(\mathfrak{B}) \simeq \operatorname{Aut}\left(\mathfrak{B}^{\prime}\right) \Rightarrow \operatorname{Aut}(\mathfrak{B}) \simeq_{t} \operatorname{Aut}\left(\mathfrak{B}^{\prime}\right)$?
3 (Ramsey Expansion) Does \mathfrak{B} always have a finite homogeneous expansion with the Ramsey property?

How to attack?
■ Additionally assume that \mathfrak{C} is NIP ('not the independence property').

- Additionally assume that \mathfrak{C} is NIP and has binary signature.

